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Abstract

We make a simple observation on the relationship between two formalisms for security

protocols. The first one is used for the verification of a bounded number of sessions and can

be modeled in first-order logic with rigid variables. The second one is an approximation for

the verification of an unbounded number of sessions and is typically used in ProVerif. We show

that actually the bounded number of sessions case can be simply represented in a first-order

logic setting, without introducing false attacks.

This simple observation allows to translate results, which are obtained in one framework

into results in the other framework.

1 Introduction

It is convenient and simple to model the security of cryptographic protocols within first-order
logic. It is indeed possible then to use general purpose theorem provers such as SPASS (see first
experiments for security protocols in [17]). There are also successful verification tools such as
ProVerif [4], which are based on first-order logic.

However, one drawback of such a formalization is that it requires some approximations. First,
global properties such as freshness require a heavy encoding to be faithfully represented in first-
order logic (see e.g., [10]), which is not amenable to further automation.

Second, pieces of messages that can be replaced with any message (since they cannot be
analyzed by the recipient) are abstracted by variables. Such variables are naturally universally
quantified in first-order logic. However, if an attacker can indeed replace these messages with an
arbitrary forged message (hence a universal quantification), he should be allowed to do it only once
for every variable. More precisely, the attacker can choose the substitution, but has to commit
on this value. On the other hand, in a first-order logic formulation, since ∀x.φ(x) is equivalent
to (∀x.φ(x)) ∧ (∀y.φ(y)), the attacker may use two distinct substitutions for the same variable.
Hence, in general, the attacker model in first-order logic corresponds to a stronger attacker than
the real one. We will give concrete examples in Sect. 2.

It follows that attacks that are found in a first-order logic formulation of security might be
false attacks. This has been well-known for a long time and it is the reason why several more
accurate formalisms have been designed, for instance using MSR or linear logic [5].

Instead of proving security for an arbitrary number of sessions, much work focuses on finding
an attack for a bounded number of sessions (e.g., [15]). In this setting, there is no need for ap-
proximation: the insecurity problem can be translated into deducibility constraints, after guessing
an interleaving of actions. Translating this approach in first-order logic is not straightforward, for
the same reason as above: we must express that a variable, though universally quantified, can be
instantiated only once.

A simple way to fix the problems and remove the false attacks due to universal quantification
is to use rigid variables: while universally quantified, standard variables can be instantiated as
many times as we wish, rigid variables get only one instance [3]. This is exactly what we need for



modeling security protocols. We need however one set of rigid variables for each session. Therefore,
in practice, this can only be applied for a bounded number of sessions. This is exactly what is
done in [13]: the authors introduce rigid clauses to model the protocol rules when the number of
sessions is fixed. Then they design a proof calculus for such clauses and show a termination result.

To the best of our knowledge, there is no formulation of the security problem for a bounded
number of sessions within first-order logic, which avoids false attacks. This is what we do in the
present note. Actually, we show that there is a simple translation of rigid variables in first-order
logic, which preserves the satisfiability of formulas. It follows for instance that we can capture
rigid-validity, hence security for a bounded number of sessions, within first-order logic. Then we
can use first-order theorem provers for finding attacks in a bounded number of sessions, without
generating false attacks. This can be useful, when trying to reconstruct attacks from candidate
attacks found by a theorem prover: this is a simple alternative to [2]. It can also be used to search
simultaneously, with the same tool, for attacks and proofs.

Using this simple translation of rigid variables in first-order logic, we may considerably simplify
the proof rules for rigid clauses of [13]. We can also extend the calculus, allowing for clauses mixing
rigid and non-rigid variables as well as equalities (however only flexible variables are allowed in
equalities). Finally, we can translate back and forth results from first-order logic to first-order
logic with rigid variables. For instance, from [9], we derive a decision result for a bounded number
of sessions for protocols including exclusive-or. The other way around, from the decision results
on security protocols for a bounded number of sessions, we derive decision results (in co-NP) for
fragments of first-order logic.

We recall some protocol models in Sect. 2, through examples. In Sect. 3, we show the simple
translation from rigid clauses to first-order clauses. In Sect. 4 we sketch some possible applications.

2 First-order Models of Protocols

We give the main ideas about first-order models of protocols (see e.g., [4] for further details) and
examples to illustrate false attacks.

2.1 A Standard Model

Let I be a predicate symbol that captures the intruder’s knowledge. The attacker capabilities are
described by a set of Horn clauses:

(I0) I(x), I(y) → I(〈x, y〉)
(I1) I(〈x, y〉) → I(x)
(I2) I(x), I(y) → I([x]y)
(I3) I([x]y), I(y) → I(x)
(I4) → I(pk(x))
(I5) I(x), I(pk(y)) → I({x}pk(y))
(I6) I({x}pk(y)), I(y) → I(x)

· · ·

The function symbol pk represents the public key corresponding to some private key. Public-key
encryption and symmetric encryption are respectively represented by {·}· and [·]·. The pairing
function 〈·, ·〉 will sometimes be omitted or considered as variadic to ease reading. The rules (I1),
(I6), etc. can also be replaced with explicit destructors

(I1′) I(x) → I(π1(x))
(I6′) I(x), I(y) → I(pdec(x, y))

· · ·

together with equations π1(〈x, y〉) = x, pdec({x}pk(y), y) = x, etc. We will use either of the two
formalisms without mention.



Protocol clauses are modeled considering the protocol as an oracle used by the attacker. Fresh-
ness is approximated using a function symbol, which depends on the terms seen at this stage. The
following sections illustrate this with examples.

2.2 An Example of False Attack

Let us consider a protocol from [7], which we write first in the (somewhat ambiguous) Alice-and-
Bob notation:

A→ B : {pkA, N}pkB

B → A : {N,K}pkA

A→ B : [S]K
B → A : N

and, more formally, in an extended π-calculus notation (as described e.g., in [1]):

PA(pkA, skA, pkB)
def
= c(xpkB

).νs.νN.c〈{〈pkA, N〉}xpkB
〉.

c(xnk).let (non, k) = pdec(xnk, skA) in if non = N then if xpkB
= pkB then c〈[s]k〉

PB(skB)
def
= c(xm).let (pka, non) = pdec(xm, skB) in νk.c〈{〈non, k〉)}pka〉.

c(xsk).let s = sdec(xsk, k) in c〈non〉

P0
def
=!(νskA.let pkA = pk(skA) in c〈pkA〉.νskB.let pkB = pk(skB) in c〈pkB〉.
!PA(pkA, skA, pkB) | !PB(skB))

| !(νskA.let pkA = pk(skA) in c〈pkA〉.c〈skA〉.νskB .let pkB = pk(skB) in c〈pkB〉.c〈skB〉.
!PA(pkA, skA, pkB) | !PB(skB))

The security property (which we do not display here) states that any secret s generated by an
honest identity A for an honest identity B (given as the first input in the process PA) is never
disclosed.

In first-order logic, the protocol is modeled as

(∆1) I(pk(x)), I(pk(y)) → I({pk(x), N(x, y)}pk(y))
(∆2) I({x, y}pk(z)) → I({y,K(x, y, z)}x)
(∆3) I({N(x, y), z}pk(x)) → I([S(x, y, z)]z)
(∆4) I({w}K(x,y,z)) → I(y)

We avoid here the explicit destructors, while they are used in the process description, for readability
reasons. (See appendix A for a ProVerif encoding.)

Basically, the intruder uses the protocol as an oracle: for each protocol rule, if the intruder can
construct a message matching the expected pattern, then it gets the corresponding reply message.
For example, the clause (∆1) represents the first action of process PA (session initialization), the
clause (∆2) represents the first action of process PB (upon reception from A of {x, y}pk(skB) which
is supposed to be {pk(skA), N}pk(skB) the reply of B is the message {y,K}x), etc.

Finally, the security property can be modeled as ¬I(S(skA, skB, z)) and I(skC) where C is a
constant representing a corrupted identity. If the protocol is insecure, then the set of clauses is
unsatisfiable: there is a derivation of I(S(skA, skB , t)) for some t.

In the clauses above, the freshness of generated dataN , K, and S is abstracted using universally
quantified variables. This may be a cause of false attacks as, for instance, every session between
A and B will use the same representation of N . For a bounded number of sessions, this problem
does not occur as different symbols can be used for nonces occurring in different sessions.

There are however other sources of false attacks. In the above example, the protocol is (sup-
posedly) secure, while there is a simple derivation of the empty clause: from a honest session of
the protocol (i.e., using clauses (∆1) to (∆4) once), we derive I(N(x, y)). Now, for any z such
that I(z) we derive I({N(x, y), z}pk(x)) using the intruder capabilities. Next, using clause (∆3)
we get I([S]z) and, from this clause and I(z), we derive I(S) by decrypting.

The problem here is that the nonce is first kept secret but eventually revealed. A first-order
model leads to a false attack by wrongly inferring that the intruder could have the nonce at an



early stage: when the nonce N is revealed, the rule (∆3) is replayed and the intruder gets back
[S]K′ for a key K ′ of his choice, which he can decrypt. This cannot occur in the process model,
as the agents would have moved forward their internal state, preventing the replay of rule (∆3).
This kind of problem occurs even for a single session, as shown by the example.

2.3 Trying to Refine the Model: there are still False Attacks

The false attack above comes from the ability (in the model) to play again a rule of the protocol
after completing it. One may think that this can be fixed by adding some state information at
each step of the protocol. While this is quite difficult for an unbounded number of sessions, there
is an easy (though expensive) encoding for a bounded number of sessions.

First, we can get rid of freshness encoding by simply modeling nonces with distinct constants.
It is also possible (though expensive; we will avoid this in the encoding of next section), to guess
an interleaving of actions and use a different predicate symbol at each step: instead of a single
predicate symbol I, we could use symbols I0, . . . , In representing the intruder knowledge after n
steps. Then the protocol clauses increase the index of the predicate:

Ik(t) → Ik+1(u) for k = 0, . . . , n− 1

for a rule stating that, at stage k, upon receiving an instance of t, the agent sends the corresponding
instance of u. The security is stated as ¬In(s) where s is the supposed secret. And we have to
add the clauses expressing the increasingness of the intruder knowledge:

Ik(x) → Ik+1(x) for k = 0, . . . , n− 1

Finally, clauses reflecting intruder capabilities are replicated n times with the indices 1, . . . , n.
With such an encoding, the above false attack can be prevented. However, this is not sufficient

in general. Here is an (cook-up) example showing again a false attack in this new setting:

Example 2.1

A→ B : [A,N0]KAB

B → A : [B,N0, N1]KAB
, [B,N0, N2]KAB

A→ B : N1

A, relying on a long term shared secret KAB, wants to establish a short term secret key. B gen-
erates two nonces N1, N2 and sends them separately. A acknowledges both nonces by sending back
one of them. The new short-term secret is N1 ⊕N2.

In a single-session model, there is no attack: the intruder can get either N1 or N2, but not
both. However, in a clausal formulation as explained above, we would have two clauses:

I1([A, x]KAB
) → I2(〈[B, x,N1]KAB

, [B, x,N2]KAB
〉)

I2(〈[B,N0, x]KAB
, [B,N0, y]KAB

〉) → I3(x)

From I2(〈[B, x,N1]KAB
, [B, x,N2]KAB

〉) we infer I2(〈[B, x,N2]KAB
, [B, x,N1]KAB

〉). Then us-
ing two instances of the second clause, we get immediately I3(N1) and I3(N2), hence the secret.
This is however a false attack: the last rule should not be played twice.

3 Rigid Clauses vs. Classical Clauses

The best way to prevent the last false attack is to use rigid variables. Encoding a bounded number
of sessions does not require then to introduce new predicate symbols, nor to guess the interleaving
of messages.

Let us first introduce the less standard rigid variables and rigid clauses and then show how to
get rid of them.



3.1 Rigid Clauses

Let F and P be resp. a set of function symbols and a set of predicate symbols with their arities.
We use the classical vocabulary of first-order logic. To fix notations, if S is a first-order

structure and P is a predicate symbol, [[P ]]
S

is the interpretation of P in S.
Formulas are clauses whose variables are either rigid (written in upper-case) or flexible (written

in lower-case). Both types of variables are universally quantified, but rigid variables can only get
one instance.

Example 3.1 Consider the following set of clauses (taken from [13]):

{I(a), I(b), ¬I(X) ∨ I(f(X)), ¬I(f(a)) ∨ ¬I(f(b))}

If X was considered as an ordinary first-order variable, this set of clauses would be unsatisfiable:
from the three first clauses we can infer both I(f(a)) and I(f(b)). The derivation of an empty
clause however requires two instances of the third clause, which is forbidden for rigid variables.
We can choose the instance X = a or the instance X = b, but not both.

The above set clauses is satisfiable in our intended interpretation of rigid variables since both
sets of ground clauses

{I(a), I(b), ¬I(a) ∨ I(f(a)), ¬I(f(a)) ∨ ¬I(f(b))}

and
{I(a), I(b), ¬I(b) ∨ I(f(b)), ¬I(f(a)) ∨ ¬I(f(b))}

are satisfiable.

The next example shows that resolution procedures cannot be easily extended to clauses con-
taining rigid variables.

Example 3.2 Consider the following set of clauses:

{I(X), ¬I(f(x)) ∨ I0, ¬I(g(x))}

It is unsatisfiable: the first and the third clauses resolve to the empty clause.
Consider however that we start by resolving the two first clauses. This yields the new set of

clauses
{I(f(Y )), I0, ¬I(f(x)) ∨ I0, ¬I(g(x))}

where Y is a new rigid variable resulting from the unification X
?
= f(x). We can still choose Y ,

but we committed to an assignment of X to a term headed with f . Now the set of clauses is
satisfiable.

For a complete resolution procedure, we would have to restart from the beginning, with another
choice of clauses to resolve.

The last example shows that, unlike classical first-order clauses, resolution does not yield
a logically equivalent set of clauses. Therefore, resolution theorem proving would have to be
reconsidered; this is the reason for complications in [13].

Let us now formalize the model-theoretic part of such calculi.
Let S be an F ,P-structure whose underlying F -algebra is A. Let C be a set of clauses whose

free variables are split into X (rigid free variables) and y (flexible free variables). If σ is an
assignment of X in A, we have S, σ |= ∀y.C defined as usual in first-order logic.

Definition 1 Let C be a set of clauses whose free variables are split into X (rigid free variables)
and y (flexible free variables).

C is satisfiable if there is a F-algebra A such that, for any A-assignment σ of X, there is a
structure S whose underlying algebra is A such that S, σ |= ∀y.C.



In other words, models of formulas with rigid variables are collections of structures, one for
each assignment of the rigid variables.

Example 3.3 On example 3.1, for any of the two assignments X 7→ a and X 7→ b there is a
model: {I(a), I(b), I(f(a)),¬I(f(b))} in the first case and {I(a), I(b), I(f(b)),¬I(f(a))} in the
second case.

Example 3.4 The one session case of Example 2.1 can be translated into the following rigid
clauses (keeping the intruder rules with flexible variables):

→ I([A,N0]KAB
)

I([A,X ]KAB
) → I(〈[B,X,N1]KAB

, [B,X,N2]KAB
〉)

I(〈[B,N0, Y ]KAB
, [B,N0, Z]KAB

〉) → I(Y )

Which, together with ¬I(〈N1, N2〉) is satisfiable. In contrast, if the above variables are considered
as flexible, it is unsatisfiable (yielding a false attack, as in Example 2.1).

There are also some traps, for instance, ∀x.φ(x) ∧ ψ(x) |=| ∀x, y.φ(x) ∧ ψ(y) while ∀X.φ(X) ∧
ψ(X) 6|= ∀X,Y.φ(X) ∧ ψ(Y ), as shown by the following example.

Example 3.5 Consider φ(X) = ψ(X) = P (X)∧ (¬P (a)∨¬P (b)). On the one hand, ∀X.φ(X)∧
ψ(X) is satisfiable. Consider the algebra with two constants a and b. For the assignment X 7→ a

(resp. X 7→ b), the structure S such that P (a) holds (resp. P (b) holds) satisfies φ(a) ∧ ψ(a)
(resp. φ(b)∧ψ(b)). On the other hand, ∀X,Y.φ(X)∧ψ(Y ) is not satisfiable. Consider any algebra
containing the constants a and b. For the assignment X 7→ a;Y 7→ b, there cannot be any structure
that satisfies φ(a) ∧ ψ(b).

3.2 Translation of Rigid Clauses into First-order Clauses

As shown in the Examples 3.2 and 3.4, (dis)proving might be a difficult task when there are rigid
variables. There is however a simple observation, yielding a transformation of rigid clauses into
flexible ones: as can be seen from the definition of satisfiability, the interpretation of predicates
depends on the assignment of rigid variables. Hence, a simple Skolemization argument suffices to
eliminate this dependence and leads back to first-order clauses:

Theorem 2 For any finite set of clauses C there is an effectively computable set of clauses C′,
which does not contain any rigid variable, and such that C is satisfiable iff C′ is satisfiable.

Proof: C′ is constructed from C as follows. If X1, . . . , Xn are the rigid variables of C, for each
P ∈ P of arity m we let P ′ be a predicate symbol of arity n+m. If ¬P1(s1) ∨ · · · ∨ ¬Pn1

(sn1
) ∨

Q1(t1) ∨ · · · ∨Qn2
(tn2

) ∈ C we let

¬P ′1(x1, . . . , xn, s
′
1) ∨ · · · ∨ ¬P ′n1

(x1, . . . , xn, s′n1
) ∨Q′1(x1, . . . , xn, t

′
1) ∨ · · · ∨Q′n2

(x1, . . . , xn, t′n2
)

be a clause C′ ∈ C′ where x1, . . . , xn are distinct variables, which do not occur free in the clause C
and s′1, . . . , s

′
n1
, t′1, . . . , t

′
n2

are the terms obtained from their unprimed version by replacing each
Xi with the corresponding xi.

If C is satisfiable, then there is an F -algebra A such that, for any A-assignment σ of X1, . . . , Xn

there is a structure Sσ such that, for every clause C ∈ C, we have Sσ, σ |= ∀y.C. Consider then
the structure S′ (whose underlying algebra is A) such that

(a1, . . . , an, b1, . . . , bm) ∈ [[P ′]]
S

′

iff (b1, . . . , bm) ∈ [[P ]]
S{X1 7→a1;...;Xn 7→an}

For any clause C of C, we claim that S ′ |= ∀x, y.C′: for any assignment σ′ of the variables
x1, . . . , xn respectively and for any assignment θ of the other variables y of the clause, we let σ
be the assignment of the rigid variables defined by σ(Xi) = σ′(xi) for every i. By hypothesis,



Sσ, θ, σ |= C. It follows that, for some literal L ∈ C, Sσ, θ, σ |= L. Assume for instance that L is

a positive literal (the other case is similar): L = P (u1, . . . , um) and ([[u1]]
θ,σ,A

, . . . , [[um]]θ,σ,A) ∈

[[P ]]
Sσ . This is equivalent, by definition, to

(a1, . . . , an, [[u1]]
θ,σ,A

, . . . , [[um]]
θ,σ,A

) ∈ [[P ′]]
S

′

which, again by construction, yields
S′, σ′, θ |= C′

Conversely, if C′ is satisfiable, then let S′ be a structure which satisfies all clauses of C′. Consider
an arbitrary assignment σ of rigid variables occurring in C. We let Sσ be the structure defined by

[[P ]]
Sσ = {(b1, . . . , bm) | (X1σ, . . . , Xnσ, b1, . . . , bm) ∈ [[P ′]]

S
′

}

As before, Sσ, σ |= ∀y.C iff S′ |= ∀x, y.C′.
�

This extends to clauses with equality, provided that every equality clause does not contain any
rigid variable.

4 Examples of Possible Applications

4.1 Automatic Proofs for a Bounded Number of Sessions

Thanks to the effective procedure given in the proof of Theorem 2, we can use resolution for
mechanizing proofs in a bounded number of sessions. We believe that the resulting procedure is
simpler, both conceptually and from the complexity point of view, than the one given in [13]. In
addition, it works as well if we have clauses mixing rigid and flexible variables and also if we have
(flexible) equations. Though, in the latter case, there is no guarantee for termination.

Example 4.1 Let us come back to Example 3.4. We translate now the rigid clauses into first-order
clauses:

→ I(x, y, z, [A,N0]KAB
)

I(x, y, z, [A, x]KAB
) → I(x, y, z, 〈[B, x,N1]KAB

, [B, x,N2]KAB
〉)

I(x, y, z, 〈[B,N0, y]KAB
, [B,N0, z]KAB

〉) → I(x, y, z, y)
I(x, y, z, 〈N1, N2〉) →

Using an appropriate strategy (see next section), resolution terminates in a few steps, yield-
ing in particular the literals I(N0, N1, N2, N1) and I(N0, N2, N1, N2) (which, without the three
first components, were used to mount a false attack). On the other side, the goal is decom-
posed into ¬I(x, y, z,N1) ∨ ¬I(x, y, z,N2) and leads, using the two inferred literals, to clauses
¬I(N0, N2, N1, N1) and ¬I(N0, N1, N2, N2). But the empty clause does not belong to the saturated
set: there is no one-session attack.

4.2 Decidable Fragments of First-order Logic

Concerning termination, the delicate problem is the design of appropriate strategies, which we do
not address thoroughly in this note.

If we translate back in terms of strategies the constraint solving techniques used for the de-
cidability and complexity proofs for a bounded number of sessions (see [8]), we will get a decision
result for formulas in the following clausal form1:

1The part of I’s arguments that model rules ordering is put in subscript position to ease reading.



Theorem 3 Let f be a function symbol. Assume that all clauses are of one of the following forms:

1. I z (x, y0) , . . . , I z (x, yn−1) → I z (x, f(y0, . . . , yn−1)) with x, y, z pairwise disjoint

2. I z[i←k] (x, s) → I z[i←k+1] (x, t) with Var(t) ⊆ Var(s) ⊆ x and x ∩ z = ∅

3. I z (x, t) with Var(t) ⊆ x and x ∩ z = ∅

4. ¬ I z (x, s) with Var(s) ⊆ x and x ∩ z = ∅

where z[i←k] represents the variable-vector z whose ith element is replaced by k. Then the satisfia-
bility modulo the axioms of encryption/decryption (resp. satisfiability modulo exclusive-or [6, 11],
resp. satisfiability modulo Abelian groups [16]) is co-NP-complete.

This shows a new decidable fragment of first-order logic. It is related to both the extended
Skolem class and the E+ class [14], but it is not subsumed by any of the two classes. So, as a
perspective, if we manage to characterize the appropriate strategy, out of the previous theorem,
we could get a new non-trivial decidable class of first-order logic.

In the case of the axioms of encryption/decryption, the strategy consisting in binary reso-
lution with the free selection defined just below and deletion of redundant clauses is complete
and terminating. The free selection function in question is defined as follows. Consider a well-
founded, liftable ordering containing the subterm ordering. For any Horn clause of the form
I u0

(s0, t0) , . . . , I un−1
(sn−1, tn−1) → I un

(sn, tn):

• If there is only one maximal literal, then return the corresponding atom.

• Otherwise, if there is a maximal, negative literal where ti is not a variable, then return the
corresponding atom.

• Otherwise, if the positive literal is maximal and tn is not a variable, then return it.

• Otherwise, return any atom.

Of course, known decidable fragments of first-order logic (e.g., the one defined in [9]) can be
used to infer decision algorithms for a bounded number of sessions. But this is less likely to give
interesting results as it will impose necessary restrictions on the protocol.

4.3 Enhancing First-order Provers for Security Protocols

Another possible use of the translation given in Theorem 2 is to combine in a single first-order
theorem prover the advantages of the approximations and of the bounded number of sessions:
using the same engine and specification it is possible to look first for attacks/safety in an exact
way for a given number of sessions and then use an approximation for more sessions. Alternatively,
in case a candidate attack is found, we could simply check the falsity of the attack using additional
clauses.

5 Conclusion

We do not claim to contribute here by a deep or difficult result. We believe however that our
simple observation is useful for encoding the problem of security for a bounded number of sessions
into a first-order clausal form.

This opens also some perspectives in automated deduction: there is a hidden strategy, which
yields a decidable fragment of first-order logic and deserves some attention.
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A A False Attack in ProVerif

Here follows a formalization in ProVerif of the first protocol of Sect. 2.2 whose verification yields
a false attack. The clauses rule 1, rule 2, etc. below correspond respectively to the clauses
(∆1), (∆2), etc. in Sect. 2.2. With respect to Sect. 2.2, the ProVerif encoding makes some sound
simplifications, which are not explained here.

pred I/1 elimVar,decompData.

fun pk/1. fun penc/2. fun senc/2.

query I:S[skA[],skB[],z]. not I:skA[]. not I:skB[].

reduc

(* the attacker *)

I:x & I:y -> I:senc(x,y) ;

I:x & I:senc(y, x) -> I:y ;

I:pk(x) ;

I:x & I:pk(y) -> I:penc(x, pk(y)) ;

I:y & I:penc(x, pk(y)) -> I:x ;

(* the protocol *)

I:senc(w, k[x, y, z]) -> I:y ; (* rule 4 *)

I:penc((N[x,y], z), pk(x)) -> I:senc(S[x,y,z], z) ; (* rule 3 *)

I:penc((x, y), pk(z)) -> I:penc((y, k[x,y,z]), x) ; (* rule 2 *)

I:pk(x) & I:pk(y) -> I:penc((pk(x), N[x,y]), pk(y)) . (* rule 1 *)

Analysis by ProVerif yields a false attack represented by a derivation of I:S[skA[],skB[],z]

for some z provided by the attacker. In this derivation, one can observe the execution of a honest
session of the protocol (using rule 1 to rule 4 once) leading to I:N[skA[],skB[]], the latter being
eventually used in a replay of rule 3.

rule 8 I:S[skA[],skB[],z_308]

hypothesis I:z_308

rule 3 I:senc(S[skA[],skB[],z_308],z_308)

rule 6 I:penc((N[skA[],skB[]],z_308),pk(skA[]))

2-tuple I:(N[skA[],skB[]],z_308)

rule 4 I:N[skA[],skB[]]

rule 3 I:senc(S[skA[],skB[],k[pk(skA[]),N[skA[],skB[]],skB[]]],

k[pk(skA[]),N[skA[],skB[]],skB[]])

rule 2 I:penc((N[skA[],skB[]],k[pk(skA[]),N[skA[],skB[]],skB[]]),pk(skA[]))

rule 1 I:penc((pk(skA[]),N[skA[],skB[]]),pk(skB[]))

rule 7 I:pk(skA[])

rule 7 I:pk(skB[])

hypothesis I:z_308

rule 7 I:pk(skA[])

RESULT goal reachable: I:S[skA[],skB[],z_5]


