Towards Verification with no False Attack of Security Protocols in First-order Logic

Reynald Affeldt and Hubert Comon-Lundh

Research Center for Information Security (RCIS), National Institute of Advanced Industrial Science and Technology (AIST)

JSIAM-FAIS

September 18, 2008
Motivation

Successful automatic verifications of protocols in first-order logic:
- With general-purpose theorem provers (e.g., SPASS [C. Weidenbach, 1999])
- With specialized tools (e.g., ProVerif [B. Blanchet, 2001])

Problem: False attacks because of modeling approximations
- Known issue
- Sound approximations w.r.t. the freshness of nonces
 (in the case of verification for an unbounded number of sessions)
- Sound approximations w.r.t. the execution order of protocols rules
 (this cannot easily be fixed by encoding state information)

Our goal: Security proofs with standard theorem provers, discarding all false attacks, with termination for a bounded number of sessions
How to Avoid False Attacks while Using Standard Theorem Provers?

Our approach: Use *rigid variables* [P. Andrews, 1981]

\begin{align*}
\text{result} & = \left\{ \begin{array}{l}
\text{translation to first-order logic} \\
\text{complete and terminating resolution strategy}
\end{array} \right. \\
\end{align*}

In first-order logic protocol models, the intruder instantiates variables:
- with the name of agents it wants to attack,
- with made-up messages, etc.

as many times as it wants

\Rightarrow This enables construction/decomposition of arbitrary messages

\Rightarrow But this also allows arbitrary replays of protocol rules!

With rigid variables:
- The intruder can still instantiate a variable with an arbitrary message
- But it has to commit to this one message

Rigidity has already been applied to verification of protocols:
- Decision procedure for rigid clauses in [Delaune, Lin, and Lynch, LPAR 2007]
Outline

1. False attacks in first-order logic models of protocols

2. Rigid variables to avoid false attacks

3. Rigid resolution implemented with standard techniques
First-order Model of Protocols

The Intruder Model

Logical formulation of Dolev-Yao:

- Function symbols to build messages: $\langle \cdot , \cdot \rangle$, \cdot (sym. encr.), etc.
- A predicate “I” to model the knowledge of the intruder
- Deduction rules for the intruder:

$\forall x,y. \quad I(x) \land I(y) \rightarrow I(\langle x, y \rangle)$

$\forall x,y. \quad I(\langle x, y \rangle) \rightarrow I(x)$

$\forall x,y. \quad I(x) \land I(y) \rightarrow I([x]y)$

$\forall x,y. \quad I([x]y) \land I(y) \rightarrow I(x)$

etc.
First-order Model of a Sample Protocol (1/3)

In Alice-and-Bob notation:

\[A \rightarrow B : [A, N_0]_{K_{AB}} \]

\[B \rightarrow A : [B, N_0, N_1]_{K_{AB}}, [B, N_0, N_2]_{K_{AB}} \]

\[A \rightarrow B : N_1 \]

Is \(N_1 \oplus N_2 \) kept secret?
First-order Model of a Sample Protocol (1/3)

In Alice-and-Bob notation:

\[A \rightarrow B : [A, N_0]_{K_{AB}} \]
\[B \rightarrow A : [B, N_0, N_1]_{K_{AB}}, [B, N_0, N_2]_{K_{AB}} \]
\[A \rightarrow B : N_1 \]

Is \(N_1 \oplus N_2 \) kept secret?

The same as a set of rules:

\[
\text{A’s role)} \quad \rightarrow I\left([A, N_0]_{K(A,B)}\right)
\]
First-order Model of a Sample Protocol (1/3)

In Alice-and-Bob notation:

\[A \to B : [A, N_0]_{K_{AB}} \]
\[B \to A : [B, N_0, N_1]_{K_{AB}}, [B, N_0, N_2]_{K_{AB}} \]
\[A \to B : N_1 \]

Is \(N_1 \oplus N_2 \) kept secret?

The same as a set of rules:

\[\begin{align*}
\text{A’s role)} \quad & \quad \to I \left([A, N_0]_{K(A,B)} \right) \\
\text{B’s role)} \quad & \quad I \left([A, x]_{K(A,B)} \right) \to I \left([B, x, N_1]_{K(A,B)}, [B, x, N_2]_{K(A,B)} \right)
\end{align*} \]
First-order Model of a Sample Protocol (1/3)

In Alice-and-Bob notation:

\[
\begin{align*}
A \to B & : \ [A, N_0]_{K_{AB}} \\
B \to A & : \ [B, N_0, N_1]_{K_{AB}}, [B, N_0, N_2]_{K_{AB}} \\
A \to B & : \ N_1
\end{align*}
\]

Is \(N_1 \oplus N_2\) kept secret?

The same as a set of rules:

\[
\begin{align*}
\text{A’s role)} & \quad \rightarrow I \left([A, N_0]_{K(A,B)} \right) \\
\text{B’s role)} & \quad I \left([A, x]_{K(A,B)} \right) \rightarrow I \left([B, x, N_1]_{K(A,B)}, [B, x, N_2]_{K(A,B)} \right) \\
\text{A’s role)} & \quad I \left([B, N_0, y]_{K(A,B)}, [B, N_0, z]_{K(A,B)} \right) \rightarrow I (y)
\end{align*}
\]
First-order Model of a Sample Protocol (1/3)

In Alice-and-Bob notation:

\[A \rightarrow B : [A, N_0]_{K_{AB}} \]
\[B \rightarrow A : [B, N_0, N_1]_{K_{AB}}, [B, N_0, N_2]_{K_{AB}} \]
\[A \rightarrow B : N_1 \]

Is \(N_1 \oplus N_2 \) kept secret?

The same as a set of rules:

<table>
<thead>
<tr>
<th>A’s role)</th>
<th>(I ([A, N_0]_{K(A,B)}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>B’s role)</td>
<td>(I ([A, x]{K(A,B)}) \rightarrow I ([B, x, N_1]{K(A,B)}, [B, x, N_2]_{K(A,B)}))</td>
</tr>
<tr>
<td>A’s role)</td>
<td>(I ([B, N_0, y]{K(A,B)}, [B, N_0, z]{K(A,B)}) \rightarrow I (y))</td>
</tr>
</tbody>
</table>

Proof *ab absurdo* by assuming \(\neg I (N_1, N_2) \)
First-order Model of a Sample Protocol (2/3)

In Alice-and-Bob notation:
\[
\begin{align*}
A \rightarrow B & : [A, N_0]_{K_{AB}} \\
B \rightarrow A & : [B, N_0, N_1]_{K_{AB}}, [B, N_0, N_2]_{K_{AB}} \\
A \rightarrow B & : N_1
\end{align*}
\]

Is $N_1 \oplus N_2$ kept secret?

The same as a set of rules:

(generalization: the names of agents are replaced with variables)

<table>
<thead>
<tr>
<th>Role</th>
<th>Rule</th>
<th>Derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A’s role</td>
<td>$I(a) \land I(b) \rightarrow I([a, N_0]_{K(a,b)})$</td>
<td></td>
</tr>
<tr>
<td>B’s role</td>
<td>$I([a, x]{K(a,b)}) \rightarrow I([b, x, N_1]{K(a,b)}, [b, x, N_2]_{K(a,b)})$</td>
<td></td>
</tr>
<tr>
<td>A’s role</td>
<td>$I([b, N_0, y]{K(a,b)}, [b, N_0, z]{K(a,b)}) \rightarrow I(y)$</td>
<td></td>
</tr>
</tbody>
</table>

Proof *ab absurdo* by assuming $\neg I(N_1, N_2)$
First-order Model of a Sample Protocol (3/3)

In Alice-and-Bob notation:

\[A \to B : [A, N_0]_{K_{AB}} \]
\[B \to A : [B, N_0, N_1]_{K_{AB}}, [B, N_0, N_2]_{K_{AB}} \]
\[A \to B : N_1 \]

Is \(N_1 \oplus N_2 \) kept secret?

The same as a set of rules:

(approximation: freshness of nonces abstracted with dependencies)

A’s role) \[I(a) \land I(b) \to I\left([a, N_0(a, b)]_{K(a,b)} \right) \]

B’s role) \[I\left([a, x]_{K(a,b)} \right) \to I\left([b, x, N_1(a, x, b)]_{K(a,b)}, [b, x, N_2(a, x, b)]_{K(a,b)} \right) \]

A’s role) \[I\left([b, N_0(a, b), y]_{K(a,b)}, [b, N_0(a, b), z]_{K(a,b)} \right) \to I(y) \]

Proof *ab absurdo* by assuming \(\neg I(N_1(a, i, b), N_2(a, i, b)) \)
Tentative Verification of our Sample Protocol

In ProVerif:

```proverif
pred I/1 elimVar,decompData. fun senc/2.
query I:(N1[a,i,b],N2[a,i,b]). reduc

(*** the intruder ***)
I:x & I:y       -> I:senc(x,y) ;
I:x & I:senc(y, x) -> I:y ;

(*** the protocol ***)
I:a & I:b       -> I:senc((a,N0[a,b]), K[a,b])) ; (* rule 1 *)
I:senc((a,x), K[a,b]) -> I:(senc((b,x,N1[a,x,b]),K[a,b]),
    senc((b,x,N2[a,x,b]),K[a,b])) ; (* rule 2 *)
I:(senc((b,N0[a,b],y),K[a,b]),senc((b,N0[a,b],z),K[a,b])) (* rule 3 *)
    -> I:y .
```

A potential attack is found by applying, in this order:
(* rule 1 *), (* rule 2 *), (* rule 3 *), and...(* rule 3 *)!

This is a false attack!
(* rule 3 *) has been played twice in the same session
Outline

1. False attacks in first-order logic models of protocols

2. Rigid variables to avoid false attacks

3. Rigid resolution implemented with standard techniques
Flexible Variables vs. Rigid Variables

Consider \(\forall x.\{ I(a), I(x) \rightarrow I(f(x)), I(b), \neg (I(f(a)) \land I(f(b))) \} \)

- With flexible variables: □ derivable

- With rigid variables: □ not derivable
Our Sample Protocol with Rigid Variables

Our sample protocol in first-order logic:

\[
I \left([A, x]_{K_{AB}} \right) \rightarrow I \left([A, N_0]_{K_{AB}} \right)
\]

\[
I \left(\langle [B, x, N_1]_{K_{AB}}, [B, x, N_2]_{K_{AB}} \rangle \right) \rightarrow I \left(\langle N_1, N_2 \rangle \right)
\]

Just replace flexible variables with rigid variables:

\[
I \left([A, X]_{K_{AB}} \right) \rightarrow I \left([A, N_0]_{K_{AB}} \right)
\]

\[
I \left(\langle [B, X, N_1]_{K_{AB}}, [B, X, N_2]_{K_{AB}} \rangle \right) \rightarrow I \left(\langle N_1, N_2 \rangle \right)
\]

\[
I \left(\langle [B, N_0, Y]_{K_{AB}}, [B, N_0, Z]_{K_{AB}} \rangle \right) \rightarrow I \left(\langle N_1, N_2 \rangle \right)
\]

\[
I \left(\langle [B, N_0, Y]_{K_{AB}}, [B, N_0, Z]_{K_{AB}} \rangle \right) \rightarrow I \left(\langle N_1, N_2 \rangle \right)
\]

\[
\Rightarrow \text{The 3}^{rd} \text{ rule cannot be played twice anymore}
\]

\[
\Rightarrow \text{The previous false attack has disappeared}
\]
Difficulty in Implementing Rigid Resolution

Direct implementation of rigid resolution requires backtracking (hence the complications in [Delaune, Lin, and Lynch, LPAR 2007])

Consider \(\{ I(X) , I(f(x)) \rightarrow I_0 , \neg I(g(x)) \} \)

- **1st tentative:** we cannot conclude

\[
\begin{align*}
I(X) & \quad I(f(x)) \rightarrow I_0 & \neg I(g(x)) \\
\sigma = \{ x \mapsto Y; X \mapsto f(Y) \} & & \text{?} \\
I(f(Y)) , I_0 & & \text{?}
\end{align*}
\]

\(X \) has been assigned a \(f \)-headed term and \(I(X) \) cannot be used anymore, \(\Rightarrow \) backtracking required

- **2nd tentative:** we can conclude

\[
\begin{align*}
I(X) & \quad I(f(x)) \rightarrow I_0 & \neg I(g(x)) \\
\sigma = \{ x \mapsto Y; X \mapsto f(Y) \} & & \text{?} \\
& & \square
\end{align*}
\]
Outline

1. False attacks in first-order logic models of protocols

2. Rigid variables to avoid false attacks

3. Rigid resolution implemented with standard techniques
Translation to First-order Logic

Idea: Replace rigid variables with flexible ones and prepend a vector of these flexible variables in \(I \)

E.g.: 3 rigid variables \(X, Y, Z \) in

\[
I ([A, X]_{K_{AB}}) \quad \rightarrow \quad I ([A, N_0]_{K_{AB}})
\]
\[
I ([B, N_0, Y]_{K_{AB}}, [B, N_0, Z]_{K_{AB}}) \quad \rightarrow \quad I ([B, X, N_1]_{K_{AB}}, [B, X, N_2]_{K_{AB}})
\]
\[
I ([B, N_1, N_2]) \quad \rightarrow \quad I (Y)
\]
\[
I (\langle x \rangle) \wedge I (y) \quad \rightarrow \quad I (\langle x, y \rangle)
\]
\[
I (\langle x, y \rangle) \quad \rightarrow \quad I (x)
\]

... become 3 flexible variables \(x, y, z \) and a vector \(x, y, z \) in

\[
I (x, y, z, [A, x]_{K_{AB}}) \quad \rightarrow \quad I (x, y, z, [A, N_0]_{K_{AB}})
\]
\[
I (x, y, z, [B, N_0, y]_{K_{AB}}, [B, N_0, z]_{K_{AB}}) \quad \rightarrow \quad I (x, y, z, [B, x, N_1]_{K_{AB}}, [B, x, N_2]_{K_{AB}})
\]
\[
I (x, y, z, \langle N_1, N_2 \rangle) \quad \rightarrow \quad I (x, y, z, y)
\]
\[
I (x, y, z, x') \wedge I (x, y, z, y') \quad \rightarrow \quad I (x, y, z, \langle x', y' \rangle)
\]
\[
I (x, y, z, \langle x', y' \rangle) \quad \rightarrow \quad I (x, y, z, x')
\]

...
A Decidable Fragment of First-order Logic

Overview

- Rules with atoms of the form $I(\overline{x}, t)$ such as:

 protocol rules: $I(\overline{x}, s) \rightarrow I(\overline{x}, t)$ with $\text{Var}(t) \subseteq \text{Var}(s) \subseteq \overline{x}$

 intruder rules: $I(\overline{x}, y_0), \ldots, I(\overline{x}, y_{n-1}) \rightarrow I(\overline{x}, f(y_0, \ldots, y_{n-1}))$
 with $\overline{x} \cap \{y_0, \ldots, y_{n-1}\} = \emptyset$

- Resolution with free selection for Horn clauses:

 $C \rightarrow A$ $A', C'' \rightarrow C'$

 $C \rightarrow A'$

 $C \rightarrow C''$

 $C \rightarrow C'$

 with A and A' subterm-maximal atoms (preferentially negative)
 whose rightmost term is not a variable

- Elimination of redundant clauses

 Theorem: The above strategy is complete and terminating
Mechanized Illustration (1/3)

One session of our sample protocol with rigid variables (@x, @y, @z):

```plaintext
~ I[m] \(\lor\) ~ I[k] \(\lor\) I[senc{m,k}]
~ I[senc{m,k}] \(\lor\) ~ I[k] \(\lor\) I[m]
~ I[m] \(\lor\) ~ I[k] \(\lor\) I[pair{m,k}]
~ I[m] \(\lor\) ~ I[k] \(\lor\) ~ I[l] \(\lor\) I[triple{m,k,l}]
~ I[pair{m,k}] \(\lor\) I[m]
~ I[pair{m,k}] \(\lor\) I[k]
~ I[triple{m,k,l}] \(\lor\) I[m]
~ I[triple{m,k,l}] \(\lor\) I[k]
~ I[triple{m,k,l}] \(\lor\) I[l]
```

```plaintext
--

```plaintext
/*** I ([A, N0]_{K_{AB}}) /***
-> I[senc{pair{%A,%N0},%KAB}] \(\lor\)

/*** I ([A, X]_{K_{AB}}) \rightarrow I ([B, X, N1]_{K_{AB}}, [B, X, N2]_{K_{AB}}) /***
I[senc{pair{%A,@x},%KAB}] ->
I[pair{senc{triple{%B,@x,%N1},%KAB}},senc{triple{%B,@x,%N2},%KAB}}] \(\lor\)

/*** I ([B, N0, Y]_{K_{AB}}, [B, N0, Z]_{K_{AB}}) \rightarrow I (Y) /***
I[pair{senc{triple{%B,%N0,%y},%KAB}},senc{triple{%B,%N0,%z},%KAB}}] -> I[@y]
```

```plaintext
--

```plaintext
/*** \neg I (N1, N2) /***
~ I[pair{N1{},N2{}}]
```
```
Mechanized Illustration (2/3)

With two honest agents \(A, B\) and one corrupted agent \(C\):

```plaintext
/** the attacker knows the keys of the corrupted agent: \(I(K_{BC}) \land I(K_{AC})\) ***/
I[KBC{}] \(/\) I[KAC{}]
--
/** session \(A \rightarrow B\) ***/
A := A{}, N0 := N0{}, KAB := KAB{}, B := B{}, N1 := N1{}, N2 := N2{};
/** session \(B \rightarrow A\) ***/
A := B{}, N0 := N0BA{}, KAB := KAB{}, B := A{}, N1 := N1BA{}, N2 := N2BA{};
/** session \(A \rightarrow C\) ***/
A := C{}, N0 := N0AC{}, KAB := KAC{}, B := C{}, N1 := N1AC{}, N2 := N2AC{};
/** session \(C \rightarrow A\) ***/
A := C{}, N0 := N0CA{}, KAB := KAC{}, B := A{}, N1 := N1CA{}, N2 := N2CA{};
/** session \(B \rightarrow C\) ***/
A := B{}, N0 := N0BC{}, KAB := KBC{}, B := C{}, N1 := N1BC{}, N2 := N2BC{};
/** session \(C \rightarrow B\) ***/
A := C{}, N0 := N0CB{}, KAB := KBC{}, B := B{}, N1 := N1CB{}, N2 := N2CB{};
```
Mechanized Illustration (3/3)

Results obtained with a home-made theorem prover*

Resolution on our sample protocol (6-sessions case):
– Does not terminate with traditional strategies
  (standard binary resolution, positive, ordered with subterm and Ipo)
– Terminates with our strategy (after working off approx. 200 clauses)

Other results:
– Insecurity of Otway Rees, Needham-Schroeder public key
– Security of Yahalom, Lowe-Needham-Schroeder public key
– etc.

*around 2000 lines of OCaml
Conclusion

Useful observation (the translation rigid→flexible) for encoding the problem of security for a bounded number of sessions:
- It leads to decidable fragments of first-order logic
- It extends to public-key encryption
- Adding parameters for ordering, it avoids all false attacks

Future work:
- Evaluate complexity of resolution
- Extend to other cryptographic constructs
blank slide
Non-Termination Issue

Problem: An inappropriate strategy may cause looping

E.g.: Consider subterm-ordered resolution:

\[ I(y, u) \land I(y, v) \rightarrow I(y, \langle u, v \rangle) \]

\[ I(x, x) \rightarrow I(x, N) \]

\[ \sigma = \{ x \mapsto \langle u, v \rangle; y \mapsto \langle u, v \rangle \} \]

\[ I(\langle u_1, v_1 \rangle, u_1) \land I(\langle u_1, v_1 \rangle, v_1) \rightarrow I(\langle u_1, v_1 \rangle, N) \]

\[ \sigma = \{ y \mapsto \langle u, v \rangle, v_1 \mapsto \langle u, v \rangle \} \]

\[ I(\langle \langle u_2, v_2 \rangle, v_1 \rangle, u_2) \land I(\langle \langle u_2, v_2 \rangle, v_1 \rangle, v_2) \land I(\langle \langle u_2, v_2 \rangle, v_1 \rangle, v_1) \rightarrow I(\langle \langle u_2, v_2 \rangle, v_1 \rangle, N) \]

\[ \sigma = \{ \ldots \} \]