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Abstract

Mechanical tools have recently been developed that enable computer-aided ver-
ification of spatial properties of concurrent systems. To be practical, these tools
are expected to deal with the state-space explosion problem. In order to alleviate
this problem, we investigate partial order reduction techniques. The main problem
is that spatial logics are very expressive and some spatial formulas actually pre-
vent partial order reduction. In this paper, we focus on the spatial properties of
structure and reduction (mainly the composition formula, the temporal modality,
and the guarantee formula): we recast the issue of partial order reduction in terms
of process calculi, identify problems with standard definitions of spatial formulas,
introduce adequate restrictions, and propose fragments of spatial logics for which
we show that partial order reduction holds. Technically, our approach relies on
exploiting partially confluent communications and on identifying so-called invisible
communications.

1 Introduction

Spatial logics [5–8] have been drawing much attention as specification languages for con-
current systems. They can express, among others, properties of structure of concurrent
systems, for example whether or not a concurrent system is composed of two or more
identifiable subsystems, or properties of restriction, for example whether or not a secret
is hidden.

Recently, efforts have been made to construct tools for computer-aided verification of
spatial-logic specifications of concurrent systems. Vieira and Caires have been developing
a model checker for automatic verification of finite-control concurrent systems written
in a nominal π-calculus and specified using a rich spatial logic [19]. The authors of the
present paper have been developing a library for interactive verification of concurrent
systems written in an applied version of the π-calculus using a restricted spatial logic [1].
Like all verification tools for concurrent systems, these tools must deal with the state-
space explosion problem.

In this paper, we investigate the application of partial order reduction techniques
to alleviate the state-space explosion problem for verification of spatial properties. The
main issue is that spatial logics are very expressive, and it turns out that some spatial
formulas prevent partial order reduction. As a first step towards a full support of spa-
tial logics, we focus here on the spatial properties of structure and reduction (mainly
the composition formula, the temporal modality, and the guarantee formula); we do not
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consider the spatial properties of restriction (mainly, the revelation formula and the fresh
quantifier). Concretely, we recast the issue of partial order reduction in terms of process
calculi, identify problems with standard definitions of spatial formulas, introduce ade-
quate restrictions, and propose fragments of spatial logics for which we show that partial
order reduction holds. Technically, our approach relies on exploiting partially confluent
communications and on identifying so-called invisible communications.

We briefly review the basic idea of partial order reduction. Let us consider some
satisfaction relation |= between the states of some reduction system and some set of
formulas. The basic idea of partial order reduction is to exploit reductions P → P ′ such
that, for some formula φ, P |= φ ⇔ P ′ |= φ. In such situations, in order to verify whether
P |= φ, one can choose to perform the reduction P → P ′ (even if there are other possible
reductions) and check whether P ′ |= φ. In this paper, our goal is to find appropriate
conditions for the formula φ and the reduction P → P ′ in the case where φ is a formula
of the spatial logic and P → P ′ is a reduction of some process calculus.

The issue of partial order reduction has already been addressed for usual temporal
logics such as LTL and CTL* (for Kripke structures), but not for spatial logics. In
particular, the existence of expressive spatial formulas makes this question difficult. In
addition, it is non-trivial to find an appropriate syntactic condition for P → P ′ in the
case of a process calculus. In usual model checkers like Spin, P → P ′ is just a transition
caused by access to a local variable [14], but in process calculi, all the computations are
communications.

Our contributions can be summarized as follows:

1. We identify a set of spatial formulas whose standard definitions prevents partial
order reduction.

2. We recast the problem of partial order reduction in terms of process calculi. In
particular, we introduce a syntactic notion of invisible communication.

3. We propose fragments of spatial logics such that invisibility and partial confluence
or linearity of communications are sufficient criterions to enable sound partial order
reduction.

Outline In Sect. 2, we introduce our target process calculus and the spatial formulas we
deal with in this paper. In Sect. 3, we show informally with an example that the knowledge
of partially confluent communications enables partial order reduction for verification of
spatial properties. In Sect. 4, we discuss spatial formulas that, in their original form,
prevent partial order reduction. In Sect. 5, we formally recast the problem of partial
order reduction in terms of process calculi, including in particular a syntactic notion of
invisible communication. In Sect. 6, we introduce the TSL logic, a fragment of spatial
logics such that partially confluent and invisible communications enable partial order
reduction. In Sections 7 and 8, we propose extensions of the TSL logic for which we
prove that partial order reduction still holds.

2 Preliminaries: Target Process Calculus and Stan-
dard Spatial Logics

In this section, we introduce our target process calculus and the spatial formulas we deal
with in this paper. As stated in the introduction, we focus on those spatial formulas that
express properties of structure and reduction and omit the spatial formulas that express
properties of restriction.
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The final goal of our study is to develop partial order reduction methods for the π-
calculus. In this paper, however, we focus on a fragment of the π-calculus where there is
no name-passing. The motivation for ignoring name-passing is the clarity of presentation:
it allows for more compact process expressions. This simplification has no impact on the
validity of our results. Indeed, the central definitions of partial confluence and invisibility
(next section) are valid in both settings, and proofs can readily be adapted to the setting
with name-passing (as we did in [2]).

There are two syntactic entities in our target process calculus: names and pro-
cesses. Processes use names to interact. In this paper, names are ranged over by
x, y, z, c, d, e, f, g, h and processes are ranged over by P,Q,R, T, U . The syntax of pro-
cesses is given by the following grammar (we omit external choice and restrict replication
to input processes):

P ::= c.P | c.P | !c.P | (P |Q) | νx.P | 0

The output process c.P can send a signal along c (intuitively, a channel of communication)
and then behave as P . The input process c.P can receive some signal along c, and then
behave as P . Parallel composition P |Q makes it possible for processes to interact. The
replicated input !c.P behaves as infinitely many input processes in parallel. The restriction
νx.P indicates that the scope of the name x is restricted to P (the restriction binds closer
than the composition). The process 0 represents termination (we omit trailing zeros; for
instance, we write c instead of c.0).

We now define the operational semantics of our target calculus. It relies on a binary
relation called structural congruence that relates processes that only differ by spatial
rearrangements. It is formally defined as the least congruence relation satisfying the
following rules (fn(P ) is the set of free names in P ):

P ≡ P |0 zero νx.0 ≡ 0 reszero
P |Q ≡ Q|P comm νx.(P |Q) ≡ P |νx.Q (x /∈ fn(P )) extrusion
P |(Q|R) ≡ (P |Q)|R assoc !c.P ≡ !c.P | c.P rep
νx.νy.P ≡ νy.νx.P swap !c.P ≡ !c.P | !c.P rep2

The operational semantics of our target calculus is defined by the following reduction
semantics:

c.P |c.Q → P |Q
com

P → Q

νx.P → νx.Q
res

P → P ′

P |Q → P ′|Q
par

Q → Q′ P ≡ Q P ′ ≡ Q′

P → P ′ struct

As usual, the reflexive transitive closure is noted →∗.
Spatial logics [5–8] are defined by a set of formulas and a satisfaction relation between

processes and formulas. In this paper, we focus on the subset of spatial formulas whose
syntax is given by the following grammar:

φ ::= > | ¬φ | φ1∨φ2 | c.φ | c.φ | ♦φ | 0 | φ1|φ2 | φ1 . φ2

The semantics of spatial formulas is given by the satisfaction relation |= defined as follows
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(we abbreviate the prefix νx1. · · · .νxn as νx1,...,n):

P |= > iff always true
P |= ¬φ iff not P |= φ
P |= φ1∨φ2 iff P |= φ1 or P |= φ2

P |= c.φ iff there exist T,R, y1, . . . , yn such that P ≡ νy1,...,n.(c.T |R)
with c /∈ y1, . . . , yn and νy1,...,n.(T |R) |= φ

P |= c.φ iff there exist T,R, y1, . . . , yn such that P ≡ νy1,...,n.(c.U |R)
with c /∈ y1, . . . , yn and νy1,...,n.(U |R) |= φ

P |= ♦φ iff there exists P ′ such that P → P ′ and P ′ |= φ
P |= 0 iff P ≡ 0
P |= φ1|φ2 iff there exist R1, R2, y1, . . . , yn such that P ≡ νy1,...,n.(R1|R2)

with νy1,...,n.R1 |= φ1 and νy1,...,n.R2 |= φ2

P |= φ1 . φ2 iff R |= φ1 implies P |R |= φ2 for any process R

The zero formula (noted 0), the composition formula (noted |), and the guarantee formula
(noted .) are peculiar to spatial logics. P satisfies φ1|φ2 if there exist R1, R2 such that
P has the form R1|R2 with R1 satisfying φ1 and R2 satisfying φ2. P satisfies φ1 . φ2

if for any R satisfying φ1, the composition of R and P satisfies φ2. Formulas >, ¬, ∨,
input/output formulas, and the temporal modality (♦) are similar to formulas in modal
logics for concurrent processes (see for example [3]).

3 Motivating Example

We are interested in verifying processes against spatial formulas. In this section, we show
informally how partially confluent communications may simplify such verifications.

Let us consider the following process:

P = c.e.f |c︸ ︷︷ ︸
process T

| d.e.f |d︸ ︷︷ ︸
process R

In the (sub)process T , the process c.e.f is ready to send some signal along the name c
and the process c waits for input along the name c. The process R is similar in structure.
Both T and R share the names e and f : they use e to perform a hand-shake and will
both seek access to some resource available along name f .

Let us assume that we want to verify that there is no race condition in the process
P along the name f (this is actually wrong). Put formally, we want to verify that there
is no execution such that the spatial formula φ = f.>|f.> is eventually true (a process
satisfies f.>|f.> if it consists of two processes satisfying f.>; a process satisfies f.> if it
consists of an input process that waits for some signal along f). The motivation for such
a verification may be that the resource along f expects processes T and R to perform
inputs in some predetermined order.

Naive verification of P leads to the exhaustive enumeration of all execution paths,
and in general this approach is impractical because it leads to the state-space explosion
problem.

In comparison, the knowledge of partially confluent communications enables efficient
verification. Informally, a communication is partially confluent when it commutes with
all other communications. Because the communication along c in our example is partially
confluent, the state-space of P can be represented as follows (we represent communication
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with arrows and annotate them with the name used for communication):

P = c.e.f |c|d.e.f |d
c
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d
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DD

P ′ = e.f |d.e.f |d

d ""E
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EE
EE

P ′′ = c.e.f |c|e.f

c||yy
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y

Q = e.f |e.f
e
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f |f

Since both possible execution paths lead to the same state, it is intuitively obvious that
the verification of P can be reduced to the verification of, say, P ′. Although this is true for
the verification of the formula φ, this is wrong for the verification of the formula c.>∧e.>
(where the conjunction has its usual meaning) because the latter actually holds of P ′′.

The state-space reduction described above is an example of partial order reduction.
In the rest of this paper, we investigate under which conditions it is sound in presence of
spatial formulas. We first discuss problems raised by standard spatial formulas and then
introduce fragments of spatial logics that enable partial order reduction. More precisely,
we prove that partial order reduction is possible for partially confluent and “invisible”
communications (intuitively, the communication along c in the example above is invisible
because the same spatial formulas hold for P and P ′, and P ′′ and Q).

4 Partial Order Reduction with Spatial Formulas: Dis-
cussion

For LTL and CTL*, partial order reduction is sound for the fragment without the “next”
formula (see for instance [9]). So, a natural question is: Is partial order reduction sound
for the standard spatial logic without the “next” formula? The answer is no: as dis-
cussed below, there are many other formulas of the spatial logic that prevent partial
order reduction.

Problem with the Zero Formula Using the zero formula (noted 0, see Sect. 2) of
spatial logics, it is possible to write formulas to count the number of non-zero subprocesses
(this is observed for instance in [13]). For example, formulas below hold respectively for
processes with one, two, or three non-zero subprocesses:

1
def
= ¬0 ∧ ¬(¬0|¬0)

2
def
= (¬0|¬0) ∧ ¬(¬0|¬0|¬0)

3
def
= (¬0|¬0|¬0) ∧ ¬(¬0|¬0|¬0|¬0)

These formulas prevent partial order reduction. For instance, in the following example,
the problem of verifying P cannot be reduced to the problem of verifying P ′ because it
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would let us conclude that 3 must be eventually true:

P = c|c.e|d|d 6|= 3
c

~~}}
}}
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P ′ = e|d|d |= 3
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c|c.e 6|= 3
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e 6|= 3

Problem with the Input/Output Formulas There are alternative definitions for
input/output formulas (see [4, 5], or [7, 8] where the formula for ambient locations can
be compared with the output formula). Depending on these definitions, partial order
reduction may not hold. For instance, let us consider the following alternative semantics
for input/output formulas:

P |= c.φ iff there exist Q, y1, . . . , yn such that P ≡ νy1,...,n.c.Q
with c /∈ y1, . . . , yn and νy1,...,n.Q |= φ

P |= c.φ iff there exist Q, y1, . . . , yn such that P ≡ νy1,...,n.c.Q
with c /∈ y1, . . . , yn and νy1,...,n.Q |= φ

These definitions are problematic because they can be used to implicitly test for the
absence of actions. For example, they prevent partial order reduction for the following
verification:

c|c|d|d 6|= d.>|d.>
c

��~~
~~

~~ d

��?
??

??
?

d|d |= d.>|d.>

d ��@
@@

@@
@

c|c 6|= d.>|d.>

c����
��

��

0 6|= d.>|d.>

Observe that this problem does not occur with the definitions we gave in Sect. 2.

Problem with the Temporal Modality To compensate for the loss of expressiveness
due to the removal of the “next” temporal modality, we can introduce its weak version
(also defined in [13]):

P |= ♦φ iff there exists P ′ such that P →∗ P ′ and P ′ |= φ

There is still a problem: mixed use of this temporal modality and the composition formula
of spatial logics. For example, partial order reduction is not sound for the following
process:

d.((c.e|c) | (c.e|c)) | d 6|= ♦e.>|♦e.>

d
��

(c.e|c) | (c.e|c) |= ♦e.>|♦e.>

The discussion so far is sufficient to define a first non-trivial fragment of spatial logics
for which partial order reduction holds; this is what we will do in Sect. 6. Before that,
in Sect. 5, we recast in terms of process calculi the conditions (partial confluence and
invisibility) that are used as sufficient conditions for partial order reduction. In Sections
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7 and 8, we discuss further issues regarding partial order reduction for spatial formulas,
such as mixing of the composition formula and the temporal modality and the guarantee
formula. The reason for delaying the discussion about other spatial formulas is that it
will be better understood in the light of the TSL logic.

5 Invisible Communications and Partial Confluence

Our approach to partial order reduction is based on identifying partially confluent commu-
nications and on a syntactic definition of invisibility for communications. In this section,
we formally define these notions.

5.1 Invisible Communications

Intuitively, a communication is invisible when it cannot be observed by the formulas of
the logic at hand. In the case of Kripke structures and usual temporal logics, invisible
transitions (rather than communications) are defined as those transitions that do not
change the truth of atomic propositions, and therefore that do not change the truth
of propositional formulas. In the case of the process calculi and spatial logics, names
become the natural equivalent of atomic propositions. Our idea is to define invisible
communications as the communications that do not change the truth of some subset of
spatial formulas with a syntactic criterion on names.

For the purpose of defining invisible communications, we augment the reduction se-
mantics of our target process calculus with labels. Let us first explain the intuition behind
those labels. A labeled reduction is written P

l,S−−→ Q where l is a name or a special label
ε and S is a set of names. More precisely, l is the name used for the communication or
the special label ε for an internal communication, and the names in S are the names that
are “revealed” by the communication. For instance:

c|c.(d.e|c) c,{c,d}−−−−→ d.e|c

The corresponding reduction semantics is formally defined as follows:

guards(P |Q) = S

c.P |c.Q {c,S}−−−→ P |Q
com

P
α−→ Q

νx.P
α\x−−→ νx.Q

res P
α−→ P ′

P |Q α−→ P ′|Q
par

Q
α−→ Q′ P ≡ Q P ′ ≡ Q′

P
α−→ P ′

struct

where guards is defined inductively as follows:

guards(c.P ) = {c} guards(P |Q) = guards(P ) ∪ guards(Q)
guards(c.P ) = {c} guards(νx.P ) = guards(P )− {x}
guards(!c.P ) = {c} guards(0) = ∅

and α\x is defined as follows:

(y, S)\x =
{

(y, S − {x}) if y 6= x
(ε, S − {x}) if y = x

(ε, S)\x = (ε, S − {x})

In this paper, labels are ranged over by α. We write P → Q instead of P
α−→ Q when the

label α is not relevant, and P
c−→ Q instead of P

c,S−−→ Q when the set S is not relevant.
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We now define formally invisible communications:

Definition 1 (Invisible Communication). The communication P
c,S−−→ P ′ is invisible

w.r.t. the set of names N if ({c} ∪ S) ∩N = ∅.

For example, the communication c|c.(d.e|c) c,{c,d}−−−−→ d.e|c is invisible with respect to
the set of names {e} because {c, d} ∩ {e} = ∅.

Using this definition, we can define spatial logics such that the starting and ending
processes of invisible communications cannot be discriminated. For example, in Sect. 6.1,
we will see that the starting and ending processes of the communication above cannot
be discriminated by the formula e.> because the communication is invisible w.r.t. {e} =
fn(e.>) (fn(f) is the set of free names in f).

5.2 Partial Confluence

Intuitively, a communication is partially confluent when it commutes with any other
communication. For example, this property is enjoyed by linearized names [16] and ω-
receptive names [18]. More formally, we define partial confluence as follows:

Definition 2 (Partial Confluence). The set of partially confluent communications is
the largest set S such that for any (P, α,Q) ∈ S we have:

• P
α−→ Q, and

• if P → P ′, then either:

– Q ≡ P ′, or

– there exists Q′ such that Q → Q′ and (P ′, α,Q′) ∈ S.

For example, the communication along c in the process P = c|c|d.e|d.f |d is partially
confluent because we have the following state-space:

c|c|d.e|d.f |d
c

wwnnnnnnnnnn
d
��

d

''OOOOOOOOOO

d.e|d.f |d

d ��=
==

==
=

d

**UUUUUUUUUUUUUUUUUU c|c|e|d.f

c}}{{
{{

{{
{

c|c|d.e|f

c����
��

��

e|d.f d.e|f

6 The TSL Logic: A Spatial Logic for Partial Order
Reduction

As seen in Sect. 4, partial order reduction is not sound for the full spatial logic. In this
section, we introduce the TSL logic, a restricted fragment of spatial logic for which partial
order reduction holds.

6.1 The TSL Logic

The definition of the TSL logic takes into account the issues discussed in Sect. 4: there is
no zero formula, the semantics of input/output formulas is defined appropriately, the usual
temporal modality is replaced with its weak version (noted EF instead of ♦), arbitrary
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mixing of spatial and temporal formulas is prevented by distinguishing state and temporal
formulas.

The set of formulas is a subset of the set of spatial formulas defined in Sect. 2.

Definition 3 (State Formulas). The syntax of state formulas is defined by the following
grammar:

φ ::= > | ¬φ | φ1∨φ2 | c.φ | c.φ | (φ1|φ2)

The semantics of state formulas is defined by the satisfaction relation noted |= defined as
follows:

P |= > iff always true
P |= ¬φ iff not P |= φ
P |= φ1∨φ2 iff P |= φ1 or P |= φ2

P |= c.φ iff there exist T,R, y1, . . . , yn such that P ≡ νy1,...,n.(c.T |R)
with c /∈ y1, . . . , yn and νy1,...,n.(T |R) |= φ

P |= c.φ iff there exist T,R, y1, . . . , yn such that P ≡ νy1,...,n.(c.U |R)
with c /∈ y1, . . . , yn and νy1,...,n.(U |R) |= φ

P |= φ1|φ2 iff there exist R1, R2, y1, . . . , yn such that P ≡ νy1,...,n.(R1|R2)
with νy1,...,n.R1 |= φ1 and νy1,...,n.R2 |= φ2

Definition 4 (Temporal Formulas). The syntax of temporal formulas is defined by
the following grammar:

f ::= φ | ¬tf | f1∨tf2 | EF f | AF f

where φ ranges over the set of state formulas.
Their semantics is defined by the satisfaction relation noted |=t defined as follows. A

path is a possibly infinite sequence of processes such that each process is obtained by a
communication from the previous one. A path is full either if it is infinite, or if it is finite
and the last process cannot be reduced. We write pi for the ith process of a path p.

P |=t φ iff P |= φ
P |=t ¬tφ iff not P |=t φ
P |=t φ1∨tφ2 iff P |=t φ1 or P |=t φ2

P |=t EF f iff there exists a path p such that p1 = P and pk |=t f for some k
P |=t AF f iff for any full path p such that p1 = P , pk |=t f for some k

We define the TSL logic as the set of temporal formulas.

An important property of the TSL logic (and of spatial logics in general) is that the
set of processes satisfying some formula is closed under structural congruence. We use
this property silently throughout this paper.

We conclude this section with an important lemma stating that invisible communica-
tions cannot be observed by state formulas. Note that this lemma is not true for spatial
logics in general but holds thanks to the restrictions we discussed in Sect. 4.

Lemma 1 (Invisible Communications cannot be Observed). Let φ be a state
formula. If the communication P → P ′ is invisible w.r.t. fn(φ), then we have P |= φ ⇔
P ′ |= φ.

The proof of Lemma 1 relies on the following intermediate lemma. This intermediate
lemma states that, if some state formula φ holds for some process, then we can remove
without affecting validity input/output subprocesses whose input/output name is not a
free name of φ (the proof can be found in appendix).
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Lemma 2. Let c be a name and φ be a state formula such that c /∈ fn(φ). For any
P,Q, y1, . . . , yn, we have νy1,...,n.P |= φ ⇔ νy1,...,n.(P |c.Q) |= φ ⇔ νy1,...,n.(P |c.Q) |= φ.

Thanks to this intermediate lemma, we can now prove Lemma 1:

Proof of Lemma 1. Let us assume that P
c,S−−→ P ′. There exist U, T,R, y1, . . . , yn such

that P ≡ νy1,...,n.(c.U |c.T |R) and P ′ ≡ νy1,...,n.(U |T |R) with guards(U |T ) = S. Since

P
c,S−−→ P ′ is invisible w.r.t. fn(φ), c /∈ fn(φ) and S ∩ fn(φ) = ∅. By Lemma 2, we have

νy1,...,n.(c.U |c.T |R) |= φ ⇔ νy1,...,n.R |= φ and νy1,...,n.R |= φ ⇔ νy1,...,n.(U |T |R) |= φ.
Therefore, P |= φ ⇔ P ′ |= φ.

6.2 Partial Order Reduction

In this section, we prove that the knowledge of partially confluent and invisible communi-
cations enables partial order reduction for the TSL logic. We first state the corresponding
theorem and illustrate with an example how it can be used to simplify reasoning about
concurrent processes.

Theorem 1 (Partial Order Reduction for TSL). Let the communication P → Q be
partially confluent and invisible w.r.t. the set of names N . Then, for any TSL formula f
such that fn(f) ⊆ N , we have P |=t f ⇔ Q |=t f .

We show how to use this theorem on an example. Let us consider the following process:

P = c|c|d.e.f |d.e

Let us assume that we want to verify that P must eventually perform some output along
the name f . Put formally, we want to verify whether P |=t AF f.> holds.

Since the communication along name c is partially confluent and invisible with respect
to the set of names {f} = fn(f.>), by Theorem 1, this verification is equivalent to the
verification of P ′ |=t AF f.> with:

P ′ = d.e.f |d.e

The latter verification is simpler because P ′ is deterministic. This simplification is better
appreciated by examining the state-space of P , where we observe that the theorem allows
us to restrict verification to the path P, P ′, . . .:

P = c|c|d.e.f |d.e
c

zzuuu
uuu

uu d

""F
FF

FF
FF

P ′ = d.e.f |d.e
d

$$II
III

III
c|c|e.f |e

c

||xx
xx

xx
x

e

##H
HHHHHH

e.f |e

e
##F

FFFFFFF
c|c|f

c
{{vvv

vv
vv

vv

f

Similar reasoning can be applied to the example discussed in Sect. 3.
The rest of this section is dedicated to the proof of Theorem 1. We first introduce

the notion of N -preserving bisimulation, where N is a set of names. We then show that
if P → Q is partially confluent and invisible with respect to N , then P and Q are N -
preserving bisimilar (Lemma 3). Finally, we show that N -preserving bisimilar processes
satisfy the same temporal formulas f such that fn(f) ⊆ N (Lemma 4). The theorem of
partial order reduction for TSL (Theorem 1) is an immediate corollary of these lemmas.

10



Definition 5 (N-preserving Bisimulation). Let N be a set of names. A binary
relation R on processes is an N -preserving bisimulation if whenever (P,Q) ∈ R:

• if P → P ′, then there exist Q1, . . . , Qn (n ≥ 1) and i (1 ≤ i ≤ n) such that
Q = Q1 → · · · → Qn and (P,Q1), . . . , (P,Qi−1), (P ′, Qi), . . . , (P ′, Qn) ∈ R,

• if Q → Q′, then there exist P1, . . . , Pn (n ≥ 1) and i (1 ≤ i ≤ n) such that
P = P1 → · · · → Pn and (P1, Q), . . . , (Pi−1, Q), (Pi, Q

′), . . . , (Pn, Q′) ∈ R, and

• for any state formula φ such that fn(φ) ⊆ N , P |= φ ⇔ Q |= φ.

P and Q are N -bisimilar, written P ≈N Q, if (P,Q) ∈ R for some N -preserving bisimu-
lation R.

Lemma 3. If P
α−→ Q is an invisible communication w.r.t. a set N of names and if it is

partially confluent, then P ≈N Q.

Proof. Consider the relation R def
=≡ ∪{(P1, Q1)|P1

α−→ Q1}. We show that R is an N -
preserving bisimulation. Consider (P,Q) ∈ {(P1, Q1)|P1

α−→ Q1}:

• Suppose that P → P ′. Since P
α−→ Q is partially confluent, then either (1) P ′ ≡ Q,

in which case we can take Q2 = Q, and (P,Q), (P ′, Q2) ∈ R, or (2) there exists
Q′ such that Q → Q′ and P ′ α−→ Q′, in which case we can take Q2 = Q′, and
(P,Q), (P ′, Q2) ∈ R.

• Suppose that Q → Q′. We have P
α−→ Q → Q′. Therefore we can take P2 = Q and

P3 = Q′, and (P,Q), (P2, Q), (P3, Q
′) ∈ R.

• Let φ be a state formula such that fn(φ) ⊆ N . Since P
α−→ Q is invisible with

respect to N , by Lemma 1, we know that P |= φ ⇔ Q |= φ.

Lemma 4. If P ≈N Q, then for any temporal formula f such that fn(f) ⊆ N , we have
P |=t f ⇔ Q |=t f .

Proof. By induction on f :

• Case f = φ: Given by Lemma 1.

• Cases f = ¬tf ′ and f = f1∨tf2: Immediate.

• Case f = EF f ′:

Case ⇒. (The case ⇐ is similar.) By assumption, there exists a path p such that
p1 = P and there exists a natural k such that pk |=t f ′. Since P ≈N Q, there exists
a path q such that q1 = Q and a natural j such that pk ≈N qj . By the inductive
hypothesis, qj |=t f ′, which implies Q |=t EF f ′.

• Case f = AF f ′:

Case ⇒. (The case ⇐ is similar.) Let q be a full path such that q1 = Q. Since
P ≈N Q, there exists a full path p such that p1 = P and such that for any natural i,
there exists ji such that pi ≈N qji . Since P |=t AF f ′, there exists a natural k such
that pk |=t f ′. By the inductive hypothesis, qjk

|=t f ′. Thus, we have Q |=t AF f ′.

Thanks to above lemmas, we can now prove Theorem 1:

Proof of Theorem 1. Obtained directly as a corollary of Lemma 4 by using Lemma 3.
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7 Extension: Mixing Spatial and Temporal Formulas

In the previous section, we have introduced the TSL logic, a fragment of spatial logic
for which partial order reduction holds. Since arbitrary mixing of spatial and temporal
formulas prevents partial order reduction, the TSL logic imposes a stratification between
state and temporal formulas. In this section, we introduce (1) a formula called guarded
composition that allows for temporal formulas to appear inside the composition formula,
and (2) a fragment of spatial logic called TSLmix extended with the guarded composition
for which partial order reduction still holds.

7.1 Guarded Composition and the TSLmix Logic

Intuitively, the guarded composition combines the semantics of the EF formula and of
the composition formulas. Put formally:

Definition 6 (Guarded Composition). Let L be some logic with temporal formulas
whose satisfaction relation is written |=t. We call guarded composition the temporal
formula noted EF(f1|f2) (where f1, f2 are temporal formulas) and whose semantics is
defined as follows:

P |=t EF(f1|f2) iff there exists a path p such that p1 = P and
there exist k, P1, P2, y1, . . . , yn such that pk ≡ νy1,...,n.(P1|P2) with
νy1,...,n.P1 |=t f1 and νy1,...,n.P2 |=t f2

For example, we have d.((c.e|c)|(c.e|c))|d |=t EF(AF e.>|AF e.>).
We now introduce the TSLmix logic, a negation-free fragment of spatial logic extended

with the guarded composition formula.

Definition 7 (Mixed Formulas). The set of mixed formulas is given by the following
grammar:

φ ::= > | φ1∨φ2 | c.φ | c.φ | (φ1|φ2)

f ::= φ | f1∨tf2 | EF f | AF f | EF(f1|f2)

The semantics of the guarded composition is given by Definition 6 and the semantics of
other formulas is given by Definitions 3 and 4.

We define the TSLmix logic as the set of mixed formulas.

The restriction to a negation-free fragment is necessary for sound partial order reduc-
tion. This is illustrated by the following counter-example (we omit the trailing > in input
formulas to facilitate reading):

d.f |d|c|c.d.h|d.g|d |=t EF(¬tf∧tEF f∧t¬tEF h | ¬tg∧tEF g∧t¬tEF h)

c

��
d.f |d|d.h|d.g|d 6|=t EF(¬tf∧tEF f∧t¬tEF h | ¬tg∧tEF g∧t¬tEF h)

The starting process can be decomposed into the processes d.f |d|c and c.d.h|d.g|d that
respectively satisfy ¬tf ∧t EF f ∧t¬tEF h and ¬tg∧t EF g∧t¬tEF h. However, there
is no way to decompose the ending process into processes that satisfy both parts of the
formula.

Note that we can actually extend the TSLmix logic with the TSL formulas without
compromising partial order reduction by requiring the negation-free condition only inside
the guarded composition formula. In the following, we focus on mixed formulas for the
sake of clarity.
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7.2 Partial Order Reduction for the TSLmix Logic

In this section, we show that partial order reduction holds for the TSLmix logic in the
case of linear and invisible communications (the general case for partially confluent com-
munications is left for future work). Let us first recall the definition of linear communi-
cations [16].

Definition 8 (Linear Communications). Let c be a name and P be a process. Com-
munications in P along c are linear if there is no case such that there exist P1, P2, P3, y1, . . . , yn

such that P →∗ νy1,...,n.(c.P1|c.P2|P3) or P →∗ νy1,...,n.(c.P1|c.P2|P3). (In other words,
no race occurs on input/output along c.)

We now state the theorem of partial order reduction for the TSLmix logic:

Theorem 2 (Partial Order Reduction for TSLmix). Let the communication P → Q
be linear and invisible w.r.t. the set of names N . Then, for any mixed formula f such
that fn(f) ⊆ N , we have P |=t f ⇔ Q |=t f .

The rest of this section is dedicated to the proof of this theorem. Let us first explain
informally the main idea of the proof. The difficulty resides in the case P |=t EF(f1|f2) ⇒
Q |=t EF(f1|f2) when, along some path p such that P |=t EF(f1|f2), we run into a
satisfactory process pk before the communication along c is executed. By assumption,
pk has the form c.U |c.T |R and, assuming R ≡ R1|R2, we might have c.U |R1 |=t f1

and c.T |R2 |=t f2. In this situation, we do not have U |R1 |=t f1 and T |R2 |=t f2

in general (consider for example c.d|d.e|d |=t AF e.>). Fortunately, we can show that
U |R1 |=t EF f1 and T |R2 |=t EF f2 to conclude for this case. To deal with this situation,
we introduce the following two intermediate lemmas.

Lemma 5. Let c be a name and f be a mixed formula such that c /∈ fn(f). For any
U,R, y1, . . . , yn such that νy1,...,n.R 6|=t EF c.> (resp. νy1,...,n.R 6|=t EF c.>), we have
νy1,...,n.(c.U |R) |=t f ⇒ νy1,...,n.R |=t f (resp. νy1,...,n.(c.U |R) |=t f ⇒ νy1,...,n.R |=t f).

Lemma 6. Let f be a mixed formula. For any P,Q, y1, . . . , yn, we have νy1,...,n.P |=t

f ⇒ νy1,...,n.(P |Q) |=t EF f .

Observe that Lemma 6 makes the negation-free condition necessary.
Thanks the intermediate lemmas above, we can now prove Theorem 2:

Proof of Theorem 2. By induction on f . Let us assume that P
c,S−−→ Q. We only show the

case for the guarded composition.

• Case f = EF(f1|f2):

– Case ⇐: By assumption, there exists a path q such that Q |=t EF(f1|f2) holds.
Let us consider the path p such that p1 = P and pi+1 = qi for any natural i.
By construction, the path p is such that P |=t EF(f1|f2) holds.

– Case ⇒: By assumption, there exists a path p such that p1 = P and there exist
k, P1, P2, y1, . . . , ynk

such that pk = νy1,...,nk
.(P1|P2) with νy1,...,nk

.P1 |=t f1

and νy1,...,nk
.P2 |=t f2. Since the communication along c is linear, there exist

U, T,R, y1, . . . , yn1 such that p1 ≡ νy1,...,n1 .(c.U |c.T |R) and, for any R′ such
that R →∗ R′, we have c /∈ guards(R′). There are two cases regarding the
communication along c:

∗ The communication along c is executed before pk. In this situation, there
exists l (l < k) such that, for any i ≤ l, there exist y1, . . . , yni such
that pi ≡ νy1,...,ni .(c.U |c.T |Ri) where Ri is a derivative of R (we assume
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R1 = R), and pl+1 ≡ νy1,...,nl
.(U |T |Rl). Since the communication along c

is linear, it is partially confluent, and thus we can construct a path q such
that, for any i ≤ l, qi = νy1,...,ni

.(U |T |Ri) and qi = pi+1 otherwise. The
figure below depicts this situation (continuous arrows represent the path
p and dashed arrows represent the path q):

P

c,S

��

∗// pl ≡ νy1,...,nl
.(c.U |c.T |Rl)

c,S

��
Q ≡ q1

∗//___ ql = pl+1 ≡ νy1,...,nl
.(U |T |Rl)

∗
//___
∗// qk−1 = pk

∗
//___
∗// · · ·

By construction, we have qk−1 = pk. Therefore, we have Q |=t EF(f1|f2).
∗ The communication along c is not executed before pk. In this situation,

for any i ≤ k, there exist y1, . . . , yni such that pi ≡ νy1,...,ni .(c.U |c.T |Ri)
where Ri is a derivative of R (we assume R1 = R). In particular, we have
pk ≡ νy1,...,nk

.(P1|P2) ≡ νy1,...,nk
.(c.U |c.T |Rk). There are several cases,

depending on the position of the processes c.U and c.T in P1 or P2:
· There exist Rk1 , Rk2 such that Rk ≡ Rk1 |Rk2 and P1 ≡ c.U |c.T |Rk1

and P2 ≡ Rk2 (the case with P1 and P2 exchanged is similar). By
the inductive hypothesis, we have νy1,...,nk

.(U |T |Rk1) |=t f1. Let us
consider the path q such that, for any i ≤ k, qi = νy1,...,ni

.(U |T |Ri).
The figure below depicts both p and q paths:

P

c,S

��

∗// pk ≡ νy1,...,nk
.(c.U |c.T |Rk)

c,S

��

∗// · · ·

Q ≡ q1
∗//____ qk = νy1,...,nk

.(U |T |Rk) ∗//____ · · ·

By construction, qk = νy1,...,nk
.(U |T |Rk1 |Rk2) with νy1,...,nk

.(U |T |Rk1) |=t

f1 and νy1,...,nk
.Rk2 ≡ P2 |=t f2. Therefore, the path q is such that

Q |=t EF(f1|f2).
· There exist Rk1 , Rk2 such that Rk ≡ Rk1 |Rk2 and νy1,...,nk

.P1 ≡
νy1,...,nk

.(c.U |Rk1) |=t f1 and νy1,...,nk
.P2 ≡ νy1,...,nk

.(c.T |Rk2) |=t f2

(the case where the roles of P1 and P2 are exchanged is similar). Since
the communication along c is linear, we can apply Lemma 5 to de-
duce νy1,...,nk

.Rk1 |=t f1 and νy1,...,nk
.Rk2 |=t f2. By Lemma 6, we

deduce νy1,...,nk
.(U |Rk1) |=t EF f1 and νy1,...,nk

.(T |Rk2) |=t EF f2,
and therefore Q |=t EF(f1|f2).

The guarded composition formula is defined on the model of the EF formula. We did
not consider the guarded composition formula defined on the model of the AF formula
because it would prevent partial order reduction. Indeed, let us consider the tempo-
ral formula noted AF(f1|f2) defined as follows: P |=t AF(f1|f2) iff for any full path p
such that p1 = P , there exist k, P1, P2, y1, . . . , yn such that pk ≡ ν1,...,n.(P1|P2) with
ν1,...,n.P1 |=t f1 and ν1,...,n.P2 |=t f2. Using this formula, it is possible to discriminate
the starting and ending processes of a partially confluent and invisible communication,
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as illustrated by the following example:

d.e|d|c|c.d|d.e|d |=t AF(AF e.>|AF e.>)

c

��
d.e|d|d|d.e|d 6|=t AF(AF e.>|AF e.>)

The starting process can be readily decomposed into the processes d.e|d|c and c.d|d.e|d
that both satisfy AF e.>. In contrast, there is a full path from the ending process such that
this decomposition is never possible (namely, the path d.e|d|d|d.e|d → d.e|d|d.e → e|d.e).

8 Extension: The Guarantee Formula

The guarantee formula is an important formula of spatial logics because it allows for
contextual specifications. Unfortunately, its standard definition prevents partial order
reduction. In this section, we introduce a restricted version of the guarantee formula
and we show that we can extend the TSL logic with this guarantee formula without
compromising partial order reduction.

8.1 Linear Guarantee and the TSLgua Logic

The standard definition of the guarantee formula (see Sect. 2) prevents partial order
reduction. Indeed, using this formula, we can discriminate the starting and ending pro-
cesses of partially confluent and invisible communications, as illustrated by the following
example:

c.f.d|f.d.c.e|f |c |=t d.> . EF e.>

c

��
f.d|f.d.c.e|f 6|=t d.> . EF e.>

When composed with, say, the process d, the starting process satisfies EF e.>, whereas
this is not true of the ending process. Intuitively, the problem is that the formula on
the left-hand side of the guarantee formula characterizes processes that break the partial
confluence property. In other words, the communication along c is partially confluent in
the process c.f.d|f.d.c.e|f |c but it is not partially confluent anymore when this process is
composed with the process d.

The counter-example above motivates the definition of a restricted version of the
guarantee formula:

Definition 9 (Linear Guarantee). Given a set of names S and a process P , the
predicate lin(S, P ) holds when, for any name c ∈ S, the communications along c in P are
linear.

The linear guarantee formula, noted f1
S
. f2 where f1, f2 are temporal formulas and S

is a set of names, is defined as follows:

P |=t f1
S
. f2 iff P |R |=t f2 holds for any process R such that R |=t f1 and lin(S, P |R)

We define the TSLguaS logic as the TSL logic extended with the linear guarantee
S
..
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8.2 Partial Order Reduction for the TSLgua Logic

In this section, we show that partial order reduction holds for the TSLgua logic in the case
of linear and invisible communications (the general case for partially confluent communi-
cations is left for future work). We first state the corresponding theorem, then illustrate
its use with an example, and finally give an excerpt of its proof.

Theorem 3 (Partial Order Reduction for TSLgua). Let the communication P
c−→ Q

be linear and invisible w.r.t. the set of names N . Then, for any f ∈ TSLguaS such that
c ∈ S and fn(f) ⊆ N , we have P |=t f ⇔ Q |=t f .

We show how to use this theorem on an example. Let us consider the following process:

P = c.f.d.f .d|f.d.e|f |c

Let us assume that we want to verify that the composition of P with some process that
seeks for input along the name d may eventually perform some output along the name
e. Let us also assume that the name c is unknown outside P , so that the linearity of
communications along c is preserved by composition. Put formally, we want to verify

that P |=t d.>
{c}
. EF e.> holds.

Since the communication along name c is partially confluent and invisible with respect

to the set of names {d, e} = fn(d.>
{c}
. EF e.>), we can apply Theorem 3 and simplify

the verification to P ′ |=t d.>
{c}
. EF e.> with:

P ′ = f.d.f .d|f.d.e|f

Proof of Theorem 3. By induction on f . We only show the case for the linear guarantee.

• Case f = f1
S
. f2:

– Case ⇒: Let R be some process such that R |=t f1 and lin(S, Q|R) holds. By
assumption, no race occurs in Q|R on input/output along names in S. Since
P

c−→ Q is linear and c ∈ S, it is also true that no race occurs in P |R on

input/output along names in S. Since P |=t f1
S
. f2, we have P |R |=t f2. By

the inductive hypothesis, Q|R |=t f2. Thus, Q |=t f1
S
. f2

– Case ⇐: Let R be some process such that R |=t f1 and lin(S, P |R) holds. Since

P
S−→ Q, we have lin(S, Q|R). Since Q |=t f1

S
. f2, we have Q|R |=t f2. By the

induction hypothesis, P |R |=t f2. Thus, P |=t f1
S
. f2.

9 Conclusion

In this paper, we considered the issue of partial order reduction for the verification of
spatial properties. First, we discussed spatial formulas whose standard definition for
process calculi prevents partial order reduction. More precisely, we focused on spatial
properties of structure and reduction (mainly the composition formula, the temporal
modality, and the guarantee formula). Then, we recast the issue of partial order reduction
in the terms of process calculi; in particular, we provided a syntactic definition of invisible
communications. Finally, we defined three fragments of spatial logics (namely, the TSL,
TSLmix , and TSLgua logics) for which we proved that the knowledge of partially confluent
(or linear) and invisible communications enable partial order reduction.
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Related Work Our work is directly related to partial order reduction techniques for
model checking. Partial order reduction techniques have been defined for several temporal
logics (LTL-X [9], CTL*-X [10], the weak modal mu-calculus [17]). The main originality
of our work lies in the application to spatial formulas (that requires adequate restric-
tions) and the application to process calculi (that requires an appropriate definition of
invisibility).

In the field of process calculi, confluence properties have long been recognized as an
important feature regarding verification. In particular, Groote and Sellink study the re-
lation between confluence and τ -inertness (the fact that some communications do not
change the bisimulation class of labeled transition systems) and its application to veri-
fication of so-called linear processes [11]. Later, Groote and van de Pol generalize their
approach to “partial confluence” (i.e., they do not require anymore all communications
to be confluent) and study the reduction of labelled transition systems with respect to
branching bisimulation [12]. The main difference with our work is that we are concerned
with the reduction of state-spaces of processes (instead of abstract transition systems)
with respect to spatial logics (instead of branching bisimulation).

The problem of finding partially confluent communications has been addressed several
times in the literature on the π-calculus (linear types and linearized types [16], linear
receptiveness and ω-receptiveness [18]). Our work can be seen as an application of this
work.

Future Work In Sections 7 and 8, the proofs that partial order reduction holds for
the TSLmix and TSLgua logics are limited to linear communications. We plan to in-
vestigate the validity of partial order reduction in the general case of partially confluent
communications.

In order to augment the expressiveness of the TSL, TSLmix , and TSLgua logics, we
plan to extend formulas with fairness conditions. This extension requires refinement of
the definition of label and of the definition of partial confluence. These refinements call
for special care in the definition of the operational semantics of the underlying process
calculi (similarly to developments in [15]).

In this paper, we focused on the spatial properties of structure and reduction (mainly
the composition formula, the temporal modality, and the guarantee formula). We plan
to investigate the extension of our results to the spatial properties of restriction (mainly,
the revelation formula and the fresh quantifier [5, 8]).

Our work was originally motivated by the construction of a library for interactive
reasoning on concurrent programs [1] in the Coq proof assistant. At the time being, we
use in this library some results from the present paper in the form of axioms. We plan to
mechanically prove these axioms for sake of completeness of our library.
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A Proofs of Intermediate Lemmas

Proof of Lemma 2. By induction on φ. We only consider the equivalence νy1,...,n.P |=
φ ⇔ νy1,...,n.(P |c.Q) |= φ (the equivalence νy1,...,n.P |= φ ⇔ νy1,...,n.(P |c.Q) |= φ is
similar).

• Cases φ = >, φ = ¬φ′, φ = φ1∨φ2: Immediate.

• Case φ = d.φ′ (the case φ = d.φ′ is similar):

Case⇒: By assumption, there exist T,R, z1, . . . , zm such that νy1,...,n.P ≡ νz1,...,m.(d.T |R)
with d /∈ z1, . . . , zm and νz1,...,m.(T |R) |= φ′. Since d is free in νy1,...,n.P , we have
d /∈ y1, . . . , yn. By the properties of bound names, there exist T ′, R′, x1, . . . , xl

such that d /∈ x1, . . . , xl and νz1,...,m.(T |R) ≡ νy1,...,n.(νx1,...,l.(T ′|R′)) and P ≡
νx1,...,l.(d.T ′|R′). By the inductive hypothesis, we have νy1,...,n.(νx1,...,l.(T ′|R′)|c.Q) |=
φ′. Therefore, we have νy1,...,n.(νx1,...,l.(d.T ′|R′)|c.Q) ≡ νy1,...,n.(P |c.Q) |= d.φ′.

Case ⇐: By assumption, there exist T,R, z1, . . . , zm such that νy1,...,n.(P |c.Q) ≡
νz1,...,m.(d.T |R) with d /∈ z1, . . . , zm and νz1,...,m.(T |R) |= φ′. Since d is free in
νy1,...,n.(P |c.Q), we have d /∈ y1, . . . , yn. Since c /∈ fn(φ), we have c 6= d. Thus, by
the properties of bound names, there exist T ′, R′, x1, . . . , xl such that d /∈ x1, . . . , xl

and νz1,...,m.(T |R) ≡ νy1,...,n.(νx1,...,l.(T ′|R′)|c.Q) and P ≡ νx1,...,l.(d.T ′|R′). By
the inductive hypothesis, we have νy1,...,n.(νx1,...,l.(T ′|R′)) |= φ′. Therefore, we
have νy1,...,n.(νx1,...,l.(d.T ′|R′)) ≡ νy1,...,n.P |= d.φ′

• Case φ = φ1|φ2:

Case ⇒: By assumption, there exist R1, R2, z1, . . . , zm such that νy1,...,n.P ≡
νz1,...,m.(R1|R2) with νz1,...,m.R1 |= φ1 and νz1,...,m.R2 |= φ2. By the proper-
ties of bound names, there exist R′

1, R
′
2 such that νz1,...,m.R2 ≡ νy1,...,n.R′

2 and
νz1,...,m.R1 ≡ νy1,...,n.R′

1. By the inductive hypothesis, νy1,...,n.(R′
2|c.Q) |= φ2.

Thus, νy1,...,n.(P |c.Q) ≡ νy1,...,n.(R′
1|R′

2|c.Q) |= φ1|φ2.

Case ⇐: By assumption, there exist R1, R2, z1, . . . , zm such that νy1,...,n.(P |c.Q) ≡
νz1,...,m.(R1|R2) with νz1,...,m.R1 |= φ1 and νz1,...,m.R2 |= φ2. There are two cases.
Let us consider the case where there exist, by the properties of bound names, R′

1, R
′
2
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such that νz1,...,m.R1 ≡ νy1,...,n.(R′
1|c.Q) and νz1,...,m.R2 ≡ νy1,...,n.R′

2 (the case
where the roles of R1 and R2 are exchanged is similar). By the inductive hypothesis,
νy1,...,n.R′

1 |= φ1. Therefore, we have νy1,...,n.P ≡ νy1,...,n.(R′
1|R′

2) |= φ1|φ2.

Proof of Lemma 5. By induction on f . We only show the case for the output process
(the case for the input process is similar).

• Cases f = >, f = φ1∨φ2: Immediate.

• Case f = d.φ′ (the case f = d.φ′ is similar): By assumption, there exist U ′, R′, z1, . . . , zm

such that νy1,...,n.(c.U |R) ≡ νz1,...,m.(d.U ′|R′) with d /∈ z1, . . . , zm and νz1,...,m.(U ′|R′) |=
φ′. Since d is free in νy1,...,n.(c.U |R), we have d /∈ y1, . . . , yn. Since c /∈ fn(f),
we have c 6= d. Thus, there exist U ′′, R′′, x1, . . . , xl such that d /∈ x1, . . . , xl

and νz1,...,m.(U ′|R′) ≡ νy1,...,n.(νx1,...,l.(U ′′|R′′)|c.U) and R ≡ νx1,...,l.(d.U ′′|R′′).
By the inductive hypothesis, νy1,...,n.(νx1,...,l.(U ′′|R′′)) |= φ′. Therefore, we have
νy1,...,n.R ≡ νy1,...,n.(νx1,...,l.(d.U ′′|R′′)) |= d.φ′.

• Case f = f1|f2: By assumption, there exist P1, P2, z1, . . . , zm such that νy1,...,n.(c.U |R) ≡
νz1,...,m.(P1|P2) with νz1,...,m.P1 |= φ1 and νz1,...,m.P2 |= φ2. There are two cases.
There exist R1, R2 such that R ≡ R1|R2 and νz1,...,m.P1 ≡ νy1,...,n.(c.U |R1) (the
other case where νz1,...,m.P2 ≡ νy1,...,n.(c.U |R2) is similar). By the inductive hy-
pothesis, νy1,...,n.R1 |= φ1. Therefore, we have νy1,...,n.R ≡ νy1,...,n.(R1|R2) |=
φ1|φ2.

• Case f = f1∨tf2: Immediate.

• Case f = EF(f1|f2) (the case f = EF f ′ is similar): By assumption, there exist
a path p such that p1 = νy1,...,n.(c.U |R) and there exist k, P1, P2, y1, . . . , ynk

such
that pk ≡ νy1,...,nk

.(P1|P2) with νy1,...,nk
.P1 |=t f1 and νy1,...,nk

.P2 |=t f2 (we
assume n1 = n). Since νy1,...,n.R 6|=t EF c.>, for any natural i, there exists Ri such
that pi ≡ νy1,...,ni .(c.U |Ri) with Ri a derivative of R (we assume R = R1). There
are two cases. There exist Rk1 , Rk2 such that Rk ≡ Rk1 |Rk2 and P1 ≡ c.U |Rk1

(the other case where P2 ≡ c.U |Rk2 is similar). By the inductive hypothesis, we
have νy1,...,nk

.Rk1 |=t f1. Thus, there exists a path q such that q1 = νy1,...,n.R
and qk ≡ νy1,...,nk

.(Rk1 |Rk2) with νy1,...,nk
.Rk1 |=t f1 and νy1,...,nk

.Rk2 |=t f2.
Therefore, R |=t EF(f1|f2).

• Case f = AF f ′: Let us consider some full path p such that p1 = νy1,...,n.R and,
for any natural i, let us assume that there exist Ri, y1, . . . , yni

such that pi ≡
νy1,...,ni

.Ri (we assume R1 = R and n1 = n). Since νy1,...,n.R 6|= EF c.>, we
can construct a full path q such that qi = νy1,...,ni

.(c.U |Ri) for any natural i. By
assumption, there exists a natural k such that qk = νy1,...,nk

.(c.U |Rk) |= f ′. By
the inductive hypothesis, we also have pk = νy1,...,nk

.Rk |= f ′. Therefore, we have
νy1,...,n.R |=t AF f ′.

Proof of Lemma 6. By induction on f .

• Case f = φ: Given by Lemma 7 (see below).

• Case f = f1∨tf2: Immediate.
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• Case f = EF(f1|f2) (the case f = EF f ′ is similar): By assumption, there ex-
ists a path p such that p1 = νy1,...,n.P and there exist k, P1, P2, y1, . . . , ynk

such
that pk ≡ νy1,...,nk

.(P1|P2) with νy1,...,nk
.P1 |=t f1 and νy1,...,nk

.P2 |=t f2 (we as-
sume n1 = n). By the inductive hypothesis, νy1,...,nk

.(P2|Q) |=t EF f2. Thus,
νy1,...,nk

.(P1|P2|Q) |=t EF(f1|f2). Therefore, we have νy1,...,n.(P |Q) |=t EF(f1|f2).

• Case f = AF f ′: Let us consider some full path p such that p1 = νy1,...,n.P . Let us
assume that, for any natural i, there exist Pi, y1, . . . , yni

such that pi ≡ νy1,...,ni
.Pi

(we assume n1 = n and P1 = P ). By assumption, there is a natural k such
that pk |=t f ′. By the inductive hypothesis, νy1,...,nk

.(Pk|Q) |=t EF f ′, which
implies νy1,...,nk

.(Pk|Q) |=t EF (AF f ′). Let us consider the path q such that, for
any natural i, qi ≡ νy1,...,ni

.(Pi|Q). The path q is such that νy1,...,n.(P |Q) |=t

EF (AF f ′).

Lemma 7. Let φ be a state formula in TSLmix . For any P,Q, y1, . . . , yn, we have
νy1,...,n.P |= φ ⇒ νy1,...,n.(P |Q) |= φ.

Proof. By induction on φ.

• Cases φ = >, φ = φ1 ∨ φ2: Immediate.

• Case φ = d.φ′ (the case φ = d.φ′ is similar): By assumption, there exist T,R, z1, . . . , zm

such that νy1,...,n.P ≡ νz1,...,m.(d.T |R) with d /∈ z1, . . . , zm and νz1,...,m.(T |R) |= φ′.
Since d is free in νy1,...,n.P , we have d /∈ y1, . . . , yn. By the properties of bound
names, there exist T ′, R′, x1, . . . , xl such that d /∈ x1, . . . , xl and νz1,...,m.(T |R) ≡
νy1,...,n.(νx1,...,l.(T ′|R′)) and P ≡ νx1,...,l.(d.T ′|R′). By the inductive hypothesis,
νy1,...,n.(νx1,...,l.(T ′|R′)|Q) |= φ′. Therefore, we have νy1,...,n.(P |Q) ≡ νy1,...,n.(νx1,...,l.(d.T ′|R′)|Q) |=
d.φ′.

• Case φ = φ1|φ2: By assumption, there exist P1, P2, z1, . . . , zm such that νy1,...,n.P ≡
νz1,...,m.(P1|P2) with νz1,...,m.P1 |= φ1 and νz1,...,m.P2 |= φ2. By the proper-
ties of bound names, there exist P ′

1, P
′
2 such that νz1,...,m.P1 ≡ νy1,...,n.P ′

1 and
νz1,...,m.P2 ≡ νy1,...,n.P ′

2. By the inductive hypothesis, νy1,...,n.(P ′
2|Q) |= φ2. Thus,

νy1,...,n.(P |Q) ≡ νy1,...,n.(P ′
1|P ′

2|Q) |= φ1|φ2.
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