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Abstract Error-correcting codes add redundancy to transmitted data to ensure reli-
able communication over noisy channels. Since they form the foundations of digital
communication, their correctness is a matter of concern. To enable trustful verifica-
tion of linear error-correcting codes, we have been carrying out a systematic formal-
ization in the Coq proof-assistant. This formalization includes the material that one
can expect of a university class on the topic: the formalization of well-known codes
(Hamming, Reed-Solomon, Bose-Chaudhuri-Hocquenghem) and also a glimpse at
modern coding theory. We demonstrate the usefulness of our formalization by extract-
ing a verified decoder for low-density parity-check codes based on the sum-product
algorithm. To achieve this formalization, we needed to develop a number of libraries
on top of Coq’s Mathematical Components. Special care was taken to make them as
reusable as possible so as to help implementers and researchers dealing with error-
correcting codes in the future.

1 Towards a Formal Coding Theory

Error-correcting codes are a well-established field of applied mathematics. They are
a necessary technology to ensure reliable storage and communication of information.
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They need to be efficient from two perspectives: they are expected to be robust, re-
covering from errors using only limited extra storage; they are also expected to be
fast, using clever encoding and decoding algorithms on the fly. For the first perspec-
tive, information theory provides a framework to prove stochastically how resilient
codes are to errors, and their theoretical limits. For the second one, a wide range of
algorithms have been developed for various applications, whose correctness relies on
the mathematical properties of the codes.

To illustrate the various applications of error-correcting codes, let us walk through
the concrete codes we will be dealing with in this paper. Hamming codes are the most
famous error-correcting codes. Though they were developed at the time of punch
cards, they are still in use in modern memory hardware. Reed-Solomon codes are
used in electronic storage devices (compact disc, digital versatile disc, hard disk drive,
solid-state drive, flash memory) to correct burst errors associated with media effects,
but also in satellite communication and Quick Response (QR) codes. The applications
of Bose-Chaudhuri-Hocquenghem codes are similar to Reed-Solomon codes. Satel-
lite communications and cellular phones have recently been using more modern error-
correcting codes such as low-density parity-check codes. Nowadays, low-density
parity-check codes are commonly used for data storage (hard disk and solid-state
drives), wireless communications (e.g., IEEE 802.16e, IEEE 802.11n), video broad-
casting (DVB-S2, 8K Ultra-high-definition television broadcasting), 10GBASE-T
Ethernet, etc. The main reason for the existence of many codes is the variety of appli-
cations with different requirements such as the accepted rate of errors or the required
speed of execution.

The development of error-correcting codes and their analysis rely on a wide range
of mathematical theories. Classical error-correcting codes (such as Hamming, Reed-
Solomon, Bose-Chaudhuri-Hocquenghem) use linear algebra. The construction of
more recent codes (such as low-density parity-check codes) is using insights from
graph theory in addition to linear algebra. All these codes belong to the class of linear
error-correcting codes. More generally, the qualitative evaluation of error-correcting
codes uses probability theory and information theory.

Given the importance of the applications of error-correcting codes and the vari-
ety of mathematical theories at work, the validity of proofs is a matter of concern.
The development of codes based on graph theory provides a good example of such
a concern. Low-density parity-check codes (which are based on graphs) were dis-
covered in the early sixties [Gallager, 1962] but lacked a practical implementation.
Interest about codes based on graphs was renewed in the nineties with the inven-
tion of Turbo codes. Even though good performance could be observed empirically,
they have long been lacking rigorous mathematical proofs [Gowers, 2008, VII.6].
Low-density parity-check codes regained attention in the nineties but then again there
have long been only partial answers about the quality of decoders [Richardson and
Urbanke, 2001, §I]. This situation has motivated a new body of works known as
modern coding theory. Research in modern coding theory has actually been so active
that today correctness guarantees for cutting-edge error-correcting codes are scat-
tered in scientific publications. To quote the standard textbook on modern coding
theory, “[t]here are nearly as many flavors of iterative decoding systems—and graph-
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ical models to denote them—as there are researchers in the field” [Richardson and
Urbanke, 2008, Preface].

Our goal is to provide a formalization of the theory of error-correcting codes
that makes it possible to tackle formalization challenges such as modern coding
theory and support the formal verification of concrete implementations. Indeed, a
researcher or an implementer willing to perform formal verification of a concrete
error-correcting code first needs as a prerequisite to provide a formal specification
of what a code is supposed to achieve. But, to the best of our knowledge, no such
formal specification is available yet. The main reason might be that the formaliza-
tion of error-correcting codes is a difficult undertaking. The first difficulty is the
construction of a comprehensive library that encompasses the required mathemati-
cal theories (probabilities, graphs, linear algebra, etc.). The second difficulty is that
monographs and research papers on error-correcting codes do not provide details for
the non-expert reader. Meanwhile, teaching material does not lend itself well to for-
malization, in comparison with well-structured algebra textbooks. In practice, one
often finds prose definitions that look incomplete without the accompanying exam-
ples, algorithms written in prose, hypotheses about the model that appear during the
course of proofs, etc.

Still, there is previous work that we can take advantage of to formalize error-
correcting codes. The MATHCOMP library [Mahboubi and Tassi, 2016] provides big
operators to formalize combinatorial results, a substantial formalization of linear al-
gebra, and tools to reason about graphs. The formalization of the foundational the-
orems of information theory [Affeldt et al, 2014] provides us with basic definitions
about communication channels and probabilities.

The work we present in this paper is an attempt at a systematic and reusable
formalization of error-correcting codes inside a proof-assistant. Our contributions can
be summarized as follows:

– Our formalization covers the material that one can expect of a university class: ba-
sic definitions of linear error-correcting codes, specification of decoders, concrete
applications to well-known codes (Hamming, Reed-Solomon, Bose-Chaudhuri-
Hocquenghem), and a glimpse at modern coding theory (with the formal verifi-
cation of sum-product decoding). This leads us to augment textbook definitions
with their implicit assumptions and complete partial proofs. This also includes
a formal account of notational practice, in particular for the summary operator
used in modern coding theory (see Sect. 8.2). Our formalization can therefore be
regarded as a firm assessment of the foundations of the theory.

– Our formalization features reusable libraries. For example, we provide libraries
for the generic layers of linear codes and cyclic codes and use these libraries to
prove more concrete codes. In particular, this results in sharing a large part of the
proofs for Reed-Solomon and Bose-Chaudhuri-Hocquenghem codes. For mod-
ern coding theory, we needed libraries to reason about Tanner graphs, which are
bipartite graphs used to represent codes (see Sect. 8.1). These libraries contain
several technical contributions. For example, we needed to instrument MATH-
COMP’s Euclid’s algorithm for computing the GCD of polynomials in order to
decode polynomial codes (see Sect. 5.2).
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– We demonstrate that our formalization can be used to develop formally-verified
decoders. Our illustrative experiment consists in the extraction of OCaml code
for the sum-product algorithm to decode low-density parity-check codes (see
Sect. 9.2).

The significance of these contributions is two-fold. First, this means that this li-
brary provides a sound basis to understand existing error-correcting codes and for-
malize new ones, eventually allowing to solve the two gaps we described above,
both about the reliability of mathematical proofs in this field, and the verification of
implementations. Second, this provides a concrete example of using verification to
“sanitize” (a part of) a field, i.e., ensure that all hypotheses are explicitly given, with
no hidden assumptions, filling in the subtle details of many proofs and definitions.
This indicates the possibility of applying the well-developed method of formalized
mathematics to a broader domain of applied mathematics.

Outline We first start with a background section (Sect. 2) on the MATHCOMP li-
brary and information theory. We then explain our formalization by interleaving the
presentation of the resulting library with concrete use-cases.

We formalize basic definitions and generic results about linear error-correcting
codes in Sect. 3. We illustrate them with a formalization of Hamming codes in Sect. 4.
In particular, we provide a concrete encoder and decoder and express the error rate in
terms of a closed formula.

Second, we formalize in Sect. 5 basic definitions and results about codes whose
codewords are better seen as polynomials. This includes in particular the Euclidean
algorithm for decoding. We apply the resulting library to Reed-Solomon codes in
Sect. 6 and to Bose-Chaudhuri-Hocquenghem codes in Sect. 7 where we explain in
particular their decoding.

Third, we formalize in Sect. 8 the basics of modern coding theory. In particular,
we formalize the key properties of the sum-product algorithm, the standard algo-
rithm for efficient decoding of low-density parity-check codes. We apply our library
of modern coding theory in Sect. 9. First, we formalize sum-product decoding in the
simple case of the binary erasure channel. Second, we formalize a concrete imple-
mentation of the sum-product algorithm for the binary symmetric channel, making
our work the first formal verification of a decoding algorithm for a recent class of
error-correcting codes.

We review related work in Sect. 10, discuss future work in Sect. 11, and conclude
in Sect. 12.

We do not assume prior knowledge of error-correcting codes and tried to make
this paper as self-contained as possible. Yet, this cannot be a replacement for a text-
book on error-correcting codes [MacWilliams and Sloane, 1977; McEliece, 2002;
Richardson and Urbanke, 2008], in particular when it comes to intuitions.
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Fig. 1: The setting of Error-correcting Codes

2 Background

2.1 The MATHCOMP Library

The MATHCOMP library [Mahboubi and Tassi, 2016] is a collection of formalized
mathematical definitions and lemmas built on top of the COQ proof-assistant [The
Coq Development Team, 2018] that was originally developed to formalize the odd
order theorem [Gonthier et al, 2013]. It contains in particular a formalization of linear
algebra with matrices and polynomials, which are at the heart of the theory of error-
correcting codes. In this paper, we use a number of objects from the MATHCOMP
library. It is not our purpose to explain them in details. For quick reference, we have
extracted from the documentation succinct explanations about most notations in Ta-
bles 1, 2, and 3. Other notations are either self-explanatory or will be explained when
introduced.

2.2 Formalization of Codes in Information Theory and Probabilities

In Sect. 2.2.1, we explain the basic setting of error-correcting codes, including how
we model probabilities, using our formalization from previous work [Affeldt et al,
2014]. In Sect. 2.2.2, we extend this framework with a formalization of aposteriori
probabilities.

2.2.1 Channels and Codes in Information Theory

The most generic definition of a code is as a channel code: a pair of encoder/decoder
functions with a finite type M for the message pieces to be encoded. Encoded message
pieces (codewords) are represented by row-vectors over a finite alphabet A (denoted
by ’rV[A]_n). Codewords go through a noisy channel. The decoder (that may fail) is
fed with the outputs of the channel that are also represented by row-vectors (possibly
over a different1 alphabet B):
Definition encT := {ffun M → ’rV[A]_n}.

Definition decT := {ffun ’rV[B]_n → option M}.

Record code := mkCode { enc : encT ; dec : decT }.

1 The input and output alphabets are not the same for example in the case of the binary erasure channel
that replaces some bits with an erasure.
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Table 1: Types of mathematical objects
seq T lists of items of type T
’I_n integers less than n, called “ordinals”
{ffun A → B} functions with a finite domain
{set A} finite sets with elements of type A
’M[R]_(m, n) m×n matrix with elements of type R
’rV[R]_n, ’cV[R]_n row/col-vectors of size n with elements of type R
’rV_n, ’cV_n row/col-vectors of size n (type of elements automatically inferred)
{poly A} polynomials with coefficients of type A
F_p the finite field Fp where p is a prime power
{vspace vT} subspaces of vT

Table 2: Construction of mathematical objects
inord i integer i seen as an “ordinal” of type ’I_n determined by the context
[::], [:: e], :: empty list, singleton list with the element e, list constructor
[pred x | E x] the boolean predicate E
[ffun x ⇒ e] the function x 7→ e with a finite domain
[set a | P a] the finite set of elements a that satisfy P

\matrix_(i, j) E i j the matrix [Ei j]i, j
1%:M the identity matrix
\row_(i < n) E i the row-vector [E0, . . . ,En−1]
\poly_(i < n) E i the polynomial E0 +E1X + · · ·+En−1Xn−1

a%:P the constant polynomial a
’X the polynomial indeterminate
a *: v v scaled by a

0%VS the trivial vector space

Table 3: Operations on mathematical objects
==, 6=, ||, &&, =⇒, ¬ boolean operators
x ^ n the nth power of x, where x is a natural or a real number
n.+1, n.-1, n.*2, ./2 n+1, n−1, n×2, n/2
a ^+ n the nth power of a
a ^- n the inverse of a ^+ n

#|E| the cardinality of E
S0 \subset S1 S0 ⊆ S1

A :\ x A \ { x }
f @: X the image set of X under f
\sum_(i in E) e i ∑i∈E ei
\prod_(i in E) e i ∏i∈E ei
*m matrix multiplication
^T matrix transpose
const_mx a the constant matrix whose entries are all a
row_mx A B the matrix A ||B
lsubmx M the left sub-matrix with n1 columns if M has n1 +n2 columns
map_mx f A the pointwise image of A by f

\det M the determinant of M
ei the ith element of row-vector e
p^‘() formal derivative of the polynomial p
rVpoly c the polynomial corresponding to the row-vector c
poly_rV p the partial inverse of rVpoly
size p 1+deg(p), or 0 if the polynomial p is 0 (as an instance of the size of lists)
p.[x] the evaluation of polynomial p at point x
p %% q remainder of the pseudo-division of p by q

p %| q tests the nullity of the remainder of the pseudo-division of p by q
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The action of the encoder on messages and of the decoder on the channel outputs is
depicted in Fig. 1. Decoding is furthermore decomposed into a first phase that “re-
pairs” codewords altered by noise, and a “discard” phase that removes the redundant
symbols introduced by the encoder. We come back to this aspect of the formalization
later on.

We represent probability distributions by the type dist. It is a dependent record
with a function from some finite type to non-negative reals and a proof that its outputs
sum to one.
Record dist := mkDist {

pmf :> A →R+ ; (* →R+ is a notation *)

pmf1 : \sum_(a in A) pmf a == 1 :> R}.

The first field is interpreted as a coercion from probability distributions to functions
thanks to the notation :>. In the second field, the notation2 \sum_(i in E) e i sums
the reals e i for all i in E. The notation == is for Boolean equality (see Table 3) whose
both sides are interpreted as reals thanks to the notation :> R. Hereafter, {dist T} is
a notation for the type of distributions dist T that additionally hides a function that
checks whether T is a finite type.

We represent probability events by finite sets. Given a distribution P, the proba-
bility of an event {set A} is formalized as follows:
Definition Pr P (E : {set A}) := \sum_(a in E) P a.

A (discrete) noisy channel is modeled by a stochastic matrix: a matrix whose rows
form probability distributions. In COQ, we formalize such a matrix by a function from
the input alphabet A to probability distributions over the output alphabet B, hence the
following notation:
Notation "‘Ch(A, B)" := (A → dist B).

Traditionally, channels are ranged over by W .
The most common type of channel is the binary symmetric channel, where A

and B are both the set {0,1}, and whose only possible error is the flipping of a bit,
with probability p. That is W =

[
1−p p

p 1−p

]
.

Communication of n characters is thought of as happening over the nth extension
of the channel, i.e., a channel whose input and output are row-vectors. In this paper,
we deal with discrete memoryless channels (DMCs). It means that the output proba-
bility of a character does not depend on preceding inputs. In this case, the definition
of the nth extension of a channel W boils down to a probability mass function that
associates to an input vector x the following distribution of output vectors:
Definition f (x : ’rV[A]_n) :=

[ffun y : ’rV[B]_n ⇒ \prod_(i < n) W ‘(yi | xi)].

where xi represents the ith element of the vector x and W ‘(b | a) is a COQ nota-
tion for W a b; it is to match the traditional pencil-and-paper writing W (b|a) of the

2 The MATHCOMP library provides the same notation for sums, it is generic but cannot be used directly
with the reals from the COQ standard library. One first needs to show that they satisfy the basic properties
of appropriate algebraic structures and declare the latter as Canonical. We have chosen not to do that
because it makes automatic tactics for reals such as field and lra inoperative. Our notation is therefore
just a specialization of the generic notation provided by MATHCOMP.
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probability of having b out of the channel W knowing that the input was a. Hereafter,
the COQ notation W ‘‘(y | x) (in pencil-and-paper proofs, one overloads the notation
W (y|x)) is the probability for the DMC of W that an input x is output as y.

Finally, the quality of a code c for a given channel W is measured by its error rate.
It is defined using the conditional error rate (notation: e(W, c)):

Definition ErrRateCond (W : ‘Ch(A, B)) c m :=

Pr (W ‘‘(| enc c m)) (preimC (dec c) m).

The notation W ‘‘(| enc c m) above is for the distribution with probability mass func-
tion fun y ⇒ W ‘‘(y | enc c m), i.e., the distribution of outputs corresponding to the
codeword (enc c m) sent over the DMC of W. The set preimC (dec c) m is the comple-
ment of the pre-image of m, i.e., the set of outputs y that do not decode to m . The error
rate is defined by the average of the conditional error rates over the set of messages
(notation: echa(W, c)):

Definition CodeErrRate (W : ‘Ch(A, B)) c :=

1 / INR #|M| * \sum_(m in M) e(W, c) m.

The function INR injects natural numbers into real numbers.

2.2.2 Aposteriori Probability

Probabilities are used to specify the correctness of decoders that use probabilities,
such as the sum-product algorithm (see Sect. 8.3).

First, we define the notion of aposteriori probability: the probability that an input
was sent knowing that some output was received. It is defined via the Bayes rule from
the probability that an output was received knowing that some input was sent. For an
input distribution P and a channel W , the aposteriori probability3 of an input x given
the output y is:

PW (x|y) def
=

P(x)W (y|x)
∑x′∈An P(x′)W (y|x′)

.

We formalize aposteriori probabilities with the following probability mass func-
tion f:

(* Module PosteriorProbability *)

Definition den := \sum_(x in ’rV_n) P x * W ‘‘(y | x).

Definition f x := P x * W ‘‘(y | x) / den.

The function f is indeed the probability mass function of a distribution because its
denominator is strictly positive and that it sums to 1. Proving that the denominator
is not zero requires an hypothesis. This additional hypothesis should not be regarded
as a technical hindrance: in fact, it expresses the natural condition that, since y was
received, then necessarily a suitable x (i.e., such that P x and W ‘‘(y | x) are both not
equal to 0) was sent beforehand. The denominator being non-zero is thus equivalent
to the receivable condition:

Definition receivable y := [∃ x, (P x 6= 0) && (W ‘‘(y | x) 6= 0)].

3 This definition is specialized to communication over a noisy channel and is sufficient for our pur-
pose in this paper. It can also be recast in a more general setting with conditional probabilities using an
appropriate joint distribution [Affeldt et al, 2019].
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In COQ, we denote aposteriori probabilities by P ‘^^ W ( x | y ) where y is a vector
together with the proof that it is receivable.

When P is a uniform distribution over a set C of row-vectors, one can show that
for any x ∈C, PW (x|y) = KW (y|x) for an appropriate constant K (for any channel W ,
provided that y is receivable).

Second, the probability that the n0th bit of the input is set to b (0 or 1) given the
output y is defined by the marginal aposteriori probability (K′ is chosen so that it is
indeed a probability):

PW
n0
(b|y) def

= K′ ∑
x∈Fn

2 xn0=b
PW (x|y)

In COQ, we will denote this probability by P ’_ n0 ‘^^ W ( b | y ) where y is a
vector together with the proof that it is receivable. See our implementation [Infotheo,
2019] for complete formal definitions.

3 A Formal Setting for Linear ECCs

3.1 Linear ECC as a Vector Space

The simplest mathematical definition of a linear error-correcting code (hereafter, lin-
ear ECC) is as a finite dimensional vector space over some finite field, whose vectors
represent potentially erroneous data, and a specified subspace of correct data corre-
sponding to codewords, so that a linear combination of codewords is still a codeword.
We express codewords as concrete row-vectors, and their set is called the codebook.
In the MATHCOMP library, vectType R is a type for finite dimensional vector spaces
over R, and {vspace vT} is the type of subspaces of vT, where vT has a vectType struc-
ture. We therefore define linear ECCs as the following type Lcode0.t (inside a module
Lcode0 to have a namespace):

(* Module Lcode0 *)

Definition t (F : finFieldType) n := {vspace ’rV[F]_n}.

The natural n is referred to as the length of the code. The dimension of the code is the
dimension of the subspace. When F is the finite field F2, we talk about binary codes.

In practice, one often defines a linear ECC using its parity-check matrix, i.e.,
the matrix whose rows correspond to the checksum equations that codewords fulfill.
More precisely, a linear ECC can be defined as the kernel of the syndrome function,
i.e., the function y 7→ (HyT )T where H is the parity-check matrix:

Definition syndrome (H : ’M[F]_(m, n)) (y : ’rV_n) := (H *m y^T)^T.

We can use the fact that this function is linear (proof term hom_syndrome below) to
define the corresponding ECC using the lker function of the MATHCOMP library:

Definition kernel : Lcode0.t F n := lker hom_syndrome.

So, codewords become vectors whose syndrome is 0 and when the parity-check ma-
trix is full rank, the dimension of the code is n−m (where m is the number of rows
of the parity-check matrix):
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Lemma dim_kernel (Hm : \rank H = m) (mn : m ≤ n) : \dim kernel = n - m.

Finally, we formalize the notion of minimum distance of a code. This is the min-
imum distance between any two codewords. For this definition to make sense, it is
important to ensure that the code has at least two codewords, which is often implicit
in textbooks. The distance in question is the Hamming distance: dH x y is the num-
ber of different elements between the vectors x and y. It is best formalized using the
Hamming weight wH, the number of non-zero elements in a vector:

Definition wH v := count (fun x ⇒ x 6= 0) (tuple_of_row v).

Definition dH u v := wH (u - v).

A code has at least two codewords when it is not trivial, i.e., it is not reduced to the
singleton with the null vector (this is sufficient because of linearity):

Definition not_trivial := ∃ cw, (cw ∈ C) && (cw 6= 0).

We formally define the minimum distance by using the functions xchoose and
arg_min from MATHCOMP. Given a proof of existence, xchoose returns a witness. We
use it to define a non-zero codeword from a proof term (C_not_trivial) that estab-
lishes that C is a non-trivial linear ECC:

Definition non_0_cw := xchoose C_not_trivial.

Given a predicate P, an element a that satisfies P, and a natural-valued function f,
arg_min returns an element that satifies P and minimizes f. We use it to define a non-
zero codeword with minimum weight, whose weight defines the minimum distance
of the code:

Definition min_wH_cw :=

arg_min non_0_cw [pred cw | (cw ∈ C) && (wH cw 6= O)] (@wH F n).

Definition min_dist := wH min_wH_cw.

The length, the dimension, and the minimum distance of a code are important
to discuss its quality. In particular, given a length and a dimension, it is better for a
code to have the largest possible minimum distance, so that two codewords are more
easily told apart. Such codes are called maximum-distance separable and are defined
as follows:

Definition maximum_distance_separable := (min_dist == n - \dim C + 1).

This is because the length, the dimension, and the minimum distance of a code are
related by the singleton bound :

Lemma singleton_bound : min_dist ≤ n - \dim C + 1.

Section 6 provides Reed-Solomon codes as an example of maximum-distance sepa-
rable codes.

3.2 Linear ECCs with Coding and Decoding Functions

In practice, a linear ECC is not only a vector space but also a pair of encoding and
decoding functions to be used with a channel (see Fig. 1). We found it useful to isolate
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a set of abstract requirements about the encoder and the decoder in order to formalize
generic lemmas about decoding. These requirements correspond to hypotheses about
the setting of ECCs that are not emphasized (not to say implicit) in textbooks. In the
following, we assume a channel with input alphabet A and output alphabet B.

Encoder Let C be a linear ECC of length n over a finite field A (as defined in Sect. 3.1)
and let M be a set of messages (M has type finType which is a type with finitely many
elements). An encoder is an injective function from M whose image is a subset of C:

(* Module Encoder *)

Record t (C : Lcode0.t A n) (M : finType) : Type := mk {

enc :> encT A M n ;

enc_inj : injective enc ;

enc_img : enc @: M \subset C }.

Recall that encT is an abbreviation for {ffun M → ’rV[A]_n} (see Sect. 2.2.1).

Decoder A decoder is a function that takes some channel output and returns a mes-
sage from which this output could have arisen. A decoder can possibly fail. We gave
it the type decT, an abbreviation for {ffun ’rV[B]_n → option M} in Sect. 2.2.1. For-
mally, it actually helps to be more precise and to decompose decoding in two phases:
a first phase that “repairs” the channel output by turning it into a valid codeword,
and a second phase that “discards” the checksum-part of the codeword (recall Fig. 1).
Since the second phase is conceptually easy, it is often left implicit in textbooks. In
our formalization, a decoder is therefore the composition of a repair function and a
discard function, resp. of types repairT and discardT:

Definition repairT (B A : finType) n := {ffun ’rV[B]_n → option ’rV[A]_n}.

Definition discardT (A : finType) n (M : finType) := ’rV[A]_n → M.

This leads us to the following definition of a decoder:

(* Module Decoder *)

Record t (C : Lcode0.t A n) (M : finType) : Type := mk {

repair :> repairT B A n ;

repair_img : oimg repair \subset C ;

discard : discardT A n M ;

dec : decT B M n := [ffun x ⇒ omap discard (repair x)] }.

where oimg returns the set-image of a (partial) function.

Linear ECC with Encoder and Decoder A linear ECC with coding and decoding
functions consists of a vector space with an encoder and a decoder that are compat-
ible, i.e., such that the discard function cancels the encoder function on the set of
codewords:

(* Module Lcode *)

Record t : Type := mk {

lcode0_of :> Lcode0.t A n ;

enc : Encoder.t lcode0_of M ;

dec : Decoder.t B lcode0_of M ;

compatible : cancel_on lcode0_of (Encoder.enc enc) (Decoder.discard dec) }.
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3.3 Example: Repetition Codes and Linear ECCs in Systematic Form

Let us illustrate the definitions of the previous section with repetition codes and in-
troduce the presentation in terms of systematic form.

The r-repetition code encodes one bit by replicating it r times. It has therefore two

codewords:
r︷ ︸︸ ︷

00 · · ·0 and
r︷ ︸︸ ︷

11 · · ·1. The parity-check matrix can be defined as H = [A ||1]
where A is the column vector of r− 1 1’s, and 1 the identity matrix. The reader can
check that the equation HcT = 0 corresponds to the set of equations c0⊕ci+1 = 0, so
that we obtain the desired two codewords.

Decoding codewords from a repetition code can be achieved by majority vote, i.e.,
by returning the codeword bb · · ·b if there is a majority of bits b and fail otherwise:

Definition majority_vote r (s : seq ’F_2) : option ’rV[’F_2]_r :=

let cnt := N(1 | s) in

if r./2 < cnt then Some (const_mx 1)

else if (r./2 == cnt) && ¬ odd r then None

else Some 0.

This function actually just repairs a codeword that was altered. To complete decoding,
one still needs to discard the superfluous r−1 bits.

When the parity-check matrix of a linear ECC is put in the form [A ||1], it is said
to be in systematic form and A is called the check symbol matrix. The advantage of
a parity-check matrix in systematic form is that the corresponding encoder can be
simply defined as the matrix multiplication by G =

[
1 || −AT

]
where G is called the

generator matrix. More generally, let A be a (n− k)× k-matrix, H = [A ||1] and G =[
1 || −AT

]
. Then H is the parity-check matrix of a code of length n and dimension k

with the (injective) encoding function x 7→ x×G. Last, the discard operation can be
performed by multiplication by the matrix [1 ||0]T . The systematic form is illustrated
by repetition codes in our implementation [Infotheo, 2019, file repcode.v] and with
Hamming codes in Sect. 4.4.

3.4 The Variety of Decoding Procedures

There exist several strategies to decode the channel output. We here provide formal
definitions and basic lemmas for the most common ones.

Minimum Distance decoding chooses the closest codeword in terms of Hamming
distance. Let us assume a set of codewords C and a repair function f (of type repairT,
see Sect. 3.2). When f repairs an output y to a codeword x, then there is no other
codeword x’ that is closer to y:

Definition MD_decoding :=

∀ y x, f y = Some x → ∀ x’, x’ ∈ C → dH x y ≤ dH x’ y.

The main property of Minimum Distance decoding is that it can correct b dmin−1
2 c

errors where dmin is the minimum distance (defined in Sect. 3.1). Let f be a repair
function that implements Minimum Distance decoding and whose image is a subset
of a linear ECC C that is not trivial. Then we can show that f can decode up to
mdd_err_cor errors:
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Definition mdd_err_cor C_not_trivial := (min_dist C_not_trivial).-1./2.

Lemma mddP x y : f y 6= None → x ∈ C →
dH x y ≤ mdd_err_cor C_not_trivial → f y = Some x.

Bounded Distance decoding decodes a message to its original codeword as long
as it does not deviate more than a given bound. Let f be a repair function, C a linear
ECC, and t a bound. The function f implements Bounded Distance decoding when
the following holds (notation: t.-BDD(C, f)):
Definition BD_decoding t :=

∀ c e, c ∈ C → wH e ≤ t → f (c + e) = Some c.

Maximum Likelihood decoding decodes to the codeword that is the most likely
to have been sent according to the definition of the channel. In other words, given C
an ECC, a Maximum Likelihood decoder is such that its repair function f satisfies
W (y| f (y)) =maxx′∈C W (y|x′) for any received message y. Observe that this definition
is talking about messages y that are receivable, i.e., that have a non-zero probability
of having been sent and of going through the channel. This is an example of implicit
assumption on which textbooks do not insist but that is important to complete formal
proofs. Put formally, let us assume a channel W, a linear ECC C, and an input distribu-
tion P. A function f performs Maximum Likelihood decoding when it satisfies:
Definition ML_decoding :=

∀ y : P.-receivable W,

∃ x, f y = Some x ∧ W ‘‘(y | x) = \rmax_(x’ in C) W ‘‘(y | x’).

The type P.-receivable W denotes receivable vectors, i.e., it hides the assumption that
the message y has a non-zero probability, which happens to be the same hypothesis
that was needed to define aposteriori probabilities in Sect. 2.2.2.

Maximum Likelihood decoding is desirable because it achieves the smallest error
rate among all the possible decoders [Infotheo, 2019, Lemma ML_smallest_err_rate].
Still, it is possible to achieve Maximum Likelihood decoding via Minimum Distance
decoding. This is for example the case when the channel W is a binary symmetric chan-
nel with error probability strictly less than 1

2 . In this case, for any linear ECC C, repair
function f, and input distribution P, Minimum Distance decoding implies Maximum
Likelihood decoding:
Lemma MD_implies_ML : p < 1/2 → MD_decoding [set cw in C] f →

(∀ y, f y 6= None) → ML_decoding W C f P.

Maximum Aposteriori Probability decoding decodes to messages that maximize
the aposteriori probability. A decoder dec implements Maximum Aposteriori Proba-
bility decoding when the following holds:
Definition MAP_decoding := ∀ y : P.-receivable W,

∃ m, dec y = Some m ∧ P ‘^^ W (m | y) = \rmax_(m in C) (P ‘^^ W (m | y)).

Maximum Aposteriori Probability decoding is desirable because it achieves Maxi-
mum Likelihood decoding:
Lemma MAP_implies_ML : MAP_decoding W C dec P → ML_decoding W C dec P.

Maximum Posterior Marginal decoding is similar to Maximum Aposteriori Proba-
bility decoding: it decodes to messages such that each bit maximizes the marginal
aposteriori probability.
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In the rest of this paper, we illustrate these definitions in due time by providing
concrete examples of decoders (a Minimum Distance decoder in Sect. 4.3, two ex-
amples of Bounded Distance decoders in Sections 7.3 and 6.4, and one example of
Maximum Posterior Marginal decoder in Sect. 8.3).

4 Use-case: Formalization of Hamming Codes and Their Properties

Hamming codes were the first linear ECCs to detect and correct errors. They were
discovered by R. W. Hamming [Hamming, 1950] and are still in use today. In this
section, we formalize their theory using the libraries presented above. The formal-
ization presented in this section is a revision of previous work [Asai, 2014, Sect. 5],
[Affeldt and Garrigue, 2015, Sect. 4].

4.1 Formal Definition of Hamming Codes

A Hamming code of length n = 2m − 1 (with m ≥ 2) is a linear ECC defined by
a parity-check matrix whose columns consist of all non-zero words of length m.
The dimension of such a Hamming code is k = 2m−m− 1, i.e., one adds m extra
bits for error checking. For example, the Hamming code with n = 7 and k = 4 is[0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1

]
.

Formally, for any m (and n defined appropriately), we can define the parity-check
matrix of an Hamming code using a function cV_of_nat that builds column vec-
tors with the binary representation of natural numbers (e.g., for the matrix above,
cV_of_nat 3 1 returns the first column vector, cV_of_nat 3 2 the second, etc.):

(* Module Hamming *)

Definition PCM := \matrix_(i < m, j < n) (cV_of_nat m j.+1 i 0).

Definition code : Lcode0.t _ n := kernel PCM.

4.2 Minimum Distance of Hamming Codes

One can establish the minimum distance of Hamming codes by analyzing the parity-
check matrix. One first shows that there are no codewords of weights 1 and 2 while
there is a codeword of weight 3, namely 7× 2n−3 = (1110 · · ·0)2. Hamming codes
are therefore not trivial and their minimum distance is 3:

Lemma hamming_not_trivial : not_trivial (Hamming.code m).

Lemma hamming_min_dist : min_dist hamming_not_trivial = 3.

As a consequence, Hamming codes can correct 1-bit errors by Minimum Distance
decoding (by the Lemma mddP of Sect. 3.4).
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4.3 Minimum Distance Decoding for Hamming Codes

The procedure of decoding for Hamming codes is typically the first example of non-
trivial decoding algorithm one finds in a textbook (e.g., [MacWilliams and Sloane,
1977; McEliece, 2002]). It goes as follows. Let us consider some channel output y

with at most one error. To decode y, we compute its syndrome. If the syndrome is
non-zero, then it is actually the binary representation of the index of the bit to flip
back. The function hamming_err computes the index i of the bit to correct as well as a
vector to repair the error (nat_of_rV/rV_of_nat perform conversions between natural
numbers and their binary representation in terms of row-vectors of bits). The function
hamming_repair fixes the error by adding this vector:

Definition hamming_err y :=

let i := nat_of_rV (syndrome (Hamming.PCM m) y) in

if i is O then 0 else rV_of_nat n (2 ^ (n - i)).

Definition hamming_repair : repairT _ _ n :=

[ffun y ⇒ Some (y + hamming_err y)].

We can show that the hamming_repair function implements Minimum Distance decod-
ing (defined in Sect. 3.4):

Lemma hamming_MD_decoding :

MD_decoding [set cw in Hamming.code m] hamming_repair.

Therefore, it is also a Maximum Likelihood decoding (under the condition of appli-
cation of Lemma MD_implies_ML from Sect. 3.4).

4.4 The Encoding and Discard Functions for Hamming Codes

We now complete the formalization of Hamming codes by providing the encoding
and discard functions (as in Fig. 1). For that purpose, we define the systematic form
of Hamming codes.

Hamming Codes in Systematic Form Modulo permutation of the columns, the parity-
check matrix of Hamming codes can be transformed into systematic form H = [A ||1]
(as in the example about repetition codes in Sect. 3.3). This provides us with a gener-
ating matrix G =

[
1 || −AT

]
. For illustration in the case of the (7,4)-Hamming code,

we have:

H7,4 =

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 , G7,4 =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 .
Let systematic be the column permutation that turns Hamming.PCM into H. The parity-
check matrix in systematic form is formalized as follows:

(* Module SysHamming *)

Definition H := col_perm systematic (Hamming.PCM m).

From H, we can derive a generating matrix G (using an intermediate matrix A):
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Definition A :=

lsubmx (castmx (erefl, esym (subnK (Hamming.m_len m’))) H).

Definition G :=

castmx (erefl, subnK (Hamming.m_len m’)) (row_mx 1%:M (- A)^T).

In A, lsubmx extracts the left sub-matrix, more precisely the first m columns, where m
is taken from the type of the expression headed by castmx. In A, castmx casts a matrix
with n columns to a matrix with m+(n−m) columns (and the opposite direction
in G), with subnK (Hamming.m_len m’) a proof that n = m+(n−m). In G, row_mx does a
juxtaposition.

The discard function in systematic form can be succinctly defined by multiplica-
tion by the (transpose of the) matrix [1 ||0]:
Definition mx_discard : ’M[’F_2]_(n - m, n) :=

castmx (erefl, subnK (Hamming.m_len m’)) (row_mx 1%:M 0).

These casts are required to accommodate the dependent types used by MATH-
COMP matrices, which themselves avoid having to prove that indices are within
range. They can be ignored by the reader because they have no computational con-
tents. However, they require manual input when composing matrices (for example
using row_mx) or defining sub-matrices (for example when using lsubmx). Matrices
defined with castmx are also the source of extra proof-steps. Typically, when we want
to address the (i, j)-th element of a cast matrix, we need to look for the (i′, j′)-th el-
ements of the uncast matrix, where i and i′ (resp. j and j′) are indices with the same
value but with different types defined using MATHCOMP “ordinals”. Fortunately, the
MATHCOMP library provides good support to deal with ordinals and moreover we
are here mostly dealing with the restricted class of columns’ manipulations.

The Complete Encoder and Decoder Functions of Hamming Codes Using the col-
umn permutation systematic the other way around, we can produce the discard func-
tion and the generating matrix corresponding to the original Hamming.PCM:
Definition mx_discard := col_perm systematic^-1 (SysHamming.mx_discard m’).

Definition discard : discardT _ n _ := fun y ⇒ y *m mx_discard^T.

Definition GEN := col_perm systematic^-1 (SysHamming.G m’).

Coupled with the hamming_repair function from Sect. 4.3, GEN and discard provide us
with a complete definition of Hamming encoders and decoders:
Definition channel_code := mkCode

[ffun t ⇒ t *m GEN] [ffun x ⇒ omap discard (hamming_repair _ x)].

4.5 Error Rate of Hamming Codes over the Binary Symmetric Channel

We can now use our formalization of Hamming codes to recover standard results. For
example, we can show, in the case of a binary symmetric channel W with probability p,
that the error rate (see Sect. 2.2.1) of Hamming codes can be expressed as a closed
formula:
Lemma hamming_error_rate : p < 1/2 →

echa(W, channel_code) =

1 - ((1 - p) ^ n) - INR n * p * ((1 - p) ^ (n - 1)).
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where channel_code is the channel code built in the previous sections.

5 Formalization of Cyclic Codes and Euclidean Decoding

In this section, we formalize the basic tools to deal with cyclic codes, whose ease of
encoding has made the most studied of all codes [MacWilliams and Sloane, 1977,
p. 188].

The goal of Sect. 5.1 is to explain the key equation. It is a relation between the
syndrome (see Sect. 3) and two polynomials called the locator and the evaluator poly-
nomials that are crafted in such a way that decoding amounts to solving the key
equation (note that in the context of cyclic codes, polynomials are used to represent
row-vectors). In Sect. 5.2, we explain a standard algorithm to solve the key equation:
the Euclidean algorithm for decoding. The Euclidean algorithm for decoding applies
in particular to cyclic codes. We therefore complete this section with the formaliza-
tion of cyclic codes as well as polynomial codes, which is a larger class of codes (see
Sect. 5.3).

5.1 Locator, Evaluator, Syndrome Polynomials, and the Key Equation

In this section, we first formalize the polynomials that form the key equation, and then
formalize the key equation itself. The polynomials in question are the (error-)locator
polynomials (Sect. 5.1.1), the (error-)evaluator polynomials (Sect. 5.1.2), and the syn-
drome polynomials (Sect. 5.1.3). In this section, we provide generic definitions; con-
crete instantiations can be found in Sections 7 and 6.

5.1.1 Locator Polynomials

The support set of a vector e is the set of indices i such that ith component of e is not
zero:
Definition supp : {set ’I_n} := [set i | ei 6= 0].

In the following, a is a vector of n values that defines the code; we are dealing with
cyclic codes that can be defined succinctly because they present some regularity.

The locator polynomial of a vector e is a polynomial whose roots give the index
of the errors, i.e., the elements of the output vector that make the checksum fails. It
is denoted by σ(a, e). We formalize it as the polynomial errloc a (supp e) where
errloc is defined as follows:
Definition errloc (a : ’rV[F]_n) (E : {set ’I_n}) : {poly F} :=

\prod_(i in E) (1 - ai *: ’X).

The zeros of the error-locator polynomial are the points a−1
i with i belonging to E;

since we take E = supp e, this means that the zeros of the error-locator polynomial
identifies the elements of the support set of e.

The ith punctured locator polynomial σ(a, e, i) [McEliece, 2002, p. 239] is
then simply defined by errloc a (supp e :\ i). It is used in the next section to define
evaluator polynomials.
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5.1.2 Evaluator Polynomials

The evaluator polynomial of a vector e is a polynomial from which it is possible to
compute the correct value of an erroneous element of e. The evaluator polynomial
ω(f, a, e)4 is defined using the ith punctured locator polynomial:

Definition erreval (f a : ’rV[F]_n) e :=

\sum_(i in supp e) ei * fi *: σ(a, e, i).

The two vectors of n values a and f define the code. The vector a is the same as for
the locator polynomial. The vector f comes from a generalization thanks to which
one can accommodate Reed-Solomon and Bose-Chaudhuri-Hocquenghem codes.

The fact that evaluator polynomials make it possible to compute the correct value
of an erroneous element is explained by the following lemma:

Lemma erreval_vecE i : i ∈ supp e →
ei * fi = - ai * ω(f, a, e).[ai^-1] / σ(a, e)^‘().[ai^-1].

The MATHCOMP notation p.[x] is for the evaluation of a polynomial p at point x and
^‘() is for the formal derivative of a polynomial (see Table 3). The equation looks as
follows in mathematical notation:

ei fi =−ai
ω f,a,e(a−1

i )

σ ′a,e(a
−1
i )

.

This lemma indicates that to discover the vector e (and thus decode), we only need to
compute ω(f, a, e) and σ(a, e). Computing these two polynomials is the purpose
of the Euclidean algorithm for decoding.

Last, decoding using the Euclidean algorithm will require the locator polynomial
σ(a, e) and evaluator polynomial ω(f, a, e) to be relatively prime (see Sect. 5.2.3):

Lemma coprime_errloc_erreval : coprimep σ(a, e) ω(f, a, e).

For this lemma to hold, we assume that a represents non-zero, pairwise distinct ele-
ments, that the support of e is smaller than or equal to t, and that f is non-zero on the
support of e.

5.1.3 Syndrome Polynomials

In Sect. 3.1, we defined the notion of syndrome as a row-vector. However, syndromes
are sometimes more conveniently seen as polynomials. We formalize syndrome poly-
nomials as follows:

Definition syndrome_coord (i : nat) (y : ’rV_n) :=

\sum_(j < n) yj * bj * aj ^+ i.

Definition syndromep r y := \poly_(i < r) (syndrome_coord i y).

More precisely, they are the polynomials corresponding to the (row-vector) syn-
dromes of the so-called Generalized Reed-Solomon codes, i.e., linear ECCs with the

4 The evaluator polynomial is also denoted by η in the literature.
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following parity-check matrix:
1 1 · · · 1
a0 a1 · · · an−1
a2

0 a2
1 · · · a2

n−1
...

...
. . .

...
ar−1

0 ar−1
1 · · · ar−1

n−1




b0

b1 0
. . .

0 bn−2
bn−1

 .
We call the matrix on the left the r-Vandermonde matrices of the vector a of size n,
formalized as follows:
Definition vander_gen (r : nat) := \matrix_(i < r, j < n) aj ^+ i.

In MATHCOMP, the above matrix product thus becomes:
(* Module GRS *)

Definition PCM r : ’M_(r, n) := vander_gen a r *m diag_mx b.

In the definition of the evaluator polynomial in Sect. 5.1.2, the vector f that was
presented as a generalization makes it possible to define evaluator polynomials for
any Generalized Reed-Solomon codes.

5.1.4 The Key Equation

The key equation is a relation between the locator polynomial (Sect. 5.1.1), the eval-
uator polynomial (Sect. 5.1.2), and the syndrome polynomial (Sect. 5.1.3). It is in-
tended to be solved for the locator and evaluator polynomials (resp. σ and ω), so
as to apply the characterization lemma of Sect. 5.1.2 to perform decoding. The key
equation reads as

σ S ≡ ω (mod X r)

where r is the size of codewords. Formally:
Lemma GRS_key_equation r :

Sigma * GRS.syndromep a b r y = Omega + GRS_mod r * ’X^r.

where Sigma and Omega are appropriate locator and evaluator polynomials, and GRS_mod

is some polynomial. We will instantiate this generic key equation for Reed-Solomon
in Sect. 6.3 and for Bose-Chaudhuri-Hocquenghem in Sect. 7.2.2.

Solving the key equation is the purpose of the Euclidean algorithm explained in
the next section.

5.2 The Euclidean Algorithm for Decoding and the Key Equation

The Euclidean algorithm for decoding solves the key equation (seen in Sect. 5.1.4) for
the locator and the evaluator polynomials, given the syndrome polynomial. This ap-
proach [Sugiyama et al, 1975] to decoding applies to several codes (Reed-Solomon,
Bose-Chaudhuri-Hocquenghem, Goppa).

We explain our formalization of the Euclidean algorithm for decoding in Sec-
tions 5.2.1 and 5.2.2. The main result is the lemma of Sect. 5.2.3 that shows that the
Euclidean algorithm solves the key equation.
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5.2.1 The Polynomials Computed by the Euclidean Algorithm for Decoding

The Euclidean algorithm involves four sequences of polynomials: ri, qi, ui, vi. The
sequence ri is defined by iterated modulo (recall from Table 3 that %% stands for the
remainder of the pseudo-division of polynomials):

(* Module Euclid *)

Fixpoint ri :=

if i is j.+1 then if j is k.+1 then rk %% rj
else r1

else r0.

The initialization polynomials are r0 and r1. The polynomial qi is defined similarly
but with iterated division; we therefore have ri = qi+2ri+1 + ri+2. The sequence ui
(resp. vi) is defined such that ui+2 = −qi+2ui+1 + ui (resp. vi+2 = −qi+2vi+1 + vi)
with (u0,u1) = (1,0) (resp. (v0,v1) = (0,1)).

The sequences above satisfy a number of relations. Let us just introduce the ones
that are directly useful to prove the main (forthcoming) lemma that explains decoding
using the Euclidean algorithm. First, the sequences ui, vi, and ri satisfy the following
relations [McEliece, 2002, Sect. 9.4, Table 9.2 (C, D)]:

Lemma vu i : vi.+1 * ui - vi * ui.+1 = (- 1) ^+ i.

Lemma ruv i : ri = ui * r0 + vi * r1.

Second, the size of ri polynomials (i.e., 1+ deg(ri) if ri 6= 0, see Table 3) is strictly
decreasing (as long as it does not reach 0):

Lemma ltn_size_r i : 1 ≤ i → ri 6= 0 → size ri.+1 < size ri.

The lemma is here stated for i≥ 1; the case i = 0 depends on the initialization poly-
nomials r0 and r1.

5.2.2 The Stopping Condition of the Euclidean Algorithm

We have seen in the previous section that the size of the polynomials ri is strictly
decreasing. In this section, we are concerned with the index stop at which this size
becomes smaller than some value. The outputs of the Euclidean algorithm are the
polynomials rstop and vstop; to anticipate a little, we will see that rstop and vstop will
turn out to be the sought evaluator and locator polynomials.

Let us assume some t such that t < size r0. The Euclidean algorithm stops when
size ri is smaller than t. We formalize this condition using the following predicate,
which holds for indices k such that t < size ri forall i ≤ k:

Definition euclid_cont := [pred k | [∀ i : ’I_k.+1, t < size ri]].

We use this predicate to define the largest index such that euclid_cont holds:

Lemma ex_euclid_cont : ∃ k, euclid_cont k.

Lemma euclid_cont_size_r : ∀ k, euclid_cont k → k ≤ size r0.
Definition stop’ := ex_maxn ex_euclid_cont euclid_cont_size_r.

The construct ex_maxn comes from MATHCOMP and returns the largest natural num-
ber such that some property holds. Thus, the desired index stop is stop’.+1, the first
index at which euclid_cont does not hold anymore.
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While the size of rk is strictly decreasing, one can show that the sum of the sizes
of vk.+1 and rk is constant [McEliece, 2002, Sect. 9.4, Table 9.2 (F)]:

Lemma relationF k : k < stop → (size vk.+1).-1 + (size rk).-1 = (size r0).-1.

(Under the hypotheses t < size r0 and size r1 ≤ size r0).
Suppose that stop has been defined w.r.t. to some value t. We can then deduce the

following lemma [McEliece, 2002, Sect. 9.4, Lemma 2]:

Lemma euclid_lemma p t : p + t = size r0 →
let stop := stop t r0 r1 in size vstop ≤ p ∧ size rstop ≤ t.

Proof Using the Lemma relationF.

5.2.3 How to Solve the Key Equation using the Euclidean Algorithm

Let us assume that we have polynomials V , R, r0, and r1 (with V 6= 0 and r1 6= 0)
that satisfy a key equation V r1 ≡ R (mod r0) and such that the sum of the sizes of V
and R is smaller than or equal to the size of r0. Then we can show that there is a non-
zero polynomial k such that vstop = kV and rstop = k R [McEliece, 2002, Sect. 9.4,
Theorem 9.5]. In the event that V and R are relatively prime, we can even show that
k is actually the scalar V (0)

vstop(0)
:

Lemma solve_key_equation_coprimep p t :

V * r1 = R + U * r0 →
size V ≤ p → size R ≤ t →
p + t = size r0 →
coprimep V R →
let stop := stop t r0 r1 in

∃ k, k 6= 0 ∧ vstop = k *: V ∧ rstop = k *: R.

Proof Using the Lemmas vu, ruv, and euclid_lemma.

5.3 Formalization of Polynomial and Cyclic ECCs

We conclude this section with a formalization of cyclic codes. Beforehand, we for-
malize the more general class of polynomial codes. In this context, a codeword
[c0;c1; · · · ;cn−1] is better seen as the polynomial c0+c1X + · · ·+cn−1Xn−1. The con-
version is handled by the MATHCOMP functions rVpoly and poly_RV (see Table 3).

A polynomial code is a linear ECC whose codebook features a polynomial gener-
ator. Given a codebook, a polynomial generator is a polynomial that divides (without
remainder) all the codewords, i.e., a polynomial that satisfies the following predicate:

Definition is_pgen := [pred g | [∀ x, (x ∈ C) == (g %| rVpoly x)]].

Let ’pgen[C] be the set of polynomial generators.
A cyclic code is a linear ECC whose codebook is stable by right-cyclic shift. Let

rcs be a function that performs a right-cyclic shift, i.e., that turns a vector [c0; · · · ;
cn−2;cn−1] into the vector [cn−1;c0; · · · ;cn−2]. Stability by right-cyclic shift can be
defined by the following predicate:
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Definition rcsP (C : {set ’rV[F]_n}) := ∀ x, x ∈ C → rcs x ∈ C.

We use the predicate rcsP to define cyclic codes as the following dependent record:

(* Module Ccode *)

Record t F n := mk {

lcode0 :> Lcode0.t F n ;

P : rcsP [set cw in lcode0] }.

For cyclic codes, a cyclic generator is defined as a non-zero polynomial of lowest
degree in the code. Let ’cgen[C] be the set of cyclic generators. For cyclic codes, the
definition of cyclic generators and of polynomial generators coincide:

Lemma pgen_cgen (C : Ccode.t F n) (C_not_trivial : not_trivial C) (g : ’rV_n) :

(rVpoly g ∈ ’pgen[[set cw in C]]) = (g ∈ ’cgen[C]).

We provide an example of a polynomial generator in Sect. 6.5.2 (in the case of
Reed-Solomon codes) and an example of a cyclic code in Sect. 7.4.2 (in the case of
Bose-Chaudhuri-Hocquenghem codes).

6 Use-case: Formalization of Reed-Solomon Codes

Reed-Solomon codes were discovered by I. S. Reed and G. Solomon [Reed and
Solomon, 1960]. In this section, we formalize Reed-Solomon codes and apply the
library for decoding with the Euclidean algorithm of Sect. 5 to produce a decoder. We
define the code in Sect. 6.1 and the syndrome polynomials in Sect. 6.2. In Sect. 6.3,
we establish the key equation for Reed-Solomon codes. In Sect. 6.4, we apply the Eu-
clidean algorithm for decoding to Reed-Solomon codes. The other main properties of
Reed-Solomon codes are summarized in Sect. 6.5.

6.1 Formal Definition of Reed-Solomon Codes

Let a be an element of a field F . One can define a Reed-Solomon parity-check matrix
as the matrix [

(ai+1) j]
i∈[0,d), j∈[0,n) =

1 a a2 ··· an−1

1 a2 a4 ··· a2(n−1)

...
...

...
. . .

...
1 ad a2d ··· ad(n−1)

 .
The length of the code is n, and d is called the redundancy [McEliece, 2002, p. 254]
because the above matrix corresponds to an encoder adding d symbols to messages.
This matrix is a special case of the parity-check matrix for Generalized Reed-Solomon
codes: in the definition seen in Sect. 5.1.3, instantiate the two vectors with the same
vector [1;a;a2; · · · ;an−1] and the parameter r with d. Formally, the matrix above and
the corresponding code is formalized as follows:

(* Module RS *)

Definition PCM : ’M[F]_(d, n) := \matrix_(i, j) (a ^+ i.+1) ^+ j.

Definition code : {vspace _} := kernel PCM.
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6.2 Syndrome Polynomials for Reed-Solomon Codes

Let y be s vector of size n. The Reed-Solomon syndrome polynomial of y is S =

∑
2t−1
i=1 ŷi X i where ŷi = ∑

n−1
j=0 y j a j

i . The quantities ŷi’s are known as the frequency-
domain coordinates of the discrete Fourier transform of y. We formalize this defini-
tion in a generic way so as to be able to reuse it for Bose-Chaudhuri-Hocquenghem
codes.

If we see the vector y as a polynomial of degree n−1 and use a vector u to gener-
alize definitions, we can formalize the frequency-domain coordinates ŷi as follows:

Definition fdcoor u y i := (rVpoly y).[ui].

This means that we evaluate the polynomial rVpoly y at point ui (the notations are
explained also in Table 3). In our implementation, we use the notation y ^‘_(u, i)

for ŷi. This leads us to the following formal definition of syndrome polynomials:

Definition syndromep u y t := \poly_(k < t) y ^‘_(u, inord k.+1).

The function inord turns the natural k.+1 into an “ordinal” (see Tables 2 and 3) that
can be used as an index for vectors.

It is important to know the relation between the syndrome polynomial and the
syndrome defined as a row-vector using the parity-check matrix (see Sect. 3.1). Let
us introduce the following notation for Reed-Solomon syndrome polynomials:

Notation "’\RSsynp_(’ u , y , d )" := (syndromep u y d).

One can check that the syndrome polynomial defined above is indeed equal to the
syndrome of the Reed-Solomon parity-check matrix (modulo conversion between
polynomials and row-vectors) for a well-chosen vector u:

Lemma syndrome_syndromep y :

syndrome PCM y = poly_rV \RSsynp_(rVexp a n, y, d).

The expression rVexp a n corresponds to the vector [1,a,a2, ...,an−1].

6.3 The Reed-Solomon Key Equation

The Reed-Solomon locator polynomials (notation: σ(rVexp a n, y)) are defined us-
ing the generic definition of Sect. 5.1.1.

The Reed-Solomon evaluator polynomials are obtained as an instantiation of the
generic definition of Sect. 5.1.2:

Notation "’\RSomega_(’ a , e )" := (erreval a a e).

Using above polynomials, the Reed-Solomon key equation is:

Lemma RS_key_equation y :

σ(rVexp a n, y) * \RSsynp_(rVexp a n, y, t) =

\RSomega_(rVexp a n, y) + - RS_mod y t * ’X^t.

where t < n and RS_mod y t is some polynomial. The proof is by instantiating the key
equation for Generalized Reed-Solomon codes seen in Sect. 5.1.4.
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6.4 Decoding using the Euclidean Algorithm

To perform decoding, we initialize the Euclidean algorithm (of Sect. 5.2) with r0 =
Xd and r1 being the syndrome polynomial of the received message. Then, the lemma
of Sect. 5.2.3 gives us a scalar5 k 6= 0 such that vstop = kσ and rstop = kω . Since
σ(0) = 1, we know moreover that k = 1

vstop(0)
. This gives us the polynomials σ and

ω (s and w below). Now that we have the locator and evaluator polynomials, we can
use the Lemma erreval_vecE (of Sect. 5.1.2) to compute the error vector:
Definition RS_err y : {poly F} :=

let r0 : {poly F} := ’X^d in

let r1 := \RSsynp_(rVexp a n, y, d) in

let vstop := v r0 r1 (stop (odd d + t) r0 r1) in

let rstop := r r0 r1 (stop (odd d + t) r0 r1) in

let s := vstop.[0]^-1 *: vstop in

let w := vstop.[0]^-1 *: rstop in

\poly_(i < n) (if s.[a^- i] == 0 then - w.[a ^- i] / s^‘().[a ^- i] else 0).

We formalize the repair function in such a way that it always returns a codeword:
Definition RS_repair : repairT F F n := [ffun y ⇒

if \RSsynp_(rVexp a n, y, d) == 0 then

Some y

else

let ret := y - poly_rV (RS_err y) in

if \RSsynp_(rVexp a n, ret, d) == 0 then Some ret else None].

We then formally prove that the repair function implements Bounded Distance
decoding (defined in Sect. 3.4). More precisely, it can correct up to t errors, as long
as t ≤ b d

2 c (with d < n). For this purpose, we need a number of hypotheses: F is
expected to be a finite field Fqm for some prime q that does not divide n, and a is
expected to be a primitive nth root of unity (i.e., n is the smallest non-zero natural
such that an = 1):
Hypothesis qn : ¬ (q %| n). (* q does not divide n *)

Lemma RS_repair_is_correct : n.-primitive_root a →
t.-BDD (RS.code a n d, RS_repair a n.-1 d).

The proof of the case where the received message c + e is not a codeword relies
essentially on the Lemma solve_key_equation_coprimep (of Sect. 5.2.3) and the error
vector characterization lemma erreval_vecE (of Sect. 5.1.2). The facts that q and n are
relatively prime and that a is a primitive nth root of unity are needed to handle the case
where c+ e is a code word. In this case, we prove that e is in fact 0 by appealing to
the minimum distance of the Reed-Solomon codes (see the forthcoming Sect. 6.5.1).

6.5 Minimum Distance of Reed-Solomon Codes and Other Properties

6.5.1 Minimum Distance of Reed-Solomon Codes

The minimum distance of a Reed-Solomon code is d +1 where d is the redundancy
of the Reed-Solomon code:

5 Indeed, σ and ω are coprime (see Sect. 5.1.2).
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Hypothesis dn : d < n.

Hypothesis qn : ¬ (q %| n). (* q does not divide n *)

Lemma RS_min_dist : n.-primitive_root a →
min_dist (RS_not_trivial a dn) = d.+1.

The proof consists in two steps. First, we show that all the non-zero codewords
have a weight greater than d +1:

Lemma RS_min_dist1 c : n.-primitive_root a → c 6= 0 →
c ∈ RS.code a n d → d.+1 ≤ wH c.

This proof relies on a technical but important result for code theory known as the
“BCH argument” (or the “BCH bound”). Second, we exhibit one codeword of weight
less than or equal to d + 1. Concretely, we use the codeword corresponding to a
generator (see Sect. 6.5.2 below).

6.5.2 Generator Polynomial for Reed-Solomon Codes

Let us define the polynomial \gen_(a, d) as follows:

Definition rs_gen := \prod_(1 ≤ i < d.+1) (’X - (a ^+ i)%:P).

We can prove that this polynomial is a codeword and that its Hamming weight is less
than d +1:

Lemma mem_rs_gen_RS : poly_rV \gen_(a, d) ∈ RS.code a n d.

Lemma wH_rs_gen : wH (poly_rV \gen_(a, d) : ’rV[F]_n) ≤ d.+1.

We can therefore use \gen_(a, d) to conclude the proof of the minimum distance of
Reed-Solomon codes of the previous section (Sect. 6.5.1).

However, the true purpose of \gen_(a, d) is to serve as an encoder for Reed-
Solomon codes. Indeed, this is a generator in the sense of Sect. 5.3:

Lemma rs_gen_is_pgen :

\gen_(a, d) ∈ ’pgen[RS.codebook a n’ d]. (* n = n’.+1 *)

It can be used to formalize an encoder in systematic form (as we did in previous
work [Affeldt et al, 2016]).

7 Use-case: Formalization of Bose-Chaudhuri-Hocquenghem Codes

Bose-Chaudhuri-Hocquenghem (hereafter, BCH) codes where discovered by R. C.
Bose, D. K. Ray-Chaudhuri, and A. Hocquenghem [Hocquenghem, 1959; Bose and
Ray-Chaudhuri, 1960]. In this section, we formalize BCH codes and apply the li-
brary for decoding with the Euclidean algorithm of Sect. 5 to produce a decoder. This
application shares similarities with the application to Reed-Solomon codes seen in
Sect. 6. In Sect. 7.1, we define BCH codes. In Sect. 7.2, we establish the key equa-
tion for BCH codes. In Sect. 7.3, we apply the Euclidean algorithm for decoding
formalized in Sect. 5.2. In Sect. 7.4, we prove the correctness of the decoder using an
additional property about the minimum distance of BCH codes.
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7.1 Definition of BCH Codes and BCH Syndrome Polynomials

BCH Parity-check Matrix Although BCH codes are binary, their parity-check matri-
ces are made up of elements from the finite field F2m . Let ai be n elements belonging
to F2m . BCH codes can be described by the t×n parity-check matrix

a0 a1 a2 · · · an−1
a3

0 a3
1 a3

2 · · · a3
n−1

...
...

...
. . .

...
a2t−1

0 a2t−1
1 a2t−1

2 · · · a2t−1
n−1

 .
Using a row-vector a for the ai’s, this can be written formally:
(* Module BCH *)

Definition PCM : ’M_(t, n) := \matrix_(i < t, j < n) aj ^+ i.*2.+1.

Alternate BCH Parity-check Matrix In fact, the proofs of the properties of BCH codes
rely on an alternate parity-check matrix of size 2 t×n:

a0 a1 a2 · · · an−1
a2

0 a2
1 a2

2 · · · a2
n−1

...
...

...
. . .

...
a2t

0 a2t
1 a2t

2 · · · a2t
n−1

 . (1)

This matrix is built by adding rows to the parity-check matrix defined just above.
Yet, it captures the same set of codewords, essentially because the finite field F2m

has characteristic 2 and x2 = x for all x ∈ F2. The advantage of this alternate parity-
check matrix is that it has a more regular shape that moreover happens to be the
parity-check matrix of a Generalized Reed-Solomon code: in the definition seen in
Sect. 5.1.3, instantiate the two vectors with the same vector a and the parameter r
with 2 t.

BCH code BCH codes are defined as the kernel of the parity-check matrix above re-
stricted to (binary) vectors of type ’rV[’F_2]_n. We define restricted codes as follows.
Let F0 and F1 be finite fields with f a morphism of type {rmorphism F0 → F1}, and let C
be a linear ECC of length n over F1. The restricted code c of length n over F0 is the
linear ECC that contains the vectors that are also in C:
(* Module Rcode *)

Inductive t (C : Lcode0.t F1 n) := mk {

c : Lcode0.t F0 n ;

P : ∀ x, x ∈ c ↔ map_mx f x ∈ C }.

Let ai be n elements belonging to F2m and t be a bound. A BCH code of length n
is the restriction to F2 of the linear ECC defined by the parity-check matrix PCM a t:
(* Module BCH *)

Definition code (a : ’rV_n) t :=

Rcode.t (@GF2_of_F2_rmorphism m) (kernel (PCM a t)).

This definition uses implicitly the function GF2_of_F2 m that injects an elements of F2
into F2m . It is an implicit parameter of the term @GF2_of_F2_rmorphism m that proves
that it is indeed a morphism.
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7.2 BCH Key Equation

Hereafter, we assume that the n elements ai of the parity-check matrix are such that

ai
def
= ai for some a ∈ F2m .

7.2.1 Syndrome, Locator, and Evaluator Polynomials

We use the syndrome polynomials defined for Reed-Solomon codes in Sect. 6.2
to deal with BCH codes. Precisely, the syndrome polynomial of a vector y of type
’rV[’F_2]_n is formalized as (notation: \BCHsynp_(a, y, t)):

(* Module BCH *)

Definition syndromep a y t := syndromep a (F2_to_GF2 m y) t.*2.

The function F2_to_GF2 m injects a vector with elements in F2 into a vector with ele-
ments in F2m , i.e., map_mx (@GF2_of_F2 m). We can check that this indeed corresponds
to the definition of a syndrome (as defined in Sect. 3.1) since a codeword y belongs
to a BCH code if and only if its syndrome polynomial is 0:

Lemma BCH_syndrome_synp y : t.*2 < n →
(syndrome (BCH.PCM (rVexp a n) t) (F2_to_GF2 m y) == 0) =

(\BCHsynp_(rVexp a n, y, t) == 0).

BCH locator polynomials are defined directly using the generic definition of
Sect. 5.1.1: σ(rVexp a n, F2_to_GF2 m y).

For BCH evaluator polynomials, we instantiate the generic definition of Sect. 5.1.2
as follows (notation: \BCHomega_(rVexp a n, F2_to_GF2 m y)):

Definition BCH_erreval := erreval (const_mx 1) (rVexp a n).

7.2.2 BCH Key Equation

In the case of BCH codes, the key equation takes the form σ S ≡ ω (mod X2t)
where 2t is the length of codewords when one considers the alternate parity-check
matrix (see Sect. 7.1). Recall that σ , S , and ω are intended to be the locator, the syn-
drome, and the evaluator polynomials of the received message. For BCH codes, the
evaluator polynomial of the received message is in fact the evaluator of the “twisted”
received message [McEliece, 2002, Sect. 9.3, Equation 9.36]. A twisted vector is
defined as follows:

Definition twisted (y : ’rV[F]_n) := \row_(i < n) (yi * a ^+ i).

Using above definitions, we can prove the key equation for BCH codes:

Lemma BCH_key_equation y :

σ(rVexp a n, F2_to_GF2 m y) * \BCHsynp_(rVexp a n, y, t) =

\BCHomega_(rVexp a n, twisted a (F2_to_GF2 m y)) +

BCH_mod (F2_to_GF2 m y) * ’X^t.*2.

In this equation, BCH_mod is some polynomial and t.*2 < n. The proof is a consequence
of the key equation for GRS codes seen in Sect. 5.1.4.
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7.3 BCH Decoding using the Euclidean Algorithm

To perform decoding, we initialize the Euclidean algorithm with r0 =X2t and r1 being
the syndrome polynomial of the received message. Like for Reed-Solomon codes, the
lemma of Sect. 5.2.3 gives us a scalar k 6= 0 such that vstop = kσ , and, since σ(0) = 1,
we know moreover that k = 1

vstop(0)
. This gives us the locator polynomial. We can

finally use the locator polynomial (s below) to compute the error vector. Note that in
the case of BCH, we do not need the companion evaluator polynomial because, since
the code is binary, error correction is just flipping the erroneous bit:

Definition BCH_err y : {poly ’F_2} :=

let r0 : {poly F} := ’X^t.*2 in

let r1 := \BCHsynp_(rVexp a n, y, t) in

let vstop := v r0 r1 (stop t r0 r1) in

let s := vstop.[0]^-1 *: vstop in

\poly_(i < n) (if s.[a^- i] == 0 then 1 else 0).

And we can use the error vector to repair a (possibly damaged) received message:

Definition BCH_repair : repairT [finType of ’F_2] [finType of ’F_2] n :=

[ffun y ⇒ if \BCHsynp_(rVexp a n, y, t) == 0 then

Some y

else

let ret := y + poly_rV (BCH_err y) in

if \BCHsynp_(rVexp a n, ret, t) == 0 then Some ret else None].

The following lemma shows that BCH_repair implements Bounded Distance de-
coding (defined in Sect. 3.4). It can indeed repair any codeword with less than t errors
(provided that 2t < n and that a is not a kth root on unity for k < n):

Lemma BCH_repair_is_correct (C : BCH.code (rVexp a n) t) : not_uroot_on a n →
t.-BDD (C, BCH_repair).

The case where the received message c+ e is not a codeword is proved using the
lemmas from Sect. 5. The case where c + e is a codeword requires an additional
result to prove that in this case e = 0: this is a lower bound of the minimum distance
of BCH codes whose proof is the matter of the forthcoming Sect. 7.4.1.

7.4 About the Minimum Distance and Cyclicity of BCH Codes

7.4.1 Lower Bound of the Minimum Distance of BCH Codes

In this section, we show that the parameter t of BCH codes is a lower bound of the
minimum distance.

Let B be a matrix formed by the first r elements of a subset of r columns from
the parity-check matrix of Equation (1) (see Sect. 7.1). The matrix B can be written
as follows:

B =


b1 b2 · · · br
b2

1 b2
2 · · · b2

r
...

...
. . .

...
br

1 br
2 · · · br

r

 .
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Let f be the function that returns for each column of B its corresponding column in
the parity-check matrix of Equation (1). We can show that the determinant of B is:

detB = ∏
i≤r

b f (i) det(vander [b1, . . . ,br]). (2)

Put formally:

Lemma BCH_det_mlinear t r’ (f : ’I_r’.+1 → ’I_n) (rt : r’ < t.*2) :

let B := \matrix_(i, j) BCH.PCM_alt a t (widen_ord rt i) (f j) in

let V := vander (row 0 B) in

\det B = \prod_(i < r’.+1) BCH.PCM_alt a t (widen_ord rt 0) (f i) * \det V.

(r’ is r−1, widen_ord is a type cast to inject indices strictly smaller than r into indices
strictly smaller than 2t.)

On the other hand, the determinant of (square) Vandermonde matrices (as we
defined in Sect. 5.1.3) has the following property:

det(vandera) = ∏
i<n

∏
i< j<n

(a j−ai).

Put formally (and assuming n > 0):

Lemma det_vander n (a : ’rV[R]_n.+1) :

\det (vander a) = \prod_(i < n.+1) (\prod_(j < n.+1 | i < j) (aj - ai)).

We now see that Equation (2) indicates that when bi’s are pairwise distinct and f is in-
jective, detB is not zero. This leads us to the conclusion that all (non-zero) codewords
have a Hamming weight strictly greater than t:

Lemma BCH_min_dist1 t x (x0 : x 6= 0) (t0 : 0 < t) (C : BCH.code a t) :

x ∈ C → t < wH x.

Proof Suppose ab absurdo that x has a weight strictly smaller than t + 1. We build
an injective function f that associates to the ith non-zero bit of x its index strictly
smaller than n. Using this function, we exhibit a linearly-dependent combination of
wH x columns of the BCH parity-check matrix. We can then build a square matrix B
from the columns of the BCH parity-check matrix such that detB = 0, contradicting
the property above.

7.4.2 Cyclic BCH Codes

For the sake of completeness, we provide a last result about BCH codes. In textbooks,
they are often introduced as an example of cyclic code. Yet, we have not been relying
on this property so far. Let us make it precise that BCH are cyclic under the additional
hypothesis that a has order n:

Lemma rcsP_BCH_cyclic (C : BCH.code (rVexp a n) t) :

a ^+ n = 1 (* a has order n *) → rcsP [set cw in C].
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Fig. 2: Successors and subtrees in an acyclic Tanner graph

8 The Basics of Modern Coding Theory

In the previous sections, we have been dealing with codes whose properties could be
formalized essentially using algebra and probabilities. The formalization of modern
coding theory [Richardson and Urbanke, 2008] requires more, in particular graphs. In
the following, we deal with low-density parity-check (hereafter, LDPC) codes, which
are the representative instance of modern coding theory (as explained in Sect. 1).

The sum-product algorithm is the standard example of efficient decoder for LDPC
codes. It computes for each bit its marginal aposteriori probability by propagating
probabilities in a graph corresponding to the parity-check matrix of the LDPC code.
Note however that, while practical LDPC codes use a large graph containing cy-
cles, all proofs of the accuracy of sum-product decoding assume the graph to be
acyclic [Kschischang et al, 2001]. While experimental results do show that sum-
product decoding works still very well in presence of cycles, it is important to keep
this in mind when assessing the applicability of proofs.

Below, we provide tools to formalize the sum-product algorithm. In Sect. 8.1, we
explain how to formalize parity-check matrices as graphs. In Sect. 8.2, we explain a
formalization of the summary operator used in modern coding theory. In Sect. 8.3,
we evaluate the marginal aposteriori probability using the summary operator, so as to
be able to verify concrete implementations of the sum-product algorithm.

8.1 Parity Check Matrices as Tanner Graphs

The graph-equivalent of a parity-check matrix with elements from the binary field F2
is called a Tanner graph. Let H be a parity-check matrix. Its Tanner graph is a (bipar-
tite) graph with two types of nodes: one function node per row and one variable node
per column. There is an edge between the variable node n0 and the function node m0
when Hm0,n0 = 1 (Tanner graphs are undirected). See Fig. 2 for examples of Tanner
graphs.

When dealing with Tanner graphs, one needs to be able to talk about sets of
successors and about some specific subgraphs.
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First, we distinguish between sets of successors of variable nodes and of function
nodes. We denote the successors of the function (resp. variable) node m0 (resp. n0) by
‘V m0 (resp. ‘F n0). See Fig. 2 for examples.

Second, we define “subgraphs rooted at an edge”. Let g be a graph (formalized
by a binary relation) and m and n be two connected vertices. The subgraph rooted at
the edge m–n is the set of vertices reachable from m without passing through n:

Variables (V : finType) (g : rel V).

Definition except n : rel V := [rel x y | g x y && (x 6= n) && (y 6= n)].

Definition subgraph m n := [set v | g n m && connect (except n) m v].

In MATHCOMP, rel is the type of binary relations and connect is the transitive closure
of a relation. We distinguish subgraphs of variable nodes and of function nodes by
denoting the function nodes of the subgraph rooted at edge m0–n0 by ‘F(m0, n0). Sim-
ilarly, we denote the variable nodes of the subgraph rooted at edge m0–n0 (to which we
add n0) by ‘V(m0, n0). See Fig. 2 for examples and our implementation for complete
definitions [Infotheo, 2019].

Last, it is important to distinguish acyclic Tanner graphs. We formalize acyclic
Tanner graphs by requiring that any path with 3 or more nodes is not a cycle:

Definition acyclic g := ∀ p, 2 < size p → ~ path.ucycle g p.

A path is essentially a list of connected vertices and the predicate path.ucycle comes
from the MATHCOMP library.

8.2 The Summary Operator

Pencil-and-paper proofs in modern coding theory make use of a special summation
called the summary operator [Kschischang et al, 2001]. It is denoted by ∑∼s e and
indicates a summation over all variables contained in the expression e except the
variables in the set s. This operator saves the practitioner “from a flood of notation”
[Richardson and Urbanke, 2008, p. 49], for example by writing steps such as

∏
m0∈F(n0)

∑
∼{n0}

· · ·= ∑
∼{n0}

∏
m0∈F(n0)

· · · , (3)

the reader being trusted to understand that the two occurrences of the summary op-
erator may sum over two different sets (see Sections 8.3.1 and 8.3.2 for concrete
examples).

For the sake of formalization, we regard ∑∼s e as a sum over a vector of variables
[x0;x1; ...;xn−1] such that xi is fixed using a default vector d when i 6∈ r, where r is
the set of freely enumerated indices, i.e., we expect {xi | i ∈ r}= fv(e)\ s. Instead of
∑∼s e, we write ∑x=d [∼r] e because it is a summation over the vectors x equal to d on
all components except the freely enumerated indices in r. The formal COQ notation
for ∑x=d [∼r] e is \sum_(x = d [~ r]) e, defined as follows:

Definition freeon (r : {set ’I_n}) (x d : ’rV[A]_n) : bool :=

[∀ j, (j \notin r) =⇒ (xj == dj)].

Notation "\sum_ ( x ’=’ d [~ r ] ) F" := (\sum_( x | freeon r d x ) F)
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We found it difficult to recover formally the terseness of the pencil-and-paper
summary operator. First, the precise set of varying x j’s is implicit; it can be inferred
by looking at the x j’s appearing below the summation sign but this is difficult to
achieve in COQ unless one reflects the syntax. Second, the pencil-and-paper sum-
mary operator alternatively suggests to work with vectors x of varying sizes, but
this would be technically involved because the size of vectors appears in dependent
types (tuples or row-vectors in MATHCOMP). In contrast, our formalization makes
clear, for example, that in Equation (3) the first summary operator sums over xi’s
with i∈V (m0,n0)\{n0} while the second one sums over xi’s with i∈ [1, . . . ,n]\{n0}.
More importantly, thanks to our encoding, we can benefit from the MATHCOMP lem-
mas about big operators to prove various properties about the summary operator (see
Sect. 8.3) or equivalent definitions of the summary operator. For example, our sum-
mary operator ∑x=d [∼r] e(x) can be alternatively thought as

∑
x1∈F2

· · · ∑
x|r|∈F2

e(d[r1 := x1] · · · [r|r| := x|r|])

where d[i := b] represents the vector d where index i is updated with b. Put formally:
Definition summary_fold (r : {set ’I_n}) d e :=

foldr (fun n0 F t ⇒ \sum_(b in ’F_2) F (t ‘[n0 := b])) e (enum r) d.

(enum r is the list [r1;r2; · · · ;r|r|].) This definition is equivalent to our summary op-
erator in the sense that \sum_(x = d [~ r]) e x is equal to summary_fold r d e, but
summary_fold was easier to use to verify our implementation of the sum-product algo-
rithm in Sect. 9.2.

8.3 Evaluation of the Marginal Aposteriori Probability

8.3.1 Correctness of the Estimation

Let us consider a channel W and a channel output y. With sum-product decoding,
we are concerned with evaluating PW

n0
(b|y) where P is a uniform distribution and b is

the value of the n0th bit of the input codeword (see Sect. 2.2.2). In the following, we
show that PW

n0
(b|y) satisfies the proportionality relation

PW
n0
(b|y) ∝ W

(
yn0

∣∣b) ∏
m0∈F(n0)

αm0,n0(d) (4)

where αm0,n0(d) is defined below (using the summary operator and Tanner graphs)
and d is a vector such that dn0 = b.

The expression αm0,n0(d) represents the contribution of the n0th bit to the marginal
aposteriori probability coming from a subtree of the Tanner graph (we assume that
the Tanner graph is acyclic). More precisely, αm0,n0(d) is the marginal aposteriori
probability of the n0th bit of the input codeword in the modified Tanner graph that
includes only function nodes from the subgraph rooted at edge m0–n0 and in which
the received bit yn0 has been erased:

αm0,n0(d)
def
= ∑

x=d [∼V (m0,n0)\n0]

W
(

y
V (m0,n0)\n0

∣∣∣x V (m0,n0)\n0

)
∏

m1∈F(m0,n0)

δ
x
V (m1)

.
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In the definition above, δ x
V is an indicator function that performs checksum checks:

δ
x
V

def
=

(
∑
i∈V

xi

)
= 0. Observe that αm0,n0(d) only depends on dn0 = b.

Here follows a detailed account of the pencil-and-paper proof of Equation (4).
Let b be a bit and d be a vector such that dn0 = b. The proof goes as follows. The first
step (5a)–(5b) uses the fact that the input distribution is uniform (see Sect. 2.2.2). We
will comment about the steps (5c)–(5d) and (5e)–(5f) below in the light of the formal
statement.

PW
n0
(b|y) def

= K′ ∑
x∈Fn

2 xn0=b
PW (x|y) (5a)

= K′ ∑
x∈Fn

2 xn0=b
KW (y|x) [x ∈C] (5b)

∝ ∑
x=d

[
∼{n0}{

]W (y|x) ∏
m0<m

δ
x
V (m0)

=W
(
yn0

∣∣b) ∑
x=d

[
∼{n0}{

]W
(

y {n0}{

∣∣∣x {n0}{

)
∏

m0<m
δ

x
V (m0)

(5c)

=W
(
yn0

∣∣b) ∑
x=d

[
∼{n0}{

]W
(

y {n0}{

∣∣∣x {n0}{

)
∏

m0∈F(n0)
∏
m1∈

F(m0,n0)

δ
x
V (m1)

(5d)

=W
(
yn0

∣∣b) ∑
x=d

[
∼{n0}{

] ∏
m0∈F(n0)

W
(

y
V (m0,n0)\n0

∣∣∣x V (m0,n0)\n0

)
∏
m1∈

F(m0,n0)

δ
x
V (m1)

(5e)

=W
(
yn0

∣∣b) ∏
m0∈F(n0)

∑
x=d [∼V (m0,n0)\n0]

W
(

y
V (m0,n0)\n0

∣∣∣x V (m0,n0)\n0

)
∏
m1∈

F(m0,n0)

δ
x
V (m1)

(5f)
def
= W

(
yn0

∣∣b) ∏
m0∈F(n0)

αm0,n0(d)

We now provide the formal statement. Let W be a channel. Let H be a m×n parity-
check matrix such that the corresponding Tanner graph is acyclic (the formal hypoth-
esis is Tanner.acyclic_graph (tanner_rel H), where tanner_rel turns a parity-check
matrix into the corresponding Tanner graph). Let y be the channel output to decode;
we assume that it is receivable (see Sect. 2.2.2). Finally, let d be the vector used in
the summary operator. Then the aposteriori probability PW

n0
(b|y) can be evaluated by

a closed formula:

Lemma estimation_correctness (d : ’rV_n) n0 :

let b := dn0 in let P := ‘U C_not_empty in

P ’_ n0 ‘^^ W (b | y) = Kmpp y * Kppu [set cw in C] y *

W ‘‘(yn0 | b) * \prod_(m0 in ‘F n0) alpha m0 n0 d.

The distribution ‘U C_not_empty of codewords has the following probability mass
function: c 7→ 1/|C| if c ∈ C and 0 otherwise. The terms headed by Kmpp and Kppu

correspond to K′ and K defined in Sect. 2.2.2. The formal definition of alpha relies
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on the summary operator and follows the pencil-and-paper definition given at the
beginning of this section:
Definition alpha m0 n0 d := \sum_(x = d [~‘V(m0, n0) :\ n0])

W ‘‘(y # ‘V(m0, n0) :\ n0 | x # ‘V(m0, n0) :\ n0) *

\prod_(m1 in ‘F(m0, n0)) INR (δ (‘V m1) x).

In this formal definition, δ (‘V m1) x corresponds to the indicator function δ x
V (m1)

ex-
plained above. It is implemented using the Boolean equality (symbol ==, see Table 3)
by the following function:
Definition checksubsum n (V : {set ’I_n}) (x : ’rV[’F_2]_n) :=

(\sum_(n0 in V) xn0) == 0.

Technical Aspects of the Proof Let us comment about two technical aspects of the
proof of estimation_correctness.

The first technical aspect is the need to instrument Tanner graphs with partition
lemmas to be able to decompose big prods. This is what happens in the step (5c)–
(5d). We will come back to this aspect when detailing another example in Sect. 8.3.2
(about the Lemma recursive_computation).

The second technical aspect is the main motivation for using the summary opera-
tor. We need to make big sums commute with big prods like in the step (5e)–(5f):

∑
x=d

[
∼{n0}{

] ∏
m0∈F(n0)

Fm0,x = ∏
m0∈F(n0)

∑
x=d [∼V (m0,n0)\n0]

Fm0,x.

By the way, the COQ formalization of this step looks like this:
\sum_(x = d [~ setT :\ n0]) \prod_(m0 in ‘F n0) ... =

\prod_(m0 in ‘F n0) \sum_(x = d [~‘V(m0, n0) :\ n0]) ...

To perform such commutations of big operators, we start by applying the MATH-
COMP Lemma big_distr_big_dep (from the bigop theory). Using pencil-and-paper
notations, it can be written as

∏
i∈P

∑
j∈Q(i)

Fi, j = ∑

f∈
P
⇓d

λx.Q(x)

∏
i∈P

Fi, f (i)

where
P
⇓d

λx.Q(x)
is a finite set of functions f that map each element x ∈ P to an element

f (x) ∈ Q(x), d being the default value returned when x 6∈ P. The following example
should convey the intuition for this lemma:

∏
i∈{1,2}

∑
j∈{1,2,3}

Fi, j =(F1,1 +F1,2 +F1,3)(F2,1 +F2,2 +F2,3)

=F1,1F2,1 +F1,1F2,2 +F1,1F2,3 + · · ·
= ∏

i∈{1,2}
Fi,17→1

27→1( j)+ ∏
i∈{1,2}

Fi,17→1
27→2( j)+ ∏

i∈{1,2}
Fi,1 7→1

2 7→3( j)+ · · ·

= ∑

f∈
{1,2}
⇓

λx.{1,2,3}

∏
i∈{1,2}

Fi, f ( j).
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This is a simple example where there is no dependency between the predicates that
characterize the big prod and the big sum on the left-hand side; see Equation (9a) for
an example with a dependency.

Second, to make big sums commute with big prods, we perform reindexing. This
is where the technical difficult lies. For example, in the case of step (5e)–(5f), it
amounts to show that

∑

f∈
F(n0)
⇓d

λxy.y=d [∼V (x,n0)\{n0}]

∏
m0∈F(n0)

Fm0, f (m0) = ∑
x=d

[
∼{n0}{

] ∏
m0∈F(n0)

Fm0,x.

The notation
F(n0)
⇓d

λxy.y=d [∼V (x,n0)\{n0}]
means a set of functions that return for x ∈ F(n0)

all the vectors with index-range V (x,n0)\{n0} (the contents at other indices being
fixed accordingly to the vector d). To perform such a reindexing, we need to pro-
vide functions that transform a vector of bits into a family of functions such that
these functions can be recombined to recover the vector of bits. See our implemen-
tation for the concrete definitions of such functions [Infotheo, 2019, functions dprojs

and comb, file summary_tanner.v]. Equipped with these functions, we can use MATH-
COMP lemmas such as reindex_onto (from the bigop theory) to actually perform
the reindexing. Informally, applying reindex_onto corresponds to the rewriting rule
∑i∈P Fi = ∑ j

h( j)∈P,h′(h( j))= j
Fh( j) under the hypothesis that the function h cancels the

function h′ on P.

8.3.2 Recursive Computation of α’s

The property proved in the previous section provides a way to evaluate PW
n0
(b|y) but

not an efficient algorithm because the computation of αm0,n0(d) is global: it is about
the whole subgraph rooted at the edge m0–n0. The second property that we formalize
introduces β quantities such that α’s (resp. β ’s) can be computed locally from neigh-
boring β ’s (resp. α’s). More precisely, we prove that α’s can be computed using β ’s
by the formula

αm0,n0(d) = ∑
x=d [∼V (m0)\n0]

δ
x
V (m0) ∏

n1∈V (m0)\n0

βn1,m0(x) (6)

where β is defined using α:

βn0,m0(d)
def
= W

(
yn0

∣∣dn0

)
∏

m1∈F(n0)\m0

αm1,n0(d).

(We assume the same setting as for the Lemma estimation_correctness.)
We now provide a detailed account of the pencil-and-paper proof of Equation (6).

This proof relies on ideas similar to the ones already explained in Sect. 8.3.1 but is a
little bit more involved.
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Proof of Equation (6) (part 1)

αm0,n0(d)
def
= ∑

x=d [∼V (m0,n0)\n0]

W
(

y
V (m0,n0)\n0

∣∣∣x V (m0,n0)\n0

)
∏

m1∈F(m0,n0)

δ
x
V (m1)

(7a)

= ∑
x=d [∼V (m0,n0)\n0]

W
(

y
V (m0,n0)\n0

∣∣∣x V (m0,n0)\n0

)
δ

x
V (m0) ∏

n1∈
V (m0)\n0

∏
m1∈

F(n1)\m0

∏
m2∈

F(m1,n1)

δ
x
V (m2)

(7b)

= ∑
x=d [∼V (m0,n0)\n0]

δ
x
V (m0) ∏

n1∈
V (m0)\n0

W (yn1 |xn1) ∏
m1∈

F(n1)\m0

W
(

y
V (m1,n1)\n1

∣∣∣x V (m1,n1)\n1

)
∏
m2∈

F(m1,n1)

δ
x
V (m2)

︸ ︷︷ ︸
A0(x)

= ∑
x=d [∼V (m0)\n0]

∑
x′=x [∼V (m0,n0)\V (m0)]

δ
x′
V (m0)

A0(x′)

= ∑
x=d [∼V (m0)\n0]

δ
x
V (m0) ∑

x′=x [∼V (m0,n0)\V (m0)]

A0(x′)︸ ︷︷ ︸
A(x)

Let us comment on one technical aspect of this proof. The step (7a)–(7b) performs
a splitting of the inner product in α messages. Formally, it turns

\prod_(m1 in ‘F(m0, n0) :\ m0) INR (δ (‘V m1) x)

into

\prod_(n1 in ‘V m0 :\ n0) \prod_(m1 in ‘F n1 :\ m0) \prod_(m2 in ‘F(m1, n1))

INR (δ (‘V m2) x)

This requires to show that ‘F(m0, n0) :\ m0 can be partitioned (when H is acyclic)
into smaller ‘F(m1, n1) where n1 is a successor of m0 and m1 is a successor of n1, i.e.,
according to the following partition:

Definition Fgraph_part_Fgraph m0 n0 : {set {set ’I_m}} :=

(fun n1 ⇒ \bigcup_(m1 in ‘F n1 :\ m0) ‘F(m1, n1)) @: ((‘V m0) :\ n0).

Once Fgraph_part_Fgraph m0 n0 has been shown to cover ‘F(m0, n0) :\ n0 with pair-
wise disjoint sets, this step essentially amounts to use the lemmas big_trivIset and
big_imset of the MATHCOMP library (from the finset theory).

Proof of Equation (6) (part 2) To conclude the proof, one needs to show that A(x) =
∏

n1∈V (m0)\n0

βn1,m0(x). Here follows a detailed account of this part of the proof. Sim-

ilarly to the proof of the Lemma estimation_correctness (Sect. 8.3.1), it involves
commutations of big sums and big prods using the summary operator. See the two
steps (8a)–(9a) and (10a)–(10b) below.
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∏
n1∈

V (m0)\n0

βn1,m0(x)
def
= ∏

n1∈
V (m0)\n0

W (yn1 |xn1)

∏
m1∈

F(n1)\m0

∑
z=x [∼V (m1,n1)\n1]

W
(

y
V (m1,n1)\n1

∣∣∣z V (m1,n1)\n1

)
∏
m2∈

F(m1,n1)

δ
z
V (m2)

︸ ︷︷ ︸
B

(8a)

The first step is a commutation between the leading big prod and big sum of B:

B = ∑
z∈Fn

2

fz∈
F(n1)\m0
⇓x

λm1y.y=x [∼V (m1,n1)\n1]

∏
m1∈

F(n1)\m0

W
(

y
V (m1,n1)\n1

∣∣∣ fz(m1) V (m1,n1)\n1

)
∏
m2∈

F(m1,n1)

δ
fz(m1)

V (m2)

︸ ︷︷ ︸
C(z)

(9a)

Observe that we do not sum over functions directly but over vectors z on which the
functions fz depend because we use the vectors z explicitly in the next steps:

∏
n1∈

V (m0)\n0

βn1,m0(x)

= ∏
n1∈

V (m0)\n0

∑
z∈Fn

2

fz∈
F(n1)\m0
⇓x

λm1y.y=x [∼V (m1,n1)\n1]

W (yn1 |zn1)C (z) (10a)

= ∑

g∈

V (m0)\n0
⇓x

λn1z. fz∈

(
F(n1)\m0
⇓x

λm1y.y=x [∼V (m1,n1)\n1]

)
∏
n1∈

V (m0)\n0

W
(

yn1

∣∣∣g(n1)n1

)
C (g(n1)) (10b)

= A(x).

The last step (10a)–(10b) is again a commutation between big operators. ut

9 Use-case: Sum-Product Decoding

9.1 Implementation of Sum-Product Decoding over the Binary Erasure Channel

We formalize a concrete implementation [Hagiwara, 2012, Chapter 9] of sum-product
decoding in the case of communication over the binary erasure channel, i.e., a channel
such that the output message is a codeword in which some bits have been erased (but
none has been flipped). This is a simple setting that demonstrates how Tanner graphs
are used, but it is also an important setting to study the theoretical properties of LDPC
codes.

To model communication over the binary erasure channel, we introduce an alpha-
bet with erasures Star (Blank is for unknown letters):
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Inductive letter := Bit of ’F_2 | Star | Blank.

We also introduce a comparison operator for letters (notation: ≤l) that we lift to a
comparison operator for matrices of letters (notation ≤m):

Definition lel (a b : letter) :=

(a == b) || if a is Bit _ then b == Star else false.

Definition mxlel m n (A B : ’M[letter]_(m, n)) := [∀ m, [∀ n, A m n ≤l B m n]].

Let us assume a binary code with parity-check matrix H. The codeword c has been
received as the message y by communication over the binary erasure channel when
the following relation holds:

Definition BEC_IO m n (H : ’M[’F_2]_(m, n)) c y :=

syndrome H c = 0 ∧ map_mx Bit c ≤m y.

The Sum-Product algorithm performs iteratively a Sum and a Product operation
until a fixed point is reached. The Sum operation consists in inferring the bit that hides
behind an erasure by using the parity-check equations of the parity-check matrix (or
returning an erasure when this is not possible):

Definition Sum (s : seq letter) :=

if has starblank s then Star

else Bit (sum_letter (filter is_Bit s)).

The Prod operation consists in performing a majority vote (N(b | s) counts the num-
ber of bs in the sequence s):

Definition Prod (s : seq letter) :=

if N(Bit 0 | s) > N(Bit 1 | s) then Bit 0

else if N(Bit 0 | s) < N(Bit 1 | s) then Bit 1

else Star.

The input of the Sum-Product algorithm is the set of the parity-check equations in-
stantiated using the received message; the erasures are seen as the unknowns. These
equations are conveniently represented using an m×n-matrix. The Sum-Product al-
gorithm consists in transforming the input matrix by applying the Sum operations to
each matrix entry, and then the Prod operations likewise:

Definition mxSum M := \matrix_(i < m, j < n)

if i ∈ ‘F j then Sum (rowVnextD1 (row i M) i j) else M i j.

Definition mxProd (y : ’rV[letter]_n) M := \matrix_(i < m, j < n)

if i ∈ ‘F j then Prod (colFnextD1 yj (col j M) j i) else M i j.

Definition mxSumProd (y : ’rV[letter]_n) := mxSum \o mxProd y.

The sequence rowVnextD1 r i j contains the rk’s such that k ∈ ‘V i :\ j. The se-
quence colFnextD1 l c j i contains the ck’s such that k = l or k ∈ ‘F j :\ i. The
MATHCOMP notation \o is for function composition.

In COQ, we formalize the Sum-Product algorithm as a recursive function that
returns a fixpoint of mxSumProd. We use the number of stars in the matrix to show that
the function terminates (measure num_stars below):

Program Fixpoint SP_BEC0_rec y M

(_ : approx_BEC_input H y M) (_ : mxSumProd H y M ≤m M)

{ measure (num_stars M) } :

{M’ | mxSumProd H y M’ = M’ ∧ M’ ≤m M ∧
∃ k, M’ = iter k (mxSumProd H y) M} :=
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αm3,n2 (1)

αm2 ,n1 (0),
αm2 ,n1 (1)
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αm0 ,n2 (1)

Fig. 3: Illustrations for sumprod_up and sumprod_down. Left: sumprod_up computes the up links from
the leaves to the root. Right: sumprod_down computes the down link of edge m0–n2 using the β ’s of

edges m0–ni (i 6= 2).

let M0 := mxSumProd H y M in

match Bool.bool_dec (M == M0) true with

| left H ⇒ M

| right H ⇒ @SP_BEC0_rec y M0 _ _ _

end.

...

The other arguments of this function are invariants: (1) the input matrix is an “BEC-
approximation” (where BEC stands for “binary erasure channel”) of an input code-
word (predicate approx_BEC_input above), and (2) the matrix of a Sum-Product step
is always smaller than the input according to ≤m (hypothesis mxSumProd H y M ≤m M

above).
The formalization above started as an effort to formalize a combinatorial result

about the performance of iterative decoding ([Di et al, 2002, Lemma 1.1] formalized
in [Obata, 2015; Infotheo, 2019]).

9.2 Extraction of an Implementation of Sum-Product Decoding over the Binary
Symmetric Channel

An implementation of sum-product decoding over a binary symmetric channel takes
as input a Tanner graph and an output y, and computes for all variable nodes, each
representing a bit of the decoded codeword, its marginal aposteriori probability. One
chooses to decode the n0th bit either as 0 if PW

n0
(0|y)≥ PW

n0
(1|y) or as 1 otherwise, so

as to perform Maximum Posterior Marginal decoding (defined in Sect. 3.4).
The algorithm we implement is known in the literature as the forward/backward

algorithm and has many applications [Kschischang et al, 2001]. It uses the tree view
of an acyclic Tanner graph to structure recursive computations. In a first phase it
computes α’s and β ’s (see Sect. 8.3) from the leaves towards the root of the tree, and
then computes α’s and β ’s in the opposite direction (starting from the root that time).
Figure 3 illustrates this.
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Concretely, we provide COQ functions to build the tree, compute α’s and β ’s,
and extract the estimations, and prove formally that the results indeed agree with the
definitions from Sect. 8.3.

Definition of the tree Function nodes and variable nodes share the same data struc-
ture, and are just distinguished by their kind. This allows to factorize traversals and
parts of the associated proofs that do not depend on the kind.

Definition R2 := (R * R)%type.

Inductive kind : Set := kf | kv.

Definition negk k := match k with kf ⇒ kv | kv ⇒ kf end.

Inductive tag : kind → Set := Func : tag kf | Var : R2 → tag kv.

Inductive tn_tree (k : kind) (U D : Type) : Type :=

Node { node_id : id;

node_tag : tag k;

children : seq (tn_tree (negk k) U D);

up : U; down : D }.

This tree is bipartite by construction, thanks to the type system, as a child is required
to have a kind opposite to its parent. Additionally, in each variable node, node_tag is
expected to contain the channel probabilities for this bit to be 0 or 1, i.e., the pair
(W (yn0 |0),W (yn0 |1)). The up and down fields are to be filled with the values of α and
β (according to the kind), going to the parent node for up, and coming from it for
down. Here again we will use pairs of the 0 and 1 cases. Note that the values of α’s
and β ’s need not be normalized.

Computation of α and β The function alpha_beta takes as input the tag of the source
node, and the α’s and β ’s from neighboring nodes, excluding the destination, and
computes either α , if the source is a function node, or β , if it is a variable node.
Thanks to this function, the remainder of the algorithm keeps a perfect symmetry
between variable and function nodes.

Definition alpha_op (out inp : R2) :=

let (o, o’) := out in let (i, i’) := inp in

(o * i + o’ * i’, o * i’ + o’ * i).

Definition beta_op (out inp : R2) :=

let (o, o’) := out in let (i, i’) := inp in (o * i, o’ * i’).

Definition alpha_beta k (t : tag k) : seq R2 → R2 :=

match t with

| Func ⇒ foldr alpha_op (1, 0)

| Var v ⇒ foldl beta_op v

end.

The definition for β is clear enough: assuming that v contains the channel proba-
bilities for the corresponding bit, it suffices to compute the product of these prob-
abilities with the incoming α’s, which denote the marginal aposteriori probabili-
ties for this bit computed from their respective subgraphs. For α , starting from the
recursive_computation lemma, we remark that assuming a bit to be 0 leaves the parity
unchanged, while assuming it to be 1 switches the parities. This way, the sum-of-
products can be computed as an iterated product, using alpha_op. This optimization
is described in [Kschischang et al, 2001, Sect. 5-E]. We will of course need to prove
that these definitions compute the same α’s and β ’s as in Sect. 8.3.
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Propagation of α and β Functions sumprod_up and sumprod_down compute respec-
tively the contents of the up and down fields. They exploit the symmetry of our node
representation, as they do not distinguish between variable and function nodes, only
passing on the tag to the combining function alpha_beta which selects the right com-
putation.
Fixpoint sumprod_up {k} (n : tn_tree k unit unit) : tn_tree k R2 unit :=

let children’ := map sumprod_up (children n) in

let up’ := alpha_beta (node_tag n) (map up children’) in

Node (node_id n) (node_tag n) children’ up’ tt.

Fixpoint seqs_but1 (a b : seq R2) :=

if b is b1 :: b2 then (a ++ b2) :: seqs_but1 (rcons a b1) b2 else [::].

Fixpoint sumprod_down {k} (n : tn_tree k R2 unit) (from_above : option R2)

: tn_tree k R2 R2 :=

let (arg0, down’) :=

if from_above is Some p then ([:: p], p) else ([::], (1, 1)) in

let args := seqs_but1 arg0 (map up (children n)) in

let funs := map

(fun n’ l ⇒ sumprod_down n’ (Some (alpha_beta (node_tag n) l)))

(children n) in

let children’ := apply_seq funs args in

Node (node_id n) (node_tag n) children’ (up n) down’.

Definition sumprod {k} n := sumprod_down (@sumprod_up k n) None.

The from_above argument is None for the root of the tree, or the message coming from
the parent node otherwise. The function seqs_but1 a b returns the concatenations of
a and subsequences of b omitting just one element. The function apply_seq applies
a list of functions to a list of arguments. This is a workaround to allow defining
sumprod_down as a Fixpoint recursing on children of n.

Building the tree A parity-check matrix H and the probability distribution rW for each
bit (computed from the output y and the channel W) is turned into a tn_tree, using the
function build_tree, and fed to the above sumprod algorithm:
Variables (W : ‘Ch(’F_2, B)) (y : (‘U C_not_empty).-receivable W).

Let rW n0 := (W ‘(yn0 | 0), W ‘(yn0 | 1)).

Let computed_tree := sumprod (build_tree H rW (k := kv) 0).

Extraction of estimations We finally recover normalized estimations from the tree:
Definition normalize (p : R2) :=

let (p0, p1) := p in (p0 / (p0 + p1), p1 / (p0 + p1)).

Fixpoint estimation {k} (n : tn_tree k R2 R2) :=

let l := flatten (map estimation (children n)) in

if node_tag n is Var _ then

(node_id n, normalize (beta_op (up n) (down n))) :: l

else l (* node_tag n is Func *).

Correctness The correctness of the algorithm above consists in showing that the es-
timations computed are the intended aposteriori probabilities:
Let estimations := estimation computed_tree.

Definition esti_spec n0 b := ‘U C_not_empty ’_ n0 ‘^^ W (b | y).

Definition estimation_spec := uniq (unzip1 estimations) ∧
∀ n0, (inr n0, (esti_spec n0 0, esti_spec n0 1)) ∈ estimations.
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where esti_spec n0 b defines the same aposteriori probability PW
n0
(b|y) as appears in

lemma estimation_correctness from Sect. 8.3.
A formal proof of estimation_spec appears as theorem estimation_ok in our im-

plementation [Infotheo, 2019, file ldpc_algo_proof.v]. As key steps, it uses lemmas
estimation_correctness and recursive_computation.

Applying the algorithm As we mentioned at the beginning of Sect. 8, while proofs for
the marginal aposteriori probability require the graph to be acyclic, concrete LDPC
codes are usually based on graphs containing cycles. Codes based on acyclic graphs
are rare and not very efficient [Etzion et al, 1999]. We still could test our implemen-
tation with one of them [Infotheo, 2019, file sumprod_test.ml].

While this voids the proofs, it is of course possible to apply our algorithm to
graphs containing cycles. A practical approach is to build a tree approximating the
graph, by unfolding it to a finite depth, and give it as input to our algorithm. This
is essentially equivalent to the more classical iterative approach, where α’s and β ’s
for the whole graph are computed repeatedly, propagating them in the graph until
the corrected word satisfies the parity checks, and failing if the result is not reached
within a fixed number of iterations [Kschischang et al, 2001, Sect. 5].

Such approaches are known to give good results in practice. Recently, some
stochastic properties on sets of codes have been proved, telling us that by using codes
of growing size we have a growing probability to find a code for which sum-product
decoding will approximate the marginal aposteriori probability [Richardson and Ur-
banke, 2008]. This unfortunately does not remove the need to test extensively every
LDPC code used in industrial applications, to ensure that it really behaves in the
expected way.

10 Related Work

Coding theory has been considered as an application of the interface between the
Isabelle proof-assistant and the Sumit computer algebra system [Ballarin and Paul-
son, 1999]. In order to take advantage of the computer algebra system, proofs are
restricted to a certain code length. Only binary codes are considered (Hamming and
BCH). Though the mathematical background about polynomials has been formally
verified, results about coding theory are only asserted. In comparison, we formally
verify much more (generic) lemmas. Yet, for example when proving that certain bit-
strings are codewords, we found ourselves performing formal proofs close to sym-
bolic computation.

We are also aware of a formalization effort for coding theory in the Lean proof-
assistant. It includes a proof of the number of errors that can be corrected by repe-
tition codes and a proof that the (7,4) instance of Hamming codes can correct one
error [Hagiwara et al, 2016]. It has furthermore been extended with algebraic proper-
ties of insertion/deletion codes [Kong et al, 2018].
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11 Work in Progress and Future Work

11.1 Toward a Complete Formalization of BCH Codes

There are several ways to pursue our formalization of BCH codes. In this paper,
we have formalized narrow-sense, binary BCH codes but they can be generalized in
several ways [MacWilliams and Sloane, 1977, Chapter 9]. We have also postponed
the formalization of a generator polynomial for BCH codes because we expect to be
able to have a uniform treatment of encoders for polynomial codes in general.

11.2 Formalization of Goppa Codes

We are now tackling the formalization of binary Goppa codes. They are well-known
for their use in the (post-quantum) McEliece cryptosystem. Like Reed-Solomon and
BCH codes, Goppa codes can be decoded using the Euclidean algorithm [Sugiyama
et al, 1975]. They form a class of alternant codes, which can themselves be defined
as restricted codes (in the sense of Sect. 7.1) using Generalized Reed-Solomon codes
(see Sect. 5.1). They can also be seen as a generalization of a class of BCH codes
called primitive, narrow-sense BCH codes. We can see that there exist many classes
of codes with non-trivial relations between them, whose definition in a single, unified
framework raises new formalization challenges.

11.3 Progress on LDPC codes

As explained in Sect. 9.2, to get closer to practical applications, one needs to consider
Tanner graphs that contain cycles. We are now working on formalizing results on
sum-product decoding for such graphs [Affeldt et al, 2016]. One goal is to show that,
under some conditions, one can expect a large Tanner graph to only contain cycles
long enough that a localized sum-product algorithm, seeing locally the graph as a tree,
will be able to correctly approximate the marginal aposteriori probability [Richardson
and Urbanke, 2008, Sect. 3.8]. Though our effort focuses on the restricted case of the
binary erasure channel, it gets us closer to formalizing recent research about LDPC
codes.

12 Conclusion

In this paper, we have presented a formalization of linear ECCs in the COQ proof-
assistant. Table 4 provides an overview of the implementation. This formalization
also relies on updated previous work [Affeldt et al, 2014].

Our formalization is complete in the sense that it covers the basic contents of a
university-level class on coding theory. For a concrete example, together with our
previous work [Affeldt et al, 2014], this paper covers most of the material in a re-
cent textbook [Hagiwara, 2012] used in Japan universities. Like most formalizations,
our work has the advantage of sorting out the implicit hypotheses that are made in
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file contents l.o.c.∗

General-purpose library (lib directory)
hamming.v Hamming distance (Sect. 3.1, [Affeldt et al, 2014]) 795
euclid.v Euclidean algorithm for decoding (Sect. 5.2) 743
dft.v Discrete Fourier transform (Sect. 6.2) and BCH argument (Sect. 6.5.1) 398
vandermonde.v Vandermonde matrices (Sections 5.1.3 and 7.4.1) 403
Information-theoretic extension (information_theory directory)
pproba.v Aposteriori probability (Sect. 2.2.2) 199
Classic linear error-correcting codes (ecc_classic directory)
linearcode.v Formalization of linear codes (Sect. 3.1) 846
repcode.v Repetition codes (Sect. 3.3) 251
decoding.v Specifications of decoders (Sect. 3.4) 307
hamming_code.v Hamming codes (Sect. 4) 914
poly_decoding.v Locator, evaluator, and syndrome polynomials (Sect. 5.1) 396
grs.v Generalized Reed-Solomon codes (Sect. 5.1.3) 205
cyclic_code.v Cyclic codes (Sect. 5.3) 503
reed_solomon.v Reed-Solomon codes (Sect. 6) 785
bch.v BCH codes (Sect. 7) 572
Modern coding theory (ecc_modern directory)
subgraph_partition.v Bipartite/acyclic graphs, cover/partition properties (Sect. 8.1) 1139
tanner.v Tanner graphs (Sect. 8.1) 195
tanner_partition.v Cover/partition properties of Tanner graphs (used in Sect. 8.3) 1062
summary.v Summary operator (Sect. 8.2) 294
summary_tanner.v Lemmas about the summary operator (e.g., reindexing, see Sect. 8.3.1) 697
checksum.v Indicator function seen in Sect. 8.3.1 159
ldpc.v Properties of sum-product decoding (Sections 8.3.1 and 8.3.2) 801
ldpc_erasure.v Sum-product decoding for the binary erasure channel (Sect. 9.1) 730
ldpc_algo.v Sum-Product decoder (Sect. 9.2) 235
ldpc_algo_proof.v Verification of the Sum-Product decoder (Sect. 9.2) 2028
Extraction of sum-product decoding (extraction directory)
sumprod.{ml,mli} OCaml code extracted from the sum-product algorithm (Sect. 9.2) 339

Total (COQ proof scripts only) 14636

∗ lines of code computed with coqwc, comments excluded

Table 4: Overview of the formalization discussed in this paper. It is a subset of a larger formalization of
information theory [Infotheo, 2019].

textbooks (as discussed for example in Sect. 3.4). We believe that our formaliza-
tion can support further effort of formalization of coding theory. We tried to isolate
reusable libraries. For example, we isolated the formalization of the Euclidean algo-
rithm for decoding (in Sect. 5) that we applied to Reed-Solomon codes (Sect. 6) and
to BCH codes (Sect. 7). The formalization of sum-product decoding required us to
overcome technical difficulties (see Sect. 8.3) but we are now in a position to consider
new formalization problems. For example, the formalization of sum-product decod-
ing over the binary erasure channel (in Sect. 9.1) was also used to prove an original
lemma about the performance of iterative decoding [Obata, 2015]. We could also use
our formalization to extract a verified implementation of sum-product decoding (see
Sect. 9.2). Last, Sect. 11 highlights other challenges whose formalization is made
possible by our library.
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