
Supporting Objects in Run-Time
Bytecode Specialization

Reynald Affeldt, Hidehiko Masuhara, Eijiro Sumii, Akinori Yonezawa

University of Tokyo

1



Run-Time Specialization (RTS)
RTS optimizes program code at run-time

More precisely:

static input + original code RTS
−−→ residual code

Typical applications:

• computations done:

– repeatedly with similar inputs

– with an unfortunate timing

• input not available at compile-time
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Motivation
Optimize object-oriented (OO) programs by RTS

OO programs are typically slower than imperative programs:

• they are more generic

• object-orientation is costly

RTS is well adapted:

• specialization trades genericity for performance

• it is a general optimization technique

• RTS has proved to be efficient for several languages
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Contributions
Design and implement RTS for an OO language, namely Java:

• efficient residual code regarding OO overheads

– elimination of dynamic allocation

– elimination of memory accesses
(including destructive updates)

– elimination of virtual dispatches

• better automation of the specialization process

– as few annotations by the user as possible

• correctness statement

We hope it can lead ultimately to:

• a system easier to use

• favoring extensive residual code reuse
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Complex Arithmetic
A class for complex numbers:

class Complex {

float re, im;

Complex mul (Complex z) {

return new Complex (...);

}

Complex add (Complex c) {

return new Complex (...);

}

}

A complex function:

// f(z, c) = z · z + c

Complex f (Complex z, Complex c) {

Complex prod = z.mul (z);

return prod.add (c);

}
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Original, To-Be Optimized Application
Computation of an array of complex numbers:

for (int i = 0; i < n; n++) {

c[i] = f (a[i ], b[i ]);

}

Assume that a[i] happens to be always i

⇒ Optimization by specialization of f w.r.t. its first argument
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Off-Line Specialization

z static, c dynamic

Complex f (Complex z, Complex c) {

Complex prod = z.mul (z);

return prod.add (c);

}

Complex mul (Complex z) {

return new Complex

(re ∗ z.re − im ∗ z.im,

re ∗ z.im + im ∗ z.re);

}

Complex add (Complex c) {

return new Complex

(re + c.re, im + c.im);

}

z = i

// fres(c) = −1 + c

Complex f res (Complex c) {

return new Complex

(−1 + c.re, 0 + c.im);

}

The residual code features:

• less calculations

• less object creations

• less method calls

⇒ OO specialization is effective
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One-Dimensional Geometry
A class for one-dimensional points:

class Point {

int x = 0;

void update (int a) { x = x + a; }

static Point make (int s, int d) {

Point p = new Point ();

p.update (s);

p.update (d);

p.update (s);

return p;

}

}
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Original Application
Computation of two one-dimensional points:

int u = Console.getInt ();

Point a = Point. make (u, 7);

Point b = Point. make (u, 11);

int v = a.x + b.x;

int w = a == b;

⇒ Specialization of make w.r.t. u
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Naive and Incorrect Off-Line
Specialization

s static, d dynamic

static Point make (int s , int d) {

Point p = new Point ();

p.update (s);

p.update (d);

p.update (s);

return p;

}

s = 42

static Point make res (int d) {

_p.update (d);

_p.update (42);

return _p;

}

( p is the point created during
specialization; we say it is stored
in the specialization store )
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Problems with Objects
The original application cannot be simply rewritten:

int u = Console.getInt ();

Point a = Point. make (u, 7);

Point b = Point. make (u, 11);

int v = a.x + b.x; // 91 + 95

int w = a == b; // false

int u = Console.getInt ();

Point a = make res (7);

Point b = make res (11);

int v = a.x + b.x; // 144 + 144

int w = a == b; // true

Original cause: Application, specializer and residual code share
the same heap
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Approaches
Immediate approaches:

• perform over-specialization

• require annotations by the user

• enforce residualization

⇒ None is satisfactory

Our approach:

• as few annotations as possible

• efficiency achieved by improving specialization rules
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About Specialization Rules (1/2)
Main idea:
distinguish operations in terms of staticness

For instance, memory accesses as in statements of the form:

lhs = p.x;

• if p.x, then the memory access can be evaluated during
specialization

• if p.x, then the memory access must be residualized during
specialization

But in general, this static/dynamic dichotomy is not sufficient
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About Specialization Rules (2/2)
Key idea:
distinguish operations in terms of visibility

For instance, (static) object creations as in statements of the
form:

lhs = new class name(. . .);

or (static) destructive updates as in statements of the form:

p.x = rhs;

• if visible, residualization and evaluation during specialization

• if invisible, evaluation during specialization
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“If Visible, Residualization and Evaluation”
s static, d dynamic

static Point make (int s , int d) {

Point p = new
VIS Point ();

p.update (s);

p.update (d);

p.update (s);

return p;

}

s = 42

static Point make res (int d) {

Point p = new Point ();

p.x = 42 + d;

p.x = p.x + 42;

return p;

}

• Enforced residualization guarantees correctness

• Evaluation during specialization enables efficient residual code
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“If Invisible, Evaluation” (1/2)
Extraction of small segments:

Set set = new Set ();

for (int i = 0; i < n; i++) {

if ( areClose (a[i ], b[i ]))

set.add (new Segment (a[i], b[i]));

}

Assume that a[i] happens to be always 42

⇒ Optimization by specialization of areClose w.r.t. it first
argument
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“If Invisible, Evaluation” (2/2)

s static, d dynamic

boolean areClose (int s, int d) {

Point a = new
INVIS Point ();

Point b = new
INVIS Point ();

a.update (s);

b.update (d);

return a.distance (b) < 10;

}

s = 42

boolean areClose res (int d) {

_b.update (d);

return _a.distance (_b) < 10;

}

( b and a are the points
stored in the specialization
store)

• Reuse of objects yield more efficient residual code

• Specialization of destructive updates does not infringe
correctness
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Correctness Statement for RTS
Two components:

1. valid code replacement :
the residual code may substitute for the original code
whenever the static input is used

2. valid specialization usage :
RTS may happen
as soon as the static input is available
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Valid Code Replacement
Mix equation (reminder):

t = f (s , d ); t = f s (d );
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Valid Code Replacement
Mix equation (extended with heaps):

(t, Ht) = f (s, Hs , d, Hd ); (t, Ht) = fs,Hs
(d, Hd );

⇒ Describe arguments and results in terms of:

• heap equivalence (including a notion of reachability )

• additional requirements for the values of references

– because of reference lifting

– because references can be compared

(see the paper for more details)
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Valid Code Replacement
Example:

Point a = Point. make (s, d); Point a’ = make res (d);

Condition on arguments:
s is expected to be indeed 42

Condition on results:
Points a and a’ must have the same coordinate

Additional requirement:
a and a’ must be fresh references
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Valid Specialization Usage
Informally:

statement1;

f_s = spec (f, s);

statement2;

statement3;

t = f s (d);

statement1;

statement2;

f_s = spec (f, s);

statement3;

t = f s (d);

⇒ Specify the interactions between specialization and the
application:

• specialization cannot break the semantics of the application

• the application cannot break the semantics of specialization

26



Valid Specialization Usage
Example:

statement1;

make_res = spec (make, s);

statement2;

statement3;

Point a = Point. make res (d);

statement1;

statement2;

make_res = spec (make, s);

statement3;

Point a’ = make res (d);

Condition on the interaction:
spec cannot perform visible side-effects
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Implementation Strategy
Based on Masuhara and Yonezawa’s BCS:

• RTS for the Java bytecode language

• end-to-end bytecode-level approach:

– type-based binding-time analysis

– cogen-by-hand approach

– run-time code generation

Extended to:

• an OO subset of the Java bytecode language

• new rules for binding-time analysis and code generation

• interface with compile-time analyses
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Implementation Overview
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Original
application

Rewritten
applicationBinding−time

specification

BCS

Specializer

Binding−timeCompile−time

Specializer

Code generator
generator

Annotated
method

analysisanalyses

Off−line Run−time

Results

values
Dynamic

values
Static

Original code

30



Performance Measurements
Test Programs:

Object-oriented version of standard applications:

• Power function

• Mandelbrot sets drawer

• Ray tracer

Environment for Experiments:

Standard virtual machines with Just-in-time compilation
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Power Function
Speed-up raise / raise res

Recursive Iterative

UltraSparc Hotspot (Sun 1.3) 5.4 1.5

Intel x86 Hotspot (Sun 1.3) 1.9 1.3

Intel x86 Classic (IBM 1.3) 5.9 4.4

Mandelbrot Sets Drawer
Speed-up eval / eval res

UltraSparc Hotspot (Sun 1.3) 1.07

Intel x86 Hotspot (Sun 1.3) 0.95

Intel x86 Classic (IBM 1.3) 1.05
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Ray Tracer

Speed-up Overhead (ms)

closest / Specialization JIT

closest res Subject Residual

method code

UltraSparc Hotspot (Sun 1.3) 1.18 10 196 200

Intel x86 Hotspot (Sun 1.3) 1.25 7 115 100

Intel x86 Classic (IBM 1.3) 1.26 6 208 557

Break-even points

No JIT overhead JIT overhead

Hotspot (Sun 1.3) 5,646 ∼ 138,421 < 0 ∼ 9,755

Classic (IBM 1.3) 277,582 174,939
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Measurements’ Summary
Speed-ups are comparable to related work:

• compile-time specialization for Java

• run-time specialization for C++

The environment for experiments complicates interpretation:

• unfriendly environment:

– dynamic compilation → more overhead

– small time window → less optimizations

• overlapping optimizations

• behavior hard to predict
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Related Work:
Compile-time Techniques

Compile-time specialization for C:

• C-Mix [Andersen93]

• Tempo [Consel & Noël96]

Specialization and object-orientation:

• Elimination of virtual dispatches [Lea90, Dean et al.94]

• Partial evaluation formalization and implementation
[Schultz99-01]

Partial evaluation during interpretation:

• Correctness and experiments [Asai01]
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Related Work:
Run-time Techniques

Run-time specialization for imperative languages:

• Tempo [Consel & Noël96]

• DyC [Grant et al.97]

• BCS [Masuhara & Yonezawa01]

Run-time specialization for object-oriented languages:

• C++ [Fujinami98]

• Specialization classes [Volanschi et al.97]
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Conclusion
Design RTS for an OO subset of Java:

• efficient residual code regarding OO operations

• better automation of the specialization process

• correctness statement

Experimental implementation:

• end-to-end bytecode-level approach

• effective in practice (e.g., 26% speed-up for a ray tracer)
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Future Work
Complete the implementation:

• access modifiers, constructors, . . .

Increase effectiveness:

• selective inlining

• allow visible side-effects during specialization

Reuse of objects in the specialization store as presented here:

• is not thread-safe

• may withhold many objects

Formal proof of correctness
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