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Motivations 

• “Information theory answers two fundamental 
questions in communication theory: 

 What is the ultimate data compression (answer: 
the entropy H), and 

 what is the ultimate transmission rate of 
communication (answer: the channel capacity C).” 
 

• Formalization of Shannon’s theorems 
 formalization of “unconditional security” 
– One-time pad protocol 
– Key distribution protocol over a noisy channel 

  Evaluation of information leakage [Malacaria, 
POPL 2007; Coble, PETS 2008] 

incipit of: 



Main Contribution 

• New to verification using proof-assistants: 

– Formalization of: 

• The source coding theorem 
– direct part and converse part 

• The channel coding theorem 
– direct part 

–Advanced information-theoretic notions 

• Channels, joint typical sequences, codes, etc. 



Difficulties and Approach 

• Technical proofs 
– Detailed proofs appeared several years after [Shannon, 1948] 
– Quick justifications are not rare (probability theory, analytic 

arguments) 
– Liberal / notations 

• (Asymptotic) bounds are never made explicit 
– “this holds for n large enough” 

• Plethora of concepts 
– The formalization of the many relations between information-

theoretic notions is tempting… 
 

 Take advantage SSREFLECT (In particular, canonical big 
operators [Bertot et al., TPHOLs 2008] ) 
 Rework the proofs of Shannon’s theorems (explicit bounds, 
streamlined flow) 



 
[植松友彦,「現代シャノン理論 タイプによる情報理論」, 培風館, 1998] 
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Distribution 

P1 (0) P1 (1) P1 (2) P1 (3) 

0.3 0.2 0.3 0.2 

Probability of an Event 
E.g.,   Pr P1 [P1 {0,1}] = 0.5 Definition Pr P E := _(a  A | E a) P a. 

P1
2 0 1 2 3 

0 0.09 0.06 0.09 0.06 

1 0.06 0.04 0.06 0.04 

2 0.09 0.06 0.09 0.06 

3 0.06 0.04 0.06 0.04 

Definition Ptuple x := _(i < n) P x_i 
 
Definition Ptuple_dist 
 : dist [finType of n.-tuple A]. 
apply mkDist with Ptuple. … Defined. 
 

Pn : Product Distribution 

Record dist := mkDist { 
  pmf :> A  R ; (* probability mass function*) 

  pmf0 : a, 0  pmf a ; 
  pmf1 : _(a  A) pmf a = 1 }. 



Typical Sequences 

P, n, -typical sequences are x tuples over A: 

P(0) P(1) 

2/3 1/3 
A bitstring with 2/3 of 0’s would be typical 

Entropy of a distribution P over A: 

Definition typ_seq x := 
 exp ( n  (H P + ))   Pn x    exp ( n  (H P  )). 

Intuition: Given a source of symbols, typical sequences 
are the most probable sequences 

Definition H := _(a  A) P a  log (P a). 

E.g.: 



Lemma aep :   , 0 <   aep_bound P   n+1   

 Pr Pn+1 [pred x | Rabs (- (1 / n+1)  log (Pn+1 x) – H P) R  ]  . 

Asymptotic Equipartition Property 

 Typical sequences (TS ) are the most likely to be observed 

• Intuition: Long enough tuples are typical 

Definition aep_2 := _(x  A) P x  (log (P x))2 – (H P) 2. 
Definition aep_bound  := aep_2 / P  3.  

Lemma Pr_TS_1 : aep_bound P   n+1  Pr Pn+1 [pred i  TS P n+1 ]  1 - . 

Lemma TS_sup_inf : aep_bound P   n+1   
 (1 - )  exp (n+1  (H P - ))  | TS P n+1  |  exp (n+1  (H P + )). 

 |TS |  exp (n  H P ) 

“ x  i s  n o t  t y p i c a l ”  

“for n big enough”  

• Properties: 
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Formalization of a Source Code 

k.-tuple A symbols: 
 a1, a2, …, ak 

Record scode := mkScode { enc : encT ; dec : decT }.   

Probability of decoding error: 

Source rate (objective: minimize): 

Source code: 

Definition SrcRate (sc : scode) := n / k.  

Definition esrc := Pr Pk [pred x | dec sc (enc sc x)  x]. 

Encoding  f 

Decoding   

n.-tuple bool: 
b1, b2, …, bn 
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Source Coding Theorem - Direct Part 

Instantiate the source code with f and from the next slide… 

Theorem source_coding_direct :  , 0 <  < 1  
r : Q+ , H P < r  1  
  k,  n,  sc : scode A k n, r = SrcRate sc  
  esrc(P , sc)  . 

Definition  := Rmin (r – H P) . 
Definition  := Rmax (aep_bound P ( / 2)) (2 / ). 

k must satisfy   k and k  r must be a natural  

“ k must be 
big enough” 

“For any rate r > H P, there is a source code with negligible error”: 

Proof sketch: 

n derives from k and r 

k = ? 

n = ? 

sc = ? 



k.-tuple A 

S 

Source Coding Theorem – Main Idea 

0...001 

0…010 
0…011 

k.-tuple A n.-tuple bool 

s0 

s1 

s2 

… 

Encoding f 

S 
s0 

s1 

s2 
… 

Decoding  

0…000 

… 

def 



k.-tuple A 

S 

Source Coding Theorem – Main Idea 

0...001 

0…010 
0…011 

k.-tuple A n.-tuple bool 

s0 

s1 

s2 

… 

Encoding f 

S 
s0 

s1 

s2 
… 

Decoding  

0…000 

… 

def 

By construction,  Lemma _f i :  (f i) = i  i  S.    

For the proof of the source coding theorem,  
S := TS, def exists because we have chosen “k big enough” 



Source Coding Theorem - Converse Part 

Theorem source_coding_converse :  , 0 <  < 1  
 r : Q+ , 0 < r < H P  

   n k (sc : scode A k+1 n), r = SrcRate sc   

  “k is big enough”  
   esrc(P , sc)  . 

SrcConverseBound P (num r) (den r) n   k+1   

Definition  := Rmin ((1 - ) / 2) ((H P - r) / 2). 
Definition  := Rmin ((H P - r) / 2) ( / 2). 
Definition SrcConverseBound := Rmax (n / r)  
 (Rmax (aep_bound P ) (-((log ) / (H P – r - )))). 

“For any rate r < H P, all source codes have non-negligible error”: 
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1-p 
p 

Formalization of a Channel 
• E.g., binary symmetric channel: 

• General case, channel = probability transition matrix: 

y1|x1 y2|x1 … y|Y||x1 

y1|x2 y2|x2 … y|Y||x2 

…
 

…
 

…
 

y1|x|X| y1|x|X| … y|Y||x|X| 

0 

1 

0 

1 

1-p 
p 

Definition channel := X  dist Y. 

w 

noise 



Typical outputs  
2 n  H (P , w) 

Channel Capacity 

Mutual information: I(P ; w) = H(P, w) – H (P ; w) + H P 

Typical outputs for one input 
2 n  (H (P ; w) – H P) 

x1 
x2 
… 

x|X| 

y1 
y2 
… 

y|Y| 

w 

Definition capacity w := lub (fun P  I(P ; w)). 

Definition (channel capacity): 

Distribution  P 

Entropy  H P 

Input 

Distribution  d(P, w) 

Entropy  H(P , w) 

Output 

_(x  X) w x y  P x 

Distribution  d(P ; w) Entropy  H (P ; w) 

Joint 

w xy.1 xy.2  P xy.1 



Illustration: 
the Binary Symmetric Channel 

x1 x1 

x2 x2 

Definition H2 p := 
- p * log p – (1 - p) * log (1 - p). 

Lemma H2 _max :  
 p, 0 < p < 1  H2 p  1 

Lemma IPW : I(P ; BSC p) = H(P , BSC p) – H2 p. 

Theorem BSC_capacity : capacity (BSC p) (1 – H2 p). 

Binary entropy function  

p 

p 

achieved for the uniform 
input distribution 

1 

1/2 
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Formalization of a Channel Code 

Definition e w c m := Pr (w (| enc c m)) [pred y | dec x y  Some m] 

Definition echa := 1/|M|  _(m  M) e w c m. 

Average probability of error: 

Conditional probability of error: 

Definition CodeRate c := log |M| / n 

y1, y2, …, yn 
 

Decoding  (possibly fix messages) 

Record code := mkCode { enc : encT ; dec : decT} 

M 

messages 

Channel code: 

Rate (objective: maximize): 

x1, x2, …, xn 
Encoding f (add redundancy) codewords 
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Channel Coding Theorem 

Proof by “random coding”: we fix the decoding function  and 
investigate all the encoding functions f  

Theorem channel_coding r : CodeRateType r  r < cap   
, 0 <   
  n,  M,  c : code X Y M n, r = CodeRate c  
  echa(w , c) < . 

Lemma random_coding (P : dist X) w  ( : encT X M n  decT Y M n) : 

_(f : encT X M n) (wgth P f  echa(w , mkCode f ( f))) <   

 f, echa(w , mkCode f ( f)) < . 

“For any rate r < capacity, there is a code with negligible error”: 

“ n must be 
big enough” 



Joint Typical Sequences 

• P, w, , n - joint typical sequence: 

• Properties: 

Definition jtyp_seq n (xy : n.-tuple (X * Y))  := 

typ_seq P  (uzip1 xy)   

typ_seq (d(P , w))  (uzip2 xy)   

typ_seq (d(P ; w))  xy.  

JTSP w n  TSPn  d(P , w)n n  

With high probability, unrelated 
input/output are not jointly 
typical 

With high probability, the input and 
the observed output are jointly 
typical 

TSd(P ; w)n n  

JTSP w n  

Typical of the input 

Typical of the output 

Typical of the joint distribution 



Decoding by Joint Typicality 

Definition jtdec P w  (f : encT X M n) : decT Y M n := 

Pick up a message m… 

such that (f m, y) is JTS and… 

it is the only one in JTS 

[ffun y  [pick m| 

  ((f m, y)  JTS P w n )  

  ( m’, m’  m  (f m’, y)  JTS P w n ))]] 



Channel Coding theorem - Proof Sketch 

_(f : encT X M n) (wgth P f  echa(w , mkCode f ( f))) <  

(1) the input (f 0) and the output y 
are not joint typical 

(2) there is another input (f i), i  0 that 
is joint typical with y 

Pr (w (|f 0)) [pred y | (f 0, y)  JTS P w n  ] Pr (w (|f 0)) [pred y | (f i, y)  JTS P w n  ] 

Pr (w (|f 0)) [pred y  not_preimg (Jtdec f) 0] 

output y does not decode to 0  

Symmetry 
property 

Pr (d(P ; w)n) [pred y  JTS P w n 0 ] Pr (Pn  d(P,w)n) [pred y  JTS P w n 0 ] 

TSd(P ; w)n n  

JTSP w n  

JTSP w n  TSPn  d(P , w)n n  



Conclusion 
• Summary: 

– Formalization of the source coding theorem and of the (direct part of 
the) channel coding theorem 

• Recent work (with Jonas Senizergues, ENS Cachan/AIST): 
– Converse of the channel coding theorem (with Pinsker’s inequality admitted) 

• Related work: 
– Mostly in HOL, based on [Hurd, PhD, 2002] 
– Probability theory 

• Expectation properties [Hasan et al., JAR 2008] 
• Weak law of large numbers [Hasan et al., ITP 2010] 

– Information theory 
• Formalization of the AEP [Mhamdi et al., ITP 2011] 
• Formalization of information leakage [Coble, PETS 2008] 

• Current work: 
– Coding theory (Hamming, linear, cyclic codes  Reed-Solomon, LDPC 

codes?) 
 
 


