
Formalization of Shannon’s Theorems
in SSReflect-Coq?

Reynald Affeldt and Manabu Hagiwara

Research Institute for Secure Systems,
National Institute of Advanced Industrial Science and Technology, Japan

Abstract. The most fundamental results of information theory are Shan-
non’s theorems. These theorems express the bounds for reliable data
compression and transmission over a noisy channel. Their proofs are
non-trivial but rarely detailed, even in the introductory literature. This
lack of formal foundations makes it all the more unfortunate that cru-
cial results in computer security rely solely on information theory (the
so-called “unconditional security”). In this paper, we report on the for-
malization of a library for information theory in the SSReflect extension
of the Coq proof-assistant. In particular, we produce the first formal
proofs of the source coding theorem (that introduces the entropy as the
bound for lossless compression), and the direct part of the more difficult
channel coding theorem (that introduces the capacity as the bound for
reliable communication over a noisy channel).

1 Introduction

“Information theory answers two fundamental questions in communication the-
ory: What is the ultimate data compression (answer: the entropy H), and what
is the ultimate transmission rate of communication (answer: the channel capac-
ity C).” This is the very first sentence of the reference book on information
theory by Cover and Thomas [5]. This paper is precisely about the formalization
of Shannon’s theorems that answer these two fundamental questions.

The proofs of Shannon’s theorems are non-trivial but are rarely detailed
(let alone formalized), even in the introductory literature. Shannon’s original
proofs [1] in 1948 are well-known to be informal; rigorous versions appeared
several years later. Even today, the bounds that appear in Shannon’s theorems
(these theorems are asymptotic) are never made explicit and their existence is
seldom proved carefully.

This lack of formal foundations makes it all the more unfortunate that several
results in computer security rely crucially on information theory: this is the
so-called field of “unconditional security” (one-time pad protocol, evaluation
of information leakage, key distribution protocol over a noisy channel, etc.). A
formalization of information theory would be a first step towards the verification

? Conference version appeared in the proceedings of ITP 2012 (http://itp2012.cs.
princeton.edu).

http://itp2012.cs.princeton.edu
http://itp2012.cs.princeton.edu


of cryptographic systems based on unconditional security, and, more generally,
for the rigorous design of critical communication devices.

In this paper, our first contribution is to provide a library of formal definitions
and lemmas for information theory. First, we formalize finite probability, up to
the weak law of large numbers, and apply this formalization to the formalization
of basic information-theoretic concepts such as entropy and typical sequences.
This line of work has already been investigated by Hasan et al. [6,11,13] and by
Coble [9], with the HOL proof-assistants. The originality of our library (besides
the fact that we are working with the Coq proof-assistant [10]) lies in the formal-
ization of advanced concepts such as channels, codes, jointly typical sequences,
etc., that are necessary to state and prove Shannon’s theorems.

Our second and main contribution is to provide the first (to the best of our
knowledge) formal proofs of Shannon’s theorems. Precisely, we formalize the
source coding theorem (direct and converse parts), that introduces the entropy
as the bound for lossless compression, and the direct part of the channel coding
theorem, that introduces the channel capacity as the bound for reliable commu-
nication over a noisy channel.

The formalization of Shannon’s theorems is not a trivial matter because, in
addition to the complexity of a theorem such as the channel coding theorem, the
literature does not provide proofs that are organized in a way that facilitates
formalization. Most importantly, it is necessary to rework the proofs so that
the (asymptotic) bounds can be formalized. Indeed, information theorists often
resort to claims such as “this holds for n sufficiently large”, but there are in
general several parameters that are working together so that one cannot choose
one without checking the others. Another kind of approximation that matters
when formalizing is the type of arguments. For example, in the proof of the
source coding theorem, it is mathematically important to treat the source rate
as a rational and not as a real, but such details are often overlooked. In order
to ease formalization, we make several design decisions to reduce the number of
concepts involved. For example, we do not use conditional entropy in an explicit
way, and, more generally, we avoid explicit use of conditional probabilities, except
for the definition of discrete channels. In fact, we believe that this even facilitates
informal understanding because proofs are more “to the point”.

We carried out formalization in the SSReflect extension [12] of the Coq
proof-assistant [10]. This is because information theory involves many calcu-
lations with Σ/Π-notations over various kinds of sets (tuples, functions, etc.)
for which SSReflect’s library (in particular, canonical big operators [7]) are
well-suited. Formal definitions and lemmas that appear in this paper are taken
directly from the scripts (available at [14]), modulo enhancements with colors
and standard non-ASCII characters to improve reading.

Paper Outline In Sect. 2, we formalize definitions and properties about finite
probability to be used in the rest of the paper. In Sect. 3, we introduce the
concept of typical sequence. In Sect. 4, we state the source coding theorem and
give an outline of the proof of the direct part. In Sect. 5, we formalize the concept
of channel and illustrate related definitions thoroughly using the example of the



binary symmetric channel. Finally, we state and prove the direct part of the
channel coding theorem in Sect. 6. Section 7 is dedicated to related work.

2 The Basics: Finite Probability

We introduce basic definitions about probability (to explain the notations to
be used in this paper) and formalize the weak law of large numbers. We do
not claim that this formalization is a major contribution in itself because there
exist more general formalizations of probability theory (in particular in the HOL
proof-assistant [6,11,13]) but providing a new formalization using SSReflect
will allow us to take advantage of its library to prove Shannon’s theorems.

2.1 Probability Distributions

A distribution over a finite type A (i.e., of type finType in SSReflect) is de-
fined as a real-valued probability mass function pmf (R is the type of reals in
Coq standard library) with positive outputs (proof pmf0 below) that sum to 1
(proof pmf1; the big sum operator comes from SSReflect [7]):

0 Record dist := mkDist {

1 pmf :> A → R ;

2 pmf0 : ∀ a, 0 ≤ pmf a ;

3 pmf1 : Σ_(a ∈ A) pmf a = 1 }.

P : dist A is a Record but, thanks to the coercion line 1, we can write “P a” as
a function application to represent the probability associated with a.

We will be led to define several kinds of distributions in the course of this
paper. Here is a first example. Given distributions P1 over A and P2 over B, the
product distribution P1 × P2 over A * B is defined as follows:

Definition Pprod_dist : dist [finType of A * B].

apply mkDist with (fun x ⇒ P1 x.1 * P2 x.2) ... Defined.

(We omit the proofs of pmf0 and pmf1 in this paper; the .1 (resp. .2) notation
is for the first (resp. second) pair projection); the notation [finType of ...] is
just a type cast.)

Given a distribution P over A, the probability of an event (encoded as a
boolean predicate of type pred A) is defined as follows:

Definition Pr (Q : pred A) := Σ_(a ∈ A | Q a) P a.

2.2 Random Variables

We formalize a random variable as a distribution coupled with a real-valued
function: Record rvar A := {rv_dist : dist A ; rv_fun :> A →R }. (This def-
inition is sufficient because A is a finite type.) Again, thanks to the coercion, given
a random variable X and a belonging to its sample space, one can write “X a”



as in standard mathematical writing despite the fact that X is actually a Record.
Furthermore, we note p_X the distribution underlying the random variable X.

Given a random variable X over A, and writing img X for its image, we define
for example the expected value as follows:

Definition E := Σ_(r ← img X) r * Pr p_X [pred i | X i =R r].

Let us now define the sum of random variables. Below, n.-tuple A is the
SSReflect type of n-tuples over A (An in standard mathematical writing).

Given distributions P1 over A and P2 over n.-tuple A the joint distribution P

over n+1.-tuple A is defined in terms of marginal distributions by the following
predicate:

Definition joint :=

(∀ x, P1 x = Σ_(i ∈ {:n+1.-tuple A} | thead i = x) P i) ∧
(∀ x, P2 x = Σ_(i ∈ {:n+1.-tuple A} | behead i = x) P i).

Informally speaking, joint P1 P2 P is a relation that defines the distribution P1

(resp. P2) from the distribution P by taking into account only the first element
(resp. all the elements but the first) of the tuples from the sample space (thead
returns the first element of a tuple; behead returns all the elements but the first).

The random variable X is the sum of X1 and X2 when the distribution of X is
the joint distribution of the distributions of X1 and X2 and the output of X is the
sum of the outputs of X1 and X2:

Definition sum := joint p_X1 p_X2 p_X ∧
X =1 [ffun x ⇒ X1 (thead x) + X2 [tuple of (behead x)]].

([ffun x ⇒...] is a SSReflect notation to define partial functions over finite
domains: [tuple of ...] is just a type cast.)

The random variables X over A and Y over n.-tuple A are independent for a
distribution P over n+1.-tuple A when:

Definition inde_rvar := ∀ x y,

Pr P [pred xy | (X (thead xy) =R x) ∧
(Y [tuple of (behead xy)] =R y)] =

Pr p_X [pred x’ | X x’ =R x] * Pr p_Y [pred y’ | Y y’ =R y].

We define the sum of several random variables by generalizing sum to an
inductive predicate (like in [6]). Let Xs be a tuple of n random variables over A

and X be a random variable over n.-tuple A. sum_n Xs X holds when X is the
sum of Xs. We also specialize this definition to the sum of independent random
variables. Equipped with above definitions, we derive the standard properties
of the expected value, such as its linearity, but also properties of the variance.
See [14] for details.

2.3 The Weak Law of Large Numbers

The weak law of large numbers is the first fundamental theorem of probability.
Intuitively, it says that the average of the results obtained by repeating an ex-
periment a large number of times is close to the expected value. Formally, let Xs



be a tuple of n identically distributed random variables, i.e., random variables
with the same distribution P. Let us assume that these random variables are in-
dependent and let us write X for their sum, µ for their common expected value,
and σ2 for their common variance. The weak law of large numbers says that the
outcome of the average random variable avg_rv X gets closer to µ:

Lemma wlln ε : 0 < ε →
Pr p_X [pred x | Rabs (avg_rv X x - µ) ≥R ε] ≤
σ2 / (n+1 * ε ^ 2).

See [14] for the proof of this lemma using the Chebyshev inequality.

3 Entropy and Typical Sequences

We formalize the central concept of a typical sequence. Intuitively, a typical
sequence is an n-tuple of symbols (where n is large) that is expected to be ob-
served. For example, a tuple produced by a binary source that emits 0’s with
probability 2/3 is typical when it contains approximately two thirds of 0’s. The
precise definition of typical sequences requires the definition of the entropy and
their properties relies on a technical result known as the Asymptotic Equiparti-
tion Property. (One can find an alternative HOL version of most definitions and
properties in this section in [13].)

3.1 Entropy and Asymptotic Equipartition Property

We define the entropy of a random variable with distribution P over A as follows
(where log is the binary logarithm, derived from the standard library of Coq):

Definition H := - Σ_(i ∈ A) P i * log (P i).

The Asymptotic Equipartition Property (AEP) is a property about the out-
come of several random variables that are independent and identically dis-
tributed (i.i.d.). Let us assume an n-tuple of i.i.d. random variables with dis-
tribution P over A. The probability of the outcome x (of type n.-tuple A) is:

Definition Ptuple x := Π_(i < n) P x_i.

(The big product operator comes from SSReflect, x_i is for accessing the ith
element of the tuple x.) Informally, the AEP states that, in terms of probabil-
ity, - (1 / n) * log(Ptuple P x) is “close to” the entropy H P. Here, “close to”
means that, given an ε > 0, the probability that - (1 / n) * log(Ptuple P x)

and H P differ by more than ε is less than ε, for n greater than the bound
aep_bound ε defines as follows:

Definition aep_ σ2 := Σ_(x ∈ A) P x * (log (P x))^2 - (H P)^2.

Definition aep_bound ε := aep_ σ2 P / ε^3.

The probability in the AEP is taken over a tuple distribution. Given a distri-
bution P over A, the tuple distribution P^n over n.-tuple A is defined as follows:



Definition Ptuple_dist : dist [finType of n.-tuple A].

apply mkDist with Ptuple. ... Defined.

Using above definitions, the AEP can now be stated formally. Its proof is an
application of the weak law of large numbers (Sect. 2.3):

Lemma aep : aep_bound P ε ≤ n+1 →
Pr (P^n+1) [pred x | 0 <R P^n+1 x ∧

Rabs (- (1 / n+1) * log (Ptuple P x) - H P) ≥R ε ] ≤ ε.

3.2 Typical Sequences: Definition and Properties

Given a distribution P over A and an ε, a typical sequence is an n-tuple with
probability “close to” 2−nHP :

Definition typ_seq (x : n.-tuple A) ε :=

exp (- n * (H P + ε)) <R= Ptuple P x <R= exp (- n * (H P - ε)).

Let us note T S the set of typical sequences. Using the AEP, we prove that the
probability to observe a typical sequence for large n is close to 1, corresponding
to the intuition that it is expected to be observed in the long run:

Lemma Pr_T S_1 : aep_bound P ε ≤ n+1 →
Pr (P^n+1) [pred i ∈ T S P n+1 ε] ≥ 1 - ε.

The cardinal of T S is nearly 2nHP . Precisely, it is upper-bounded by 2n(HP+ε),
and lower-bounded by (1− ε)2n(HP−ε) for n big enough:

Lemma T S_sup : | T S P n ε | ≤ exp (n * (H P + ε)).
Lemma T S_inf : aep_bound P ε ≤ n+1 →

(1 - ε) * exp (n+1 * (H P - ε)) ≤ | T S P n+1 ε |.

4 The Source Coding Theorem

The source coding theorem (a.k.a. the noiseless coding theorem) is a theorem
for data compression. The basic idea is to replace frequent words with alphabet
sequences and other words with a special symbol. Let us illustrate this with an
example. The combination of two Roman alphabet letters consists of 676 (= 262)
words. Since 29 < 676 < 210, 10 bits are required to represent all the words.
However, by focusing on often-used English words (“as”, “in”, “of”, etc.), we can
encode them with less than 9 bits. Since this method does not encode rarely-used
words (such as “pz”) decoding errors can happen. Given an information source
known as a discrete memoryless source (DMS) that emits all symbols with the
same distribution P, the source coding theorem gives a theoretical lower-bound
(namely, the entropy H P) for compression rates for compression with negligible
error-rate.



4.1 Definition of a Source Code

Given a set A of symbols, a k,n-source code is a pair of an encoder and a decoder.
The encoder maps a k-tuple of symbols to an n-tuple of bits and the decoder
performs the corresponding decoding operation:

Definition encT := k.-tuple A → n.-tuple bool.

Definition decT := n.-tuple bool → k.-tuple A.

Record scode := mkScode { enc : encT ; dec : decT }.

The rate of a k,n-source code sc is defined as the ratio of bits per symbol:

Definition SrcRate (sc : scode) := n / k.

Given a DMS with distribution P over A, the error rate of a source code sc

(notation: ēsrc(P , sc)) is defined as the probability of failure for the decoding
of encoded sequences:

Definition SrcCodeErrRate :=

Pr (P^k) [pred x | dec sc (enc sc x) 6= x].

4.2 Source Coding Theorem—Direct Part

Given a source of symbols from the alphabet A with distribution P, there exist
source codes of rate r ∈Q+ (the positive rationals) larger than the entropy H P

such that the error rate can be made arbitrarily small:

Theorem source_coding_direct : ∀ λ, 0 < λ < 1 →
∀ r : Q+, H P < r ≤ 1 →
∃ k, ∃ n, ∃ sc : scode A k n,

r = SrcRate sc ∧ ēsrc(P , sc) ≤ λ.

Source Coding using the Typical Set The crux of the proof is to instantiate with
an adequate source code. We first define the corresponding encoder and decoder
functions. For a set S of k+1-tuples, the encoder f encodes the ith element of S

as the binary encoding of i+ 1 and elements not in S as a string of 0’s:

Definition f : encT A k+1 n := fun x ⇒
if x ∈ S then

let i := index x (enum S) in Tuple (size_nat2bin_b i+1 n)

else

[tuple of nseq n false].

(enum S is the lists of all the elements of S; index returns the index of an element
in a list; nat2bin_b is a function that converts an integer i < 2n to a bitstring,
size_nat2bin_b being the proof that this bitstring has length n.)

The definition of the decoder requires to have a default element def ∈ S. The
decoder φ returns the i− 1th element of S if i is smaller than the cardinal of S,
and some default value from S otherwise:



Definition φ : decT A k+1 n := fun x ⇒
let i := tuple2N x in

if i is 0 then def else

if i-1 < | S | then nth def (enum S) i-1 else def.

(tuple2N interprets bitstrings as Peano integers; nth picks up the nth element of
a list.) By construction, f and φ perform lossless coding:

Lemma φ_f i : φ (f i) = i ↔ i ∈ S.

In the proof of the source coding theorem, the set S is actually taken to be the
set T S of typical sequences and there exists a default element def ∈ T S when
k is big enough, bound to be made more precise below.

Formalization of the Bounds Above, we explained how to construct the required
source code. Technically, in the formal proof, it is also important to correctly
instantiate n and k (given the source rate r, λ and the distribution P), such
that k is “big enough” for the lemma φ_f to hold. This aspect of the proof is
usually overlooked in the information theory literature, so that the (precise)
formal definition of these bounds is one of our contributions.

Let us define the following quantities:

Definition ε := Rmin (r - H P) λ.
Definition δ := Rmax (aep_bound P (ε / 2)) (2 / ε).

k must satisfy δ ≤k and k * r must be a natural. Such a k can be constructed
using the following lemma:

Lemma SrcDirectBound n d m : 0 < m →
{ k | m ≤ (k+1 * d+1) ∧

frac_part ((k+1 * d+1) * (n / d+1)) = 0}.

Let us assume that the rate is r = num / den+1. If we note k’ the natural con-
structed via the above lemma by taking n to be the numerator num, d to be den,
and m to be δ, then it is sufficient to take n equal to k’+1 * num and k equal to
k’+1 * den+1.

At this point, we have thoroughly explained how to instantiate the source
code required by the source coding theorem. The proof is completed by appeal-
ing to the properties of typical sequences (in particular, lemmas Pr_T S_1 and
T S_sup from Sect. 3.2). The successive steps of the proof can be found in [14].

4.3 Source Coding Theorem—Converse Part

The converse of the Shannon’s source coding theorem shows that any source code
whose rate is smaller than the entropy of a source with distribution P over A has
non-negligible error-rate:

Theorem source_coding_converse : ∀ λ, 0 < λ < 1 →
∀ r : Q+, 0 < r < H P →
∀ n k (sc : scode A k+1 n),

r = SrcRate sc →



SrcConverseBound P (num r) (den r) n λ ≤ k+1 →
ēsrc(sc , P) ≥ λ.

where the bound SrcConverseBound gives a precise meaning to the claim that
would otherwise be informally summarized as “for k big enough”:

Definition ε := Rmin ((1 - λ) / 2) ((H P - r) / 2).

Definition δ := Rmin ((H P - r) / 2) (ε / 2).

Definition SrcConverseBound := Rmax (Rmax

(aep_bound P δ ) (- ((log δ ) / (H P - r - δ )))) (n / r).

The proof of the converse part of the source coding theorem is a bit simpler than
the direct part because no source code needs to be constructed. See [14] for the
detail of the proof steps.

5 Formalization of Channels

5.1 Discrete Memoryless Channel

A discrete channel with input alphabet X and output alphabet Y is a (probability
transition) matrix (ptm) that expresses the probability of observing an output
symbol given some input symbol; it associates to each input a distribution of
the corresponding outputs (channel is noted W hereafter):

Definition channel := X → dist Y.

The nth extension of a discrete channel is the generalization of a discrete
channel to the communication of several symbols (channeln is noted Wn hereafter):

Definition channeln n :=

n.-tuple X → dist ([ finType of n.-tuple Y]).

A discrete memoryless channel (DMC) models channels whose inputs do not
depend on past outputs. It is the special case of the nth extension of a discrete
channel defined as follows (again, we omit the proofs for pmf0 and pmf1):

Definition DMC (w : W) n : Wn n. move⇒ x.

apply mkDist with (fun y ⇒ Π_(i < n) w x_i y_i ). ... Defined.

5.2 Mutual Information and Channel Capacity

Given a discrete channel w with input alphabet X and output alphabet Y, and an
input distribution P, there are two important distributions: the output distribu-
tion and the mutual distribution. The output distribution (notation: d(P , w))
is the distribution of the outputs:

Definition out_dist (P : dist X) (w : W X Y) : dist Y.

apply mkDist with (fun y ⇒ Σ_(x ∈ X) w x y * P x). ... Defined.

The mutual distribution (notation: d(P ; w)) is the joint distribution of the
inputs and the outputs:



Definition mut_dist (P : dist X) (w : W X Y) :

dist ([ finType of X * Y]).

apply mkDist with (fun xy ⇒ w xy.1 xy.2 * P xy.1).

... Defined.

The output entropy (resp. mutual entropy) is the entropy of the output dis-
tribution (resp. mutual distribution), hereafter noted H(P , w) (resp. H(P ; w)).

The mutual information (notation: I(P ; w)) is a measure of the amount of
information that the output distribution contains about the input distribution:

Definition mut_info_W (P : dist X) (w : W X Y) :=

H P + H(P , w) - H(P ; w).

Finally, the information channel capacity is defined as the least upper bound
of the mutual information taken over all possible input distributions:

Definition upper_bound {A} (f : A → R) b := ∀ a, f a ≤ b.

Definition lub {A} (f : A → R) b :=

upper_bound f b ∧ ∀ b’, upper_bound f b’ → b ≤ b’.

Definition capacity (w : W X Y) c := lub (fun P ⇒ I(P ; w)) c.

It may not be immediate why the maximum mutual information is called
capacity. The goal of the channel coding theorem is to ensure that we can distin-
guish between two outputs (actually sets of outputs because of potential noise),
so as to be able to deduce the corresponding inputs without ambiguity. For each
input (of n symbols), there are approximately 2n(H(P ;w)−HP ) typical outputs
because H(P ;w)−HP is the entropy of the output knowing the input. On the
other hand, the total number of typical outputs is approximately 2nH(P,w). Since
this set has to be divided into sets of size 2n(H(P ;w)−HP ), the total number of
disjoint sets is less than or equal to 2n(H(P,w)−(H(P ;w)−HP )) = 2nI(P ;w).

5.3 Example: The Binary Symmetric Channel

We illustrate above definitions with the simplest model of channel with errors:
the p-binary symmetric channel (BSC below). In such a channel, the input and
output symbols are taken from the same alphabet X with only two symbols
(hypothesis noted HX below). Upon transmission, the input is flipped with prob-
ability p (with hypothesis Hp : 0 < p < 1):

Definition BSC : W X X.

move⇒ x. apply mkDist with

(fun y ⇒ if x = y then 1 - p else p). ... Defined.

For convenience, we introduce the binary entropy function:

Definition H2 p := - p * log p - (1 - p) * log (1 - p).

For any input distribution P, we prove that the mutual information can actu-
ally be expressed by only the entropy of the output distribution and the binary
entropy function:

Lemma IPW : I(P ; BSC HX Hp) = H(P , BSC HX Hp) - H2 p.



The maximum of the binary entropy function on the interval (0, 1) is 1, fact
that we proved formally in Coq by appealing to the standard library for reals1:

Lemma H2 _max : ∀ q, 0 < q < 1 → H2 q ≤ 1.

This fact gives an upper-bound for the entropy of the output distribution:

Lemma H_out_dist_max : H(P , BSC HX Hp) ≤ 1.

The latter bound is actually reached for the uniform input distribution:

Definition binary_uniform : dist X.

apply mkDist with (fun x ⇒ 1 / 2). ... Defined.

Lemma H_binary_uniform : H(binary_uniform , BSC HX Hp) = 1.

Above facts imply that the capacity of the p-binary symmetric channel can
be expressed by a simple closed formula:

Theorem BSC_capacity : capacity (BSC HX Hp) (1 - H2 p).

5.4 Jointly Typical Sequences

Let us consider a channel w with input alphabet X, output alphabet Y, and input
distribution P. A jointly typical sequence is a pair of two sequences such that:
(1) the first sequence is typical for P, (2) the second sequence is typical for
the output distribution d(P , w), and (3) the pair is typical for the mutual
distribution d(P ; w)2:

Definition jtyp_seq n (xy : n.-tuple (X * Y)) ε :=

typ_seq P ε (uzip1 xy) ∧
typ_seq (d(P , w)) ε (uzip2 xy) ∧
typ_seq (d(P ; w)) ε xy.

We note JT S the set of jointly typical sequences. The number of jointly
typical sequence is upper-bounded by 2n(H(P ;w)+ε):

Lemma JT S _sup ε : | JT S P w n ε| ≤ exp (n * (H(P ; w) + ε)).

Now follow two lemmas that will be key to prove the channel coding theo-
rem. With high probability (probability taken over the tuple distribution of the
mutual distribution), the sent input and the received output are jointly typical:

Lemma JT S _1 : JT S _1_bound ≤ n →
Pr ((d( P ; w)^n)) [pred x ∈ JT S P w n ε] ≥ 1 - ε.

The bound JT S_1_bound is defined as follows:

1 Modulo a slight extension of the corollary of the mean value theorem to handle
derivability of partial functions.

2 Informal definitions about jointly typical sequences seeminglessly switch between
(X×Y )n and Xn×Y n; this translates formally to projections and casts that we do
not represent explicitly in this paper.



Definition JT S _1_bound :=

maxn (up (aep_bound P (ε /3)))
(maxn (up (aep_bound (d(P , w)) (ε /3)))

(up (aep_bound (d(P ; w)) (ε /3)))).

(up r is the ceiling of r, this is a function from the Coq standard library.)
This bound will later appear again in the proof of the channel coding theorem
(Sect. 6.3).

In contrast, the probability of the same event (joint typicality) taken over
the product distribution of the inputs and the outputs considered independently
tends to 0 as n gets large:

Lemma non_typical_sequences : Pr ((P^n) × ((d(P , w))^n))

[pred x ∈ JT S P w n ε] ≤ exp (- n * (I( P ; w) - 3 * ε)).

6 The Channel Coding Theorem

6.1 Formalization of a Channel Code

The purpose of a code is to transform the input of a channel (typically, by adding
some form of redundancy) so that the transmitted information can be recovered
correctly from the output despite of potential noise. Concretely, given input
alphabet X and output alphabet Y, a (channel) code is (1) a set M of codewords,
(2) an encoding function that turns a codeword into n input symbols, and (3) a
decoding function that turns n output symbols back into the original codeword
(or possibly fails):

Definition encT := {ffun M → n.-tuple X}.

Definition decT := {ffun n.-tuple Y → option M}.

Record code := mkCode { enc : encT ; dec : decT }.

The rate of a code is defined as follows:

Definition CodeRate (c : code) := log (| M |) / n.

For convenience, we introduce the following predicate to characterize (channel)
code rates:

Definition CodeRateType r := ∃ n, ∃ d,

0 < n ∧ 0 < d ∧ r = log n / d.

We now define the error-rate. Given a channel w and a tuple of inputs x, we
note “w (| x )” the distribution of outputs knowing that x was sent. Using this
distribution, we first define the probability of decoding error knowing that the
codeword m from the code c was sent (notation: e(w , c) m):

Definition e (w : W X Y) c m :=

Pr (w (| enc c m) ) [pred y | dec c y 6= Some m].

Finally, we define the error rate as the average probability of error for a code c

over channel w (notation: ēcha(w , c)):

Definition ChanCodeErrRate := 1 / | M | * Σ_(m ∈ M) e(w, c) m.



6.2 Channel Coding Theorem—Statement of the Direct Part

The (noisy-)channel coding theorem (a.k.a. Shannon’s theorem) is a theorem
for reliable information transmission over a noisy channel. The basic idea is to
represent the original message by a longer message. Let us illustrate this with an
example. Assume the original message is either 0 or 1 and is sent over a p-binary
symmetric channel (see Sect. 5.3). The receiver obtains the wrong message with
probability p. Let us now consider that the original message is 0 and encode 0
into 000 before transmission (in other words, we use a repetition encoding with
code rate 1/3). The receiver obtains a message from {000, 001, 010, 100} with
probability (1−p)3+3p(1−p)2 and it guesses the original message 0 by majority
vote. The error probability 1− ((1− p)3 + 3p(1− p)2) is smaller than p.

One may guess that the smaller the code rate is, the smaller the error prob-
ability becomes. Given a discrete channel w (with input alphabet X and output
alphabet Y), the channel coding theorem guarantees the existence of an encod-
ing function and a decoding function such that the code rate is not small (but
smaller than the capacity cap—hypothesis capacity w cap) but is with negligible
error-rate:

Theorem channel_coding r : CodeRateType r → r < cap →
∀ ε, 0 < ε →
∃ n, ∃ M, ∃ c : code X Y M n,

r = CodeRate c ∧ ēcha(w, c) < ε.

6.3 Channel Coding Theorem—Proof of the Direct Part

We formalize a proof by “random coding”. In a nutshell: we first fix the decod-
ing function and then select an appropriate encoding function by checking all
the possible ones. Selection operates using a criterion about the average error-
rate of all the possible encoding functions, weighted according to a well-chosen
distribution.

Decoding by Joint Typicality We first fix the decoding function jtdec. Given the
channel output y, jtdec looks for a codeword m such that the channel input f m

is jointly typical with y. If a unique such codeword is found, it is declared to be
the sent codeword ([pick m | P m] is a SSReflect construct that picks up an
element m satisfying the predicate P):

Definition jtdec P w ε (f : encT X M n) : decT Y M n :=

[ffun y ⇒ [pick m |

((f m, y) ∈ JT S P w n ε) ∧
(∀ m’, (m’ 6= m) ⇒ ((f m’, y) 6∈ J T S P w n ε ))]].

Criterion for Encoder Selection We are looking for a code such that the error-
rate can be made arbitrarily small. The following lemma provides a sufficient
condition for the existence of such a code:



Lemma good_code_sufficient_condition (P : dist X) w ε
(φ : encT X M n → decT Y M n) :

Σ_(f : encT X M n) (wght P f * ēcha(w , mkCode f (φ f))) < ε →
∃ f, ēcha(w , mkCode f (φ f)) < ε.

where wght is the distribution of encoding functions defined as follows:

Definition wght (P : dist X) : dist [finType of (encT X M n)].

apply mkDist with

(fun f : encT X M n ⇒ Π_(m ∈ M) Ptuple P (f m)). ... Defined.

The Main Lemma Our theorem can be derived from the following technical
lemma by just proving the existence of appropriate ε0 and n. This lemma estab-
lishes that there exists a set of codewords M such that decoding by joint typicality
meets the above criterion:

0 Lemma random_coding_good_code : ∀ ε, 0 ≤ ε →
1 ∀ r, CodeRateType r →
2 ∀ ε0, ε0_condition r ε ε0 →
3 ∀ n, n_condition r ε0 n →
4 ∃ M : finType , 0 < |M| ∧ |M| = Int_part (exp (n * r)) ∧
5 let Jtdec := jtdec P w ε0 in

6 Σ_(f : encT X M n) (wght P f * ēcha(w , mkCode f (Jtdec f))) < ε.

In this lemma, the fact that the rate r is bounded by the mutual information
appears in the condition ε0_condition:

Definition ε0_condition r e e0 :=

0 < e0 ∧ e0 < e / 2 ∧ e0 < (I(P ; w) - r) / 4.

The condition n_condition corresponds to the formalization of the restriction
“for n big enough” (we saw the bound JT S_1_bound in Sect. 5.4):

Definition n_condition r e0 n := O < n ∧ - log e0 / e0 < n ∧
frac_part (exp (n * r)) = 0 ∧ JT S _1_bound P w e0 ≤ n.

Proof of the Main Lemma The first thing to observe is that by construction
the error-rate averaged over all possible encoders does not depend on which
codeword m was sent:

Lemma error_rate_symmetry (P : dist X) (w : W Y X) ε :

0 ≤ ε → let Jtdec := jtdec P w ε in

∀ m m’,

Σ_(f : encT X M n) (wght P f * e(w, mkCode f (Jtdec f)) m) =

Σ_(f : encT X M n) (wght P f * e(w, mkCode f (Jtdec f)) m’).

Therefore, the left-handside of the conclusion of the main lemma (line 6 above)
can be rewritten by assuming that the codeword 0 was sent:

Σ_(f : encT X M n)

wght P f * Pr (w (|f 0)) [pred y ∈ not_preimg (Jtdec f) 0]



where not_preimg (Jtdec f) 0 is the set of outputs that do not decode to 0.
Let us write E f m for the set of outputs y such that (f m, y) ∈ JT S P w n ε.

Assuming that 0 was sent, a decoding error occurs when (1) the input and the
output are not jointly typical, or (2) when a wrong input is jointly typical with
the output (~: is a notation for set complementation):

[set x ∈ not_preimg (JTdec f) 0] =i

(~: E f 0) ∪
⋃
_(i : M | i 6= 0) E f i.

Using the fact that the probability of a union is smaller that the sum of
the probabilities, the left-handside of the conclusion of the main lemma can be
bounded by the following expression:

Σ_(f : encT X M n)

wght P f * Pr (w (|f 0)) [pred y ∈ ~: E f 0] + (∗ (1) ∗)
Σ_(i|i 6= 0)Σ_(f : encT X M n)

wght P f * Pr (w (|f 0)) [pred y ∈ E f i] (∗ (2) ∗)

The first summand (1) can be rewritten into

Pr (d(P ; w)^n) [pred y ∈ ~: JT S P w n ε0]

which can be bounded using the lemma JT S_1 (Sect. 5.4). The second sum-
mand (2) can be rewritten into

k * Pr (P^n × (d(P, w))^n) [pred x ∈ JT S P w n ε0]

which can be bounded using the lemma non_typical_sequences (Sect. 5.4). The
bounds ε0 and n have been carefully chosen so that the proof can be concluded
with symbolic manipulations. See [14] for details.

7 Related Work

The formalization of Shannon’s theorems in this paper as well as the formal-
ization of advanced information-theoretic concepts (channels, jointly typical se-
quences, etc.) are new. Yet, one can find formalization of more basic concepts
of information theory in the literature. [9] formalizes (conditional) entropy and
(conditional) mutual information (based on the seminal work by Hurd [4]), de-
fines a notion of information leakage, and applies it to the verification of privacy
properties of a protocol. [13] provides a formalization of the AEP and presents the
source coding theorem as a potential application; in other words, our paper can
be seen as the direct continuation of [13], though in a different proof-assistant.

For the purpose of this paper, we formalized finite probability using SSRe-
flect. As we have hinted at several times in this paper, this formalization was
important to take advantage of SSReflect’s library (in particular, canonical
big operators [7]). We limit ourselves to finite probability because it is enough
for our purpose (as for the information theory formalized in [9]). [8] provides an
alternative formalization of probabilities in Coq but that is biased towards ver-
ification of randomized algorithms. Hasan et al. formalize probability theory on
more general grounds in the HOL proof-assistant: [6] formalizes the expectation



properties (this is also based on the work by Hurd [4]), [11] provides a formal-
ization of the Chebyshev inequality and of the Weak Law of Large Numbers.

Our formalization of the source coding theorem follows [3, Chapter 1] with
nevertheless much clarification (in particular, formalization of bounds).

8 Conclusion and Future Work

We presented a formalization of information-theoretic definitions and lemmas in
the SSReflect extension of the Coq proof-assistant. Besides basic material such
as finite probability and typical sequences, this formalization includes a formal-
ization of channels (duly illustrated with the example of the binary symmetric
channel), codes (for source and channel coding), and jointly typical sequences.
We use this formalization to produce the first formal proofs of the source coding
theorem (direct and converse parts), that establishes the limit to possible data
compression, and the direct part of the channel coding theorem, that establishes
the limit to reliable data transmission over a noisy channel. Compared to pencil-
and-paper proofs, our formalization has the added value to make precise the
construction of asymptotic bounds.

We believe that the library that we have formalized can be used to formalize
further results about information theory (primarily, the converse of the channel
coding theorem) and also results of unconditional security (e.g., the proof of the
perfect secrecy of the one-time pad [2]).

The channel coding theorem proves the existence of codes for reliable data
transmission. Such codes play a critical role in IT products (e.g., LDPC codes in
storage devices). As a first step towards the verification of the implementation of
codes, we have been working on formalizing their basic properties ([14] already
provides several standard proofs about coding theory).

References

1. Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical
Journal, vol. 27, pp. 379–423 and 623–656. 1948.

2. Shannon, C.E.: Communication Theory of Secrecy Systems. Bell System Technical
Journal, Vol. 28, pp. 656–715. 1949.

3. Uyematsu, T.: Modern Shannon Theory, Information theory with types. In
Japanese. Baifukan (1998).

4. Hurd, J.: Formal Verification of Probabilistic Algorithms. PhD Thesis, Trinity
College, University of Cambridge, UK (2001).

5. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edition. Wiley-
Interscience (2006).

6. Hasan, O., Tahar, S.: Verification of Expectation Using Theorem Proving to Verify
Expectation and Variance for Discrete Random Variables. J. Autom. Reasoning
41:295–323 (2008).

7. Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical Big Operators. In:
TPHOLs 2008. LNCS, vol. 5170, pp. 86–101. Springer, Heidelberg (2008).



8. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci.
Comput. Program. 74(8):568–589 (2009).

9. Coble, A.R.: Anonymity, Information, and Machine-Assisted Proof. PhD Thesis,
King’s College, University of Cambridge, UK (2010).

10. The Coq Development Team. Reference Manual. Version 8.3. Available at http:

//coq.inria.fr. INRIA (2004-2010).
11. Mhamdi, T., Hasan, O., Tahar, S.: On the Formalization of the Lebesgue Inte-

gration Theory in HOL. In: Proc. of ITP 2010. LNCS, vol. 6172, pp. 387–402.
Springer, Heidelberg (2010).

12. Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for the
Coq system. Version 10. Technical report RR-6455. INRIA (2011).

13. Mhamdi, T., Hasan, O., Tahar, S.: Formalization of Entropy Measures in HOL.
In: Proc. of ITP 2011. LNCS, vol. 6898, pp. 233–248. Springer, Heidelberg (2011).

14. Affeldt, R., Hagiwara, M.: Formalization of Shannon’s Theorems in SSReflect-
Coq. Coq scripts. http://staff.aist.go.jp/reynald.affeldt/shannon.

http://coq.inria.fr
http://coq.inria.fr
http://staff.aist.go.jp/reynald.affeldt/shannon

	Formalization of Shannon's Theorems  in SSReflect-Coq

