Library multi_zero_u_simu
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq.
Require Import ssrZ ZArith_ext seq_ext uniq_tac machine_int multi_int.
Require Import integral_type encode_decode.
Import MachineInt.
Require Import mips_bipl mips_seplog mips_tactics mips_syntax mips_mint.
Import mips_bipl.expr_m.
Require Import simu.
Import simu.simu_m.
Require Import multi_zero_u_prg multi_zero_u_triple.
Local Open Scope machine_int_scope.
Local Open Scope heap_scope.
Local Open Scope assoc_scope.
Local Open Scope uniq_scope.
Local Open Scope simu_scope.
Local Open Scope zarith_ext_scope.
Require Import ssrZ ZArith_ext seq_ext uniq_tac machine_int multi_int.
Require Import integral_type encode_decode.
Import MachineInt.
Require Import mips_bipl mips_seplog mips_tactics mips_syntax mips_mint.
Import mips_bipl.expr_m.
Require Import simu.
Import simu.simu_m.
Require Import multi_zero_u_prg multi_zero_u_triple.
Local Open Scope machine_int_scope.
Local Open Scope heap_scope.
Local Open Scope assoc_scope.
Local Open Scope uniq_scope.
Local Open Scope simu_scope.
Local Open Scope zarith_ext_scope.
x <- 0, x unsigned
Lemma pfwd_sim_zero_unsigned P (x : bipl.var.v) d (rk rx a0 a1 : reg) :
uniq(rk, rx, a0, a1, r0) ->
disj (mints_regs (assoc.cdom d)) (a0 :: a1 :: nil) ->
x \notin assoc.dom d ->
unsign rk rx \notin assoc.cdom d ->
(x <- nat_e%pseudo_expr O)%pseudo_cmd
<=p( state_mint (x |=> unsign rk rx \U+ d), P )
(multi_zero_u rk rx a0 a1).
Proof.
move=> Hregs Hd x_d rk_rk_d.
have Hd_unchanged : forall v r, assoc.get v d = Some r ->
disj (mint_regs r) (mips_frame.modified_regs (multi_zero_u rk rx a0 a1)).
move=> v r Hvr; rewrite [mips_frame.modified_regs _]/=; Disj_remove_dup.
apply (disj_incl_LR Hd); last by apply/incl_refl_Permutation; PermutProve.
exact/incP/inc_mint_regs/(assoc.get_Some_in_cdom _ v).
rewrite /pfwd_sim.
move=> s st h [s_st_h HP] s' exec_seplog st' h' exec_mips.
have [st'' [h'' exec_mips_proj]] : exists st'' h'',
(Some (st, heap.proj h (heap.dom (heap_mint (unsign rk rx) st h)))
-- multi_zero_u rk rx a0 a1 ---> Some (st'', h''))%mips_cmd.
exists st', (heap.proj h' (heap.dom (heap_mint (unsign rk rx) st h))).
set nk := '|u2Z ([rk ]_ st)%asm_expr|.
have Hoare_multi_zero : ( {{ (fun s0 h0 => [rx ]_ s0 = [rx ]_ st /\
u2Z ([rk ]_ s0) = Z_of_nat nk /\
(var_e rx |--> Z2ints 32 nk ([ x ]_s)%pseudo_expr) s0 h0) }}
multi_zero_u rk rx a0 a1
{{ (fun s0 h0 => [rx ]_ s0 = [rx ]_ st /\ u2Z ([rk ]_ s0) = Z_of_nat nk /\
(var_e rx |--> nseq nk zero32) s0 h0) }} )%asm_assert%asm_expr%asm_hoare.
apply multi_zero_u_triple => //.
by rewrite size_Z2ints.
by eapply state_mint_head_unsign_fit; eauto.
move/mips_syntax.triple_exec_proj : Hoare_multi_zero; apply => //.
split; first by [].
split; first by rewrite Z_of_nat_Zabs_nat //; apply min_u2Z.
rewrite /heap_cut heap.proj_dom_proj.
apply (state_mint_var_mint _ _ _ _ x (unsign rk rx)) in s_st_h; last by assoc_get_Some.
rewrite /var_mint in s_st_h.
by case: s_st_h => _ [_ ?].
rewrite /state_mint; split.
- move=> y ry y_ry.
have [y_d | y_x] : y \in assoc.dom d \/ y = x.
case/assoc.get_union_Some_inv : y_ry => y_ry.
+ by case/assoc.get_sing_inv : y_ry => -> _; right.
+ by apply assoc.get_Some_in_dom in y_ry; left.
+ move: (proj1 s_st_h y) => s_st_h1.
have x_y : x <> y.
move=> X; subst y. by rewrite y_d in x_d.
move: {s_st_h1}(s_st_h1 _ y_ry) => s_st_h1.
have <- : heap_mint ry st h = heap_mint ry st' h'.
case: (mips_syntax.exec_deter_proj _ _ _ _ _ exec_mips
(heap.dom (heap_mint (unsign rk rx) st h)) _ _ exec_mips_proj) => H4 [H5 H_h_h'].
apply (heap_mint_state_invariant (heap_mint (unsign rk rx) st h) y s) => //.
move=> rx0 Hrx0; Reg_unchanged.
apply (@disj_not_In _ (mint_regs ry)); last by [].
apply/disj_sym/(Hd_unchanged y).
by rewrite -y_ry assoc.get_union_sing_neq; last by auto.
apply (proj2 s_st_h) with y x => //.
by auto.
by rewrite assoc.get_union_sing_eq.
move: s_st_h1; apply var_mint_invariant.
move=> rx0 Hrx0; Reg_unchanged.
apply (@disj_not_In _ (mint_regs ry)); last by [].
apply/disj_sym/(Hd_unchanged y) => //.
by rewrite -y_ry assoc.get_union_sing_neq; auto.
Var_unchanged; rewrite /= mem_seq1 eq_sym; exact/negP/eqP.
+ subst y.
rewrite assoc.get_union_sing_eq in y_ry; case: y_ry => ?; subst ry.
move: {s_st_h}(proj1 s_st_h x (unsign rk rx)).
rewrite assoc.get_union_sing_eq.
case/(_ (refl_equal _)) => s_st_h1 s_st_h2 s_st_h3.
rewrite /var_mint.
have Hrx : ([rx ]_ st = [rx ]_ st')%asm_expr.
Reg_unchanged. simpl mips_frame.modified_regs. by Uniq_not_In.
have Hrk : ([rk ]_ st = [rk ]_ st')%asm_expr.
Reg_unchanged. simpl mips_frame.modified_regs. by Uniq_not_In.
move/syntax_m.seplog_m.semop_prop_m.exec_cmd0_inv : exec_seplog.
case/syntax_m.seplog_m.exec0_assign_inv => _ ->.
syntax_m.seplog_m.assert_m.expr_m.Store_upd.
apply mkVarUnsign.
- rewrite -Hrx -Hrk.
exact s_st_h1.
- split => //; exact: Zbeta_gt0.
- have : uniq(rk, rx, a0, a1, r0) by Uniq_uniq r0.
move/multi_zero_u_triple.
set nk := '|u2Z ([rk ]_ st)%asm_expr|.
set vx := ([rx ]_ st)%asm_expr.
move/(_ nk (Z2ints 32 nk ([x ]_ s)%pseudo_expr) vx).
rewrite size_Z2ints.
move/(_ (refl_equal _) s_st_h1).
move/mips_seplog.hoare_prop_m.soundness.
rewrite /while.hoare_semantics.
move/(_ st (heap_mint (unsign rk rx) st h)).
rewrite {1}/nk Z_of_nat_Zabs_nat; last exact/min_u2Z.
rewrite {1}/vx {1}/nk.
case/( _ (conj (refl_equal _) (conj (refl_equal _) s_st_h3))) => _.
rewrite (var_mint_unsign_dom_heap_mint x s rk rx st h (mkVarUnsign _ _ _ _ _ s_st_h1 s_st_h2 s_st_h3)) in exec_mips_proj.
move/(_ _ _ exec_mips_proj).
case=> _ [] _.
rewrite (proj1 (proj2 (mips_syntax.exec_deter_proj _ _ _ _ _ exec_mips _ _ _ exec_mips_proj))).
rewrite -(proj1 (mips_syntax.exec_deter_proj _ _ _ _ _ exec_mips _ _ _ exec_mips_proj)).
by rewrite /heap_mint /heap_cut -Hrx -Hrk.
- apply (state_mint_part2_one_variable_unsign _ _ _ _ _ _ _ _ _ s_st_h).
+ move=> t x0 Ht Hx0.
Reg_unchanged. simpl mips_frame.modified_regs.
case/assoc.in_cdom_union_inv : Ht => Ht.
* rewrite assoc.cdom_sing /= seq.mem_seq1 in Ht.
move/eqP : Ht => Ht; subst t.
apply (@disj_not_In _ (mint_regs (unsign rk rx))); last by [].
Disj_remove_dup.
rewrite /=.
apply uniq_disj.
rewrite [cat _ _]/=.
by Uniq_uniq r0.
* apply (@disj_not_In _ (mint_regs t)); last by [].
Disj_remove_dup.
apply/disj_sym/(disj_incl_LR Hd); last by apply incl_refl_Permutation; PermutProve.
exact/incP/inc_mint_regs.
+ move: (mips_syntax.exec_deter_proj _ _ _ _ _ exec_mips _ _ _ exec_mips_proj); tauto.
+ exact: (mips_syntax.dom_heap_invariant _ _ _ _ _ exec_mips).
Qed.