Library multi_add_s_u_simu
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq.
Require Import ssrZ ZArith_ext seq_ext ssrnat_ext uniq_tac machine_int.
Require Import multi_int.
Import MachineInt.
Require Import mips_bipl mips_seplog mips_mint.
Import expr_m.
Require Import simu.
Import simu_m.
From mathcomp Require Import seq.
Require Import multi_add_s_u_prg multi_add_s_u_triple.
Local Open Scope machine_int_scope.
Local Open Scope asm_expr_scope.
Local Open Scope zarith_ext_scope.
Local Open Scope assoc_scope.
Local Open Scope heap_scope.
Local Open Scope simu_scope.
Local Open Scope asm_cmd_scope.
Local Open Scope uniq_scope.
Require Import ssrZ ZArith_ext seq_ext ssrnat_ext uniq_tac machine_int.
Require Import multi_int.
Import MachineInt.
Require Import mips_bipl mips_seplog mips_mint.
Import expr_m.
Require Import simu.
Import simu_m.
From mathcomp Require Import seq.
Require Import multi_add_s_u_prg multi_add_s_u_triple.
Local Open Scope machine_int_scope.
Local Open Scope asm_expr_scope.
Local Open Scope zarith_ext_scope.
Local Open Scope assoc_scope.
Local Open Scope heap_scope.
Local Open Scope simu_scope.
Local Open Scope asm_cmd_scope.
Local Open Scope uniq_scope.
x <- x + y, x signed, y unsigned
Lemma pfwd_sim_multi_add_s_u (x y : assoc.l) d k rk rx ry a0 a1 a2 a3 a4 a5 rX :
uniq(x, y) ->
uniq(rk, rx, ry, a0, a1, a2, a3, a4, a5, rX, r0) ->
disj (mints_regs (assoc.cdom d)) (a0 :: a1 :: a2 :: a3 :: a4 :: a5 :: rX :: nil) ->
x \notin assoc.dom d -> y \notin assoc.dom d ->
signed k rx \notin assoc.cdom d -> unsign rk ry \notin assoc.cdom d ->
(x <- var_e x \+ var_e y)%pseudo_expr%pseudo_cmd
<=p( state_mint (x |=> signed k rx \U+ (y |=> unsign rk ry \U+ d)),
fun st s _ => [rk ]_ s <> zero32 /\
u2Z ([rk ]_ s) < 2 ^^ 31 /\
k = '|u2Z ([rk ]_ s)| /\
`| ([x ]_ st)%pseudo_expr | < \B^k /\
0 <= ([y ]_ st)%pseudo_expr < \B^k /\
`| ([x ]_ st + [y ]_ st)%pseudo_expr | < \B^k)
multi_add_s_u rk rx ry a0 a1 a2 a3 a4 a5 rX.
Proof.
move=> Hvars Hregs Hd x_d y_d rx_d rk_ry_d.
rewrite /pfwd_sim.
move=> st s h [st_s_h [rk_st_neq0 [rk_st_max [k_rk [x_k [y_st x_y_st]]]]]] st' exec_pseudo s' h' exec_asm.
have Hd_unchanged : forall v r, assoc.get v d = Some r ->
disj (mint_regs r) (mips_frame.modified_regs (multi_add_s_u rk rx ry a0 a1 a2 a3 a4 a5 rX)).
move=> v r Hvr; rewrite [mips_frame.modified_regs _]/=; Disj_remove_dup.
apply (disj_incl_LR Hd); last by apply incl_refl_Permutation; PermutProve.
apply/incP/inc_mint_regs.
by move/assoc.get_Some_in_cdom : Hvr.
set vx := [rx ]_ s.
set vy := [ry ]_ s.
lapply (state_mint_var_mint _ _ _ _ x (signed k rx) st_s_h); [move=> var_mint_x | by assoc_get_Some].
rewrite /var_mint in var_mint_x.
case: var_mint_x => slen ptr X vx_fit [X_k Hlen Hsgn Sum_X] ptr_fit Hmem.
have : k <> 0%nat.
contradict rk_st_neq0. apply u2Z_inj. rewrite rk_st_neq0 in k_rk.
symmetry in k_rk. apply Zabs_nat_0_inv in k_rk. by rewrite Z2uK.
move/(multi_add_s_u_triple_gen rk rx ry a0 a1 a2 a3 a4 a5 rX Hregs).
move/(_ vx vy ptr).
have : Z<=nat k < 2 ^^ 31.
rewrite k_rk Z_of_nat_Zabs_nat //; by apply min_u2Z.
let x := fresh in move=> x; move/(_ x); clear x.
move/(_ ptr_fit).
have : Z<=u vy + 4 * Z<=nat k < \B^1.
rewrite assoc_prop_m.swap_heads in st_s_h; last by [].
move: (state_mint_head_unsign_fit _ _ _ _ _ _ _ st_s_h); by rewrite k_rk.
let x := fresh in move=> x; move/(_ x); clear x.
move/(_ X (Z2ints 32 k ([ y ]_ st)%pseudo_expr) X_k).
rewrite size_Z2ints.
move/(_ Logic.eq_refl slen Hlen).
rewrite -Sum_X.
move/(_ Hsgn) => Hhoare_multi_add_s_u.
have [s'' [h'' exec_asm_proj]] : exists s'' h'',
(Some (s, h |P| heap.dom (heap_mint (unsign rk ry) s h \U heap_mint (signed k rx) s h))
-- multi_add_s_u rk rx ry a0 a1 a2 a3 a4 a5 rX --->
Some (s'', h''))%asm_cmd.
exists s', (h' |P| heap.dom (heap_mint (unsign rk ry) s h \U heap_mint (signed k rx) s h)).
apply (mips_syntax.triple_exec_proj _ _ _ Hhoare_multi_add_s_u) => {Hhoare_multi_add_s_u} //.
split; first by [].
split; first by [].
split.
rewrite k_rk Z_of_nat_Zabs_nat //; exact/min_u2Z.
rewrite heap.proj_dom_union; last first.
apply (proj2 st_s_h y x); by [Uniq_neq | assoc_get_Some | assoc_get_Some].
rewrite heap.unionC; last first.
apply heap.dis_disj_proj.
rewrite -heap.disjE.
apply (proj2 st_s_h y x); by [Uniq_neq | assoc_get_Some | assoc_get_Some].
apply assert_m.con_cons.
apply heap.dis_disj_proj.
rewrite -heap.disjE.
apply (proj2 st_s_h x y); by [Uniq_neq | assoc_get_Some | assoc_get_Some].
move: (heap_inclu_heap_mint_signed h s k rx).
move/heap.incluE => ->; exact Hmem.
have y_ry : var_mint y (unsign rk ry) st s (heap_mint (unsign rk ry) s h).
apply (state_mint_var_mint _ _ _ _ _ _ st_s_h); by assoc_get_Some.
case: (y_ry) => _ [] _ Hry.
rewrite /heap_mint /heap_cut in y_ry.
by rewrite k_rk (var_mint_unsign_dom_heap_mint _ _ _ _ _ _ y_ry).
have ry_s_s' : [ry]_ s = [ry]_ s'.
mips_syntax.Reg_unchanged. simpl mips_frame.modified_regs. by Uniq_not_In.
have rk_s_s' : [rk ]_ s = [rk ]_ s'.
mips_syntax.Reg_unchanged. simpl mips_frame.modified_regs. by Uniq_not_In.
have y_st_st' : ([y ]_ st = [y ]_ st')%pseudo_expr.
Var_unchanged. simpl syntax_m.seplog_m.modified_vars.
move/inP.
rewrite -/(~ _).
by Uniq_not_In.
have rx_s_s' : [rx ]_ s = [rx ]_ s'.
mips_syntax.Reg_unchanged. simpl mips_frame.modified_regs. by Uniq_not_In.
set postcond := (fun s h => exists _, _) in Hhoare_multi_add_s_u.
have {Hhoare_multi_add_s_u}hoare_triple_post_condition : (
postcond ** assert_m.TT)%asm_assert s' h'.
move: {Hhoare_multi_add_s_u}(mips_frame.frame_rule_R _ _ _ Hhoare_multi_add_s_u assert_m.TT (assert_m.inde_TT _) (mips_frame.inde_cmd_mult_TT _)).
move/mips_seplog.hoare_prop_m.soundness.
rewrite /while.hoare_semantics.
move/(_ s h) => Hmulti_add_s_u.
lapply Hmulti_add_s_u; last first.
exists (heap_mint (signed k rx) s h \U heap_mint (unsign rk ry) s h),
(h \D\ heap.dom (heap_mint (signed k rx) s h \U heap_mint (unsign rk ry) s h)).
split; first by apply heap.disj_difs', seq_ext.inc_refl.
split.
apply heap.union_difsK; last by [].
apply heap_prop_m.inclu_union; by [apply heap_inclu_heap_mint_signed | apply heap.inclu_proj].
split; last by [].
repeat (split=> //).
rewrite k_rk Z_of_nat_Zabs_nat //; by apply min_u2Z.
apply assert_m.con_cons.
+ apply (proj2 st_s_h x y); by [Uniq_neq | assoc_get_Some | assoc_get_Some].
+ exact Hmem.
+ move: (proj1 st_s_h y (unsign rk ry)).
rewrite assoc.get_union_sing_neq; last by Uniq_neq.
rewrite assoc.get_union_sing_eq.
case/(_ (refl_equal _))=> _ [] _; by rewrite -k_rk.
case=> _.
by move/(_ _ _ exec_asm).
rewrite /state_mint; split.
- move=> z rz z_rz.
have [z_d | z_x ] : z \in assoc.dom (y |=> unsign rk ry \U+ d) \/ z = x.
rewrite assoc.unionC in z_rz; last first.
apply assoc.disjhU.
apply assoc.disj_sing.
apply/eqP; by Uniq_neq.
by apply assoc.disj_sym, assoc.disj_sing_R.
case/assoc.get_union_Some_inv : z_rz => z_rz.
left.
by apply assoc.get_Some_in_dom with rz.
case/assoc.get_sing_inv : z_rz => ? ?; subst z rz.
by right.
+
have z_x : z <> x.
move=> ?; subst z.
case/assoc.in_dom_union_inv : z_d.
* case/assoc.in_dom_get_Some => z.
case/assoc.get_sing_inv => z_d _.
move: z_d.
rewrite -/(~ _); by Uniq_neq.
* by rewrite (negbTE x_d).
case/orP : (orbN (z == y)) => z_y.
* move/eqP : z_y => ?; subst z.
rewrite assoc.unionC in z_rz; last first.
apply assoc.disjhU.
apply assoc.disj_sing; by apply/eqP/nesym.
by apply assoc.disj_sym, assoc.disj_sing_R.
rewrite -assoc.unionA assoc.get_union_sing_eq in z_rz.
case: z_rz => ?; subst rz.
case : hoare_triple_post_condition => h1 [h2 [h1_d_h2 [h1_U_h2 [Hh1 Hh2]]]].
case: Hh1 => X' [slen' Hh1].
decompose [and] Hh1; clear Hh1.
case: H4 => h11 [h12 [h11_d_h12 [h11_U_h12 [Hh11 Hh12]]]].
move: (proj1 st_s_h y (unsign rk ry)).
rewrite assoc.get_union_sing_neq; last by Uniq_neq.
rewrite assoc.get_union_sing_eq.
move/(_ (refl_equal _)).
have <- : heap_mint (unsign rk ry) s h = heap_mint (unsign rk ry) s' h'.
rewrite {2}/heap_mint /heap_cut h1_U_h2 h11_U_h12.
move/assert_m.mapstos_inv_dom : (Hh12) => Hh12'.
have : u2Z [var_e ry ]e_ s' +
4 * Z_of_nat (size (Z2ints 32 k ([y ]_ st)%pseudo_expr)) < \B^1.
rewrite [u2Z _]/= size_Z2ints -ry_s_s'.
move: (proj1 st_s_h y (unsign rk ry)).
rewrite assoc.get_union_sing_neq; last by Uniq_neq.
rewrite assoc.get_union_sing_eq k_rk.
by case/(_ (refl_equal _)).
move/Hh12' => {}Hh12'.
rewrite size_Z2ints k_rk rk_s_s' in Hh12'.
rewrite {}Hh12'.
rewrite heap.proj_union_L; last by rewrite -heap.disjE; heap_tac_m.Disj.
rewrite heap.proj_union_R_dom; last by heap_tac_m.Disj.
move: (proj1 st_s_h y (unsign rk ry)).
rewrite assoc.get_union_sing_neq; last by auto.
rewrite assoc.get_union_sing_eq.
move/(_ (refl_equal _)).
case=> X1 X2 X3.
rewrite -k_rk in X3.
rewrite heap.proj_itself.
apply: (assert_m.strictly_exact_mapstos (Z2ints 32 k ([y ]_ st)%pseudo_expr) (var_e ry) s).
split; first by [].
move: Hh12; by apply assert_m.mapstos_ext.
apply var_mint_invariant_unsign; [exact ry_s_s' | exact rk_s_s' | exact y_st_st'].
* move: {st_s_h}(proj1 st_s_h _ _ z_rz) (proj2 st_s_h) => st_s_h1 st_s_h2.
have z_unchanged : ( [ z ]_ st = [ z ]_ st' )%pseudo_expr.
Var_unchanged. rewrite /= mem_seq1; exact/negP/eqP.
case: (mips_syntax.exec_deter_proj _ _ _ _ _ exec_asm
(heap.dom (heap_mint (unsign rk ry) s h \U heap_mint (signed k rx) s h)) _ _
exec_asm_proj) => H4 [H5 H_h_h'].
have <- : heap_mint rz s h = heap_mint rz s' h'.
apply (heap_mint_state_invariant (heap_mint (unsign rk ry) s h \U
heap_mint (signed k rx) s h) z st) => //.
move=> rx0 Hrx0; mips_syntax.Reg_unchanged.
apply (@disj_not_In _ (mint_regs rz)); last by [].
apply/disj_sym/(Hd_unchanged z).
rewrite assoc.get_union_sing_neq in z_rz; last by [].
rewrite assoc.get_union_sing_neq // in z_rz.
by apply/eqP.
apply heap.disjhU.
apply st_s_h2 with z y => //.
by apply/eqP.
rewrite assoc.get_union_sing_neq; last by Uniq_neq.
by rewrite assoc.get_union_sing_eq.
apply st_s_h2 with z x => //.
by rewrite assoc.get_union_sing_eq.
move: st_s_h1; apply var_mint_invariant; last exact z_unchanged.
move=> rx0 Hrx0; mips_syntax.Reg_unchanged.
apply (@disj_not_In _ (mint_regs rz)); last by [].
apply/disj_sym/(Hd_unchanged z) => //.
rewrite assoc.get_union_sing_neq in z_rz; last by [].
rewrite assoc.get_union_sing_neq // in z_rz.
by apply/eqP.
+ subst z.
have rz_rx : rz = signed k rx.
rewrite assoc.get_union_sing_eq in z_rz; by case: z_rz.
subst rz.
move: (proj1 st_s_h x (signed k rx) z_rz).
rewrite /var_mint.
case: hoare_triple_post_condition => [h1 [h2 [Hdisj [Hunion [[X' [slen' [Hadd_s_us_1 [r_x [r_y [Hadd_s_us_2 [Hadd_s_us_3 [Hadd_s_us_4 [Hadd_s_us_5 Hadd_s_us_6]]]]]]]]]] HTT]]]].
move=> ?.
have x'_x_y : ([ x ]_ st' = [ x ]_ st + [y ]_ st )%pseudo_expr.
move/syntax_m.seplog_m.semop_prop_m.exec_cmd0_inv : exec_pseudo.
case/syntax_m.seplog_m.exec0_assign_inv => _ -> /=.
by syntax_m.seplog_m.assert_m.expr_m.Store_upd.
apply (mkVarSigned _ _ _ _ _ slen' ptr X') => //.
+ by rewrite /vx -rx_s_s'.
+ apply mkSignMagn.
* exact Hadd_s_us_1.
* exact Hadd_s_us_2.
* rewrite !lSum_Z2ints_pos in Hadd_s_us_6 Hadd_s_us_3; last by exact y_st.
by rewrite Hadd_s_us_3 x'_x_y.
* rewrite !lSum_Z2ints_pos in Hadd_s_us_6 Hadd_s_us_3; last by exact y_st.
rewrite -x'_x_y in Hadd_s_us_6.
case: (Z_zerop (s2Z slen')) => slen'_neq0.
rewrite -Hadd_s_us_6 slen'_neq0 /=; ring.
have Hi : u2Z [a3 ]_ s' = 0.
have : `| sgZ (s2Z slen') * (lSum k X' + u2Z [ a3 ]_ s' * \B^k) | < \B^k.
by rewrite Hadd_s_us_6 x'_x_y.
rewrite Zabs_Zmult Zabs_Zsgn_1 // mul1Z addZC.
apply: poly_Zlt1_Zabs_inv => //.
by apply min_lSum.
by apply min_u2Z.
by rewrite Hi mul0Z addZ0 in Hadd_s_us_6.
+ case: Hadd_s_us_4 => h11 [h12 [h11_d_h12 [h11_U_h12 [Hh11 Hh12]]]].
apply con_heap_mint_signed_cons with h11.
* rewrite Hunion.
apply heap.inclu_union_L => //.
rewrite h11_U_h12.
apply heap.inclu_union_L => //.
exact/heap.inclu_refl.
* by rewrite -rx_s_s'.
* by rewrite Hadd_s_us_1.
* exact Hadd_s_us_1.
* exact Hh11.
- case: hoare_triple_post_condition => [h1 [h2 [Hdisj [Hunion [[X' [slen' [Hadd_s_us_1 [r_x [r_y [Hadd_s_us_2 [Hadd_s_us_3 [Hadd_s_us_4 [Hadd_s_us_5 Hadd_s_us_6]]]]]]]]]] HTT]]]].
have Hslen' : heap.get '|u2Z ([ rx ]_ s') / 4| h' = Some slen'.
rewrite Hunion.
apply heap.get_union_L => //.
rewrite assert_m.conAE in Hadd_s_us_4.
by apply assert_m.mapstos_get1 in Hadd_s_us_4.
have Hptr : heap.get '|u2Z ([ rx ]_ s' `+ four32) / 4| h' = Some ptr.
rewrite Hunion.
apply heap.get_union_L => //.
rewrite assert_m.conAE in Hadd_s_us_4.
by apply assert_m.mapstos_get2 in Hadd_s_us_4.
apply state_mint_part2_two_variables with st s h => //.
+ move/assert_m.mapstos_get2 : (Hmem).
move/heap_get_heap_mint_inv => ptr_vx4.
move/assert_m.mapstos_get1 : (Hmem).
move/heap_get_heap_mint_inv => slen_vx.
symmetry.
apply dom_heap_mint_sign_state_invariant with x st slen slen'.
exact rx_s_s'.
exact slen_vx.
exact Hslen'.
by rewrite Hptr.
rewrite assoc_prop_m.swap_heads in st_s_h; last by [].
apply (state_mint_var_mint _ _ _ _ _ _ st_s_h).
rewrite assoc.get_union_sing_neq; last by Uniq_neq.
by rewrite assoc.get_union_sing_eq.
by apply (mips_syntax.dom_heap_invariant _ _ _ _ _ exec_asm).
+ symmetry.
apply dom_heap_mint_unsign_state_invariant with y st.
exact rk_s_s'.
exact ry_s_s'.
apply (state_mint_var_mint _ _ _ _ _ _ st_s_h).
rewrite assoc.get_union_sing_neq; last by Uniq_neq.
by rewrite assoc.get_union_sing_eq.
by apply (mips_syntax.dom_heap_invariant _ _ _ _ _ exec_asm).
+ move=> t Ht x0 Hx0.
mips_syntax.Reg_unchanged. simpl mips_frame.modified_regs.
case/assoc.in_cdom_union_inv : Ht => Ht.
* rewrite assoc.cdom_sing /= seq.mem_seq1 in Ht.
move/eqP in Ht; subst t.
apply (@disj_not_In _ (mint_regs (signed k rx))); last by [].
Disj_remove_dup.
rewrite /=.
apply uniq_disj. rewrite [cat _ _]/=. by Uniq_uniq r0.
* case/assoc.in_cdom_union_inv : Ht => Ht.
- rewrite assoc.cdom_sing /= seq.mem_seq1 in Ht.
move/eqP : Ht => Ht; subst t.
apply (@disj_not_In _ (mint_regs (unsign rk ry))); last by [].
Disj_remove_dup.
rewrite /=.
apply uniq_disj. rewrite [cat _ _]/=. by Uniq_uniq r0.
- apply (@disj_not_In _ (mint_regs t)); last by [].
Disj_remove_dup.
apply disj_sym.
apply (disj_incl_LR Hd); last by apply incl_refl_Permutation; PermutProve.
exact/incP/inc_mint_regs.
+ by Uniq_neq.
+ move: (mips_syntax.exec_deter_proj _ _ _ _ _ exec_asm _ _ _ exec_asm_proj); tauto.
Qed.
Lemma pfwd_sim_multi_add_s_u_wo_overflow (x y : assoc.l) d k rk rx ry a0 a1 a2 a3 a4 a5 rX :
uniq(x, y) ->
uniq(rk, rx, ry, a0, a1, a2, a3, a4, a5, rX, r0) ->
disj (mints_regs (assoc.cdom d)) (a0 :: a1 :: a2 :: a3 :: a4 :: a5 :: rX :: nil)%list ->
x \notin assoc.dom d -> y \notin assoc.dom d ->
signed k rx \notin assoc.cdom d -> unsign rk ry \notin assoc.cdom d ->
(x <- var_e x \+ var_e y)%pseudo_expr%pseudo_cmd
<=p( state_mint (x |=> signed k rx \U+ (y |=> unsign rk ry \U+ d)),
fun s st _ => [rk ]_ st <> zero32 /\
u2Z ([rk ]_ st) < 2 ^^ 31 /\
k = '|u2Z ([rk ]_ st)| /\
`| ([x ]_ s)%pseudo_expr | < \B^(k - 1) /\
0 <= ([y ]_ s)%pseudo_expr < \B^(k - 1))
multi_add_s_u rk rx ry a0 a1 a2 a3 a4 a5 rX.
Proof.
move=> Hvars Hregs Hd A_d y_d rA_d rk_ry_d.
eapply pfwd_sim_stren; last by apply pfwd_sim_multi_add_s_u.
move=> s st h [rk_neq0 [rk_max [k_rk [A_max y_bounds]]]].
split; first by [].
split; first by [].
split; first by [].
have k_neq0 : k <> O.
rewrite k_rk.
contradict rk_neq0.
apply Zabs_nat_0_inv in rk_neq0.
rewrite (_ : 0 = u2Z (Z2u 32 0)) in rk_neq0; last by rewrite Z2uK.
by move/u2Z_inj : rk_neq0.
split.
apply/(ltZ_trans A_max)/Zbeta_lt; ssromega.
split.
split; first tauto.
apply/(ltZ_trans (proj2 y_bounds))/Zbeta_lt; ssromega.
apply: leZ_ltZ_trans; first exact: Z.abs_triangle.
rewrite (geZ0_norm ([y ]_ s)%pseudo_expr); last lia.
apply: ltZ_trans.
apply: ltZ_add; [exact: A_max | exact: (proj2 y_bounds)].
rewrite /Zbeta Zpower_plus.
apply expZ_2_lt; ssromega.
Qed.