Library multi_add_s_s_u_termination
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq.
Require Import ZArith_ext seq_ext machine_int uniq_tac.
Import MachineInt.
Require Import mips_cmd mips_tactics mips_contrib.
Import expr_m.
Require Import multi_add_s_s_u_prg.
Require Import multi_is_zero_u_termination copy_s_s_termination.
Require Import pick_sign_termination copy_s_u_termination.
Require Import multi_add_u_u_termination multi_lt_termination.
Require Import multi_zero_s_termination multi_sub_u_u_termination.
Local Open Scope machine_int_scope.
Local Open Scope mips_expr_scope.
Local Open Scope mips_cmd_scope.
Local Open Scope uniq_scope.
Lemma multi_add_s_s_u0_termination st h rz rx rk ry a0 a1 a2 a3 a4 ret X Y :
uniq(rk, rz, rx, ry, a0, a1, a2, a3, a4, ret, X, Y, r0) ->
{s' | Some (st, h) -- multi_add_s_s_u0 rk rz rx ry a0 a1 a2 a3 a4 ret X Y ---> s'}.
Proof.
move=> Hregs.
set c := multi_add_s_s_u0 _ _ _ _ _ _ _ _ _ _ _ _.
have : {s' | Some (st, h) -- c ---> s' /\ forall s, s' = Some s -> True}.
rewrite /c {c} /multi_add_s_s_u0.
exists_lw ly Hly zy Hzy.
set s0 := store.upd _ _ _.
exists_lw lx Hlx zx Hzx.
set s1 := store.upd _ _ _.
apply exists_seq_P with (fun s => forall s', s = Some s' -> True).
have : uniq(rx, a0, a1, r0) by Uniq_uniq r0.
case/(pick_sign_termination s1 h) => s1' h1'.
by exists s1'.
move=> [[s2 h2]|] H2; last first.
exists None; split => //; by apply while.exec_none.
apply exists_ifte_P.
apply exists_ifte_P.
apply exists_seq_P with (fun s => forall s', s = Some s' -> True).
have : uniq(rk, rz, ry, a0, a1, a2, a3, r0) by Uniq_uniq r0.
case/(copy_s_u_termination s2 h2) => s2' h2'.
by exists s2'.
move=> [[s3 h3]|] H3; last first.
exists None; split => //; by apply while.exec_none.
by apply exists_addiu_P.
apply exists_seq_P with (fun s => forall s', s = Some s' -> True).
have : uniq(rk, a1, ry, X, a2, a3, a4, r0) by Uniq_uniq r0.
case/(multi_add_u_u_termination s2 h2 Y) => s2' Hs2'.
by exists s2'.
move=> [[s2' h2']|] H2'; last first.
exists None; split => //; by apply while.exec_none.
apply exists_mflo_seq_P.
by exists_sw1 lz Hlz zz Hzz.
apply exists_seq_P with (fun s => forall s', s = Some s' -> True).
have : uniq(rk, ry, X, a0, a1, ret, a2, a3, a4, r0) by Uniq_uniq r0.
case/(multi_lt_termination s2 h2) => s2' H2'.
by exists s2'.
move=> [[s2' h2']|] H2'; last first.
exists None; split => //; by apply while.exec_none.
apply exists_ifte_P.
apply exists_ifte_P.
apply exists_seq_P with (fun s => forall s', s = Some s' -> True).
case: (multi_zero_s_termination s2' h2' rz) => s3 h3.
by exists s3.
move=> [[s3 h3]|] H3; last first.
exists None; split => //; by apply while.exec_none.
by apply exists_addiu_P.
apply exists_seq_P with (fun s => forall s', s = Some s' -> True).
have : uniq(rk, X, ry, a0, a1, a2, a3, a4, ret, r0) by Uniq_uniq r0.
case/(multi_sub_u_u_termination s2' h2' Y) => s3 h3.
by exists s3.
move=> [[s3 h3]|] H3; last first.
exists None; split => //; by apply while.exec_none.
by exists_sw1 lz Hlz zz Hzz.
apply exists_seq_P with (fun s => forall s', s = Some s' -> True).
have : uniq(rk, ry, X, a0, a1, ret, a3, a2, a4, r0) by Uniq_uniq r0.
case/(multi_sub_u_u_termination s2' h2' Y) => s3 h3.
by exists s3.
move=> [[s3 h3]|] H3; last first.
exists None; split => //; by apply while.exec_none.
apply exists_subu_seq_P.
by exists_sw1 lz Hlz zz Hzz.
case=> s' h'.
exists s'; tauto.
Qed.
Lemma multi_add_s_s_u_termination st h rz rx rk ry a0 a1 a2 a3 a4 ret X Y :
uniq(rk, rz, rx, ry, a0, a1, a2, a3, a4, ret, X, Y, r0) ->
{s' | Some (st, h) -- multi_add_s_s_u rk rz rx ry a0 a1 a2 a3 a4 ret X Y ---> s'}.
Proof.
move=> Hregs.
set c := multi_add_s_s_u _ _ _ _ _ _ _ _ _ _ _ _.
have : {s' | (Some (st, h) -- c ---> s') /\
(forall s, s' = Some s -> True)}.
rewrite /multi_add_s_s_u.
apply exists_seq_P with (fun s => forall s', s = Some s' -> True).
have : uniq(rk, ry, a0, a1, a2, r0) by Uniq_uniq r0.
case/(multi_is_zero_u_termination st h) => si Hsi.
by exists si.
move=> [[si hi]|] Hsi; last first.
exists None; split => //.
by apply while.exec_none.
apply exists_ifte_P.
apply exists_seq_P with (fun s => forall s', s = Some s' -> True).
have : uniq(rk,rz,rx,a0,a1,a2,a3,a4,r0) by Uniq_uniq r0.
case/(copy_s_s_termination si hi) => si' Hsi'.
by exists si'.
move=> [[sj hj]|] Hsj; last first.
exists None; split => //.
by apply while.exec_none.
by apply exists_addiu_P.
case/(multi_add_s_s_u0_termination si hi) : Hregs => s2 H2.
by exists s2.
case=> s2 H2.
exists s2; tauto.
Qed.
Require Import ZArith_ext seq_ext machine_int uniq_tac.
Import MachineInt.
Require Import mips_cmd mips_tactics mips_contrib.
Import expr_m.
Require Import multi_add_s_s_u_prg.
Require Import multi_is_zero_u_termination copy_s_s_termination.
Require Import pick_sign_termination copy_s_u_termination.
Require Import multi_add_u_u_termination multi_lt_termination.
Require Import multi_zero_s_termination multi_sub_u_u_termination.
Local Open Scope machine_int_scope.
Local Open Scope mips_expr_scope.
Local Open Scope mips_cmd_scope.
Local Open Scope uniq_scope.
Lemma multi_add_s_s_u0_termination st h rz rx rk ry a0 a1 a2 a3 a4 ret X Y :
uniq(rk, rz, rx, ry, a0, a1, a2, a3, a4, ret, X, Y, r0) ->
{s' | Some (st, h) -- multi_add_s_s_u0 rk rz rx ry a0 a1 a2 a3 a4 ret X Y ---> s'}.
Proof.
move=> Hregs.
set c := multi_add_s_s_u0 _ _ _ _ _ _ _ _ _ _ _ _.
have : {s' | Some (st, h) -- c ---> s' /\ forall s, s' = Some s -> True}.
rewrite /c {c} /multi_add_s_s_u0.
exists_lw ly Hly zy Hzy.
set s0 := store.upd _ _ _.
exists_lw lx Hlx zx Hzx.
set s1 := store.upd _ _ _.
apply exists_seq_P with (fun s => forall s', s = Some s' -> True).
have : uniq(rx, a0, a1, r0) by Uniq_uniq r0.
case/(pick_sign_termination s1 h) => s1' h1'.
by exists s1'.
move=> [[s2 h2]|] H2; last first.
exists None; split => //; by apply while.exec_none.
apply exists_ifte_P.
apply exists_ifte_P.
apply exists_seq_P with (fun s => forall s', s = Some s' -> True).
have : uniq(rk, rz, ry, a0, a1, a2, a3, r0) by Uniq_uniq r0.
case/(copy_s_u_termination s2 h2) => s2' h2'.
by exists s2'.
move=> [[s3 h3]|] H3; last first.
exists None; split => //; by apply while.exec_none.
by apply exists_addiu_P.
apply exists_seq_P with (fun s => forall s', s = Some s' -> True).
have : uniq(rk, a1, ry, X, a2, a3, a4, r0) by Uniq_uniq r0.
case/(multi_add_u_u_termination s2 h2 Y) => s2' Hs2'.
by exists s2'.
move=> [[s2' h2']|] H2'; last first.
exists None; split => //; by apply while.exec_none.
apply exists_mflo_seq_P.
by exists_sw1 lz Hlz zz Hzz.
apply exists_seq_P with (fun s => forall s', s = Some s' -> True).
have : uniq(rk, ry, X, a0, a1, ret, a2, a3, a4, r0) by Uniq_uniq r0.
case/(multi_lt_termination s2 h2) => s2' H2'.
by exists s2'.
move=> [[s2' h2']|] H2'; last first.
exists None; split => //; by apply while.exec_none.
apply exists_ifte_P.
apply exists_ifte_P.
apply exists_seq_P with (fun s => forall s', s = Some s' -> True).
case: (multi_zero_s_termination s2' h2' rz) => s3 h3.
by exists s3.
move=> [[s3 h3]|] H3; last first.
exists None; split => //; by apply while.exec_none.
by apply exists_addiu_P.
apply exists_seq_P with (fun s => forall s', s = Some s' -> True).
have : uniq(rk, X, ry, a0, a1, a2, a3, a4, ret, r0) by Uniq_uniq r0.
case/(multi_sub_u_u_termination s2' h2' Y) => s3 h3.
by exists s3.
move=> [[s3 h3]|] H3; last first.
exists None; split => //; by apply while.exec_none.
by exists_sw1 lz Hlz zz Hzz.
apply exists_seq_P with (fun s => forall s', s = Some s' -> True).
have : uniq(rk, ry, X, a0, a1, ret, a3, a2, a4, r0) by Uniq_uniq r0.
case/(multi_sub_u_u_termination s2' h2' Y) => s3 h3.
by exists s3.
move=> [[s3 h3]|] H3; last first.
exists None; split => //; by apply while.exec_none.
apply exists_subu_seq_P.
by exists_sw1 lz Hlz zz Hzz.
case=> s' h'.
exists s'; tauto.
Qed.
Lemma multi_add_s_s_u_termination st h rz rx rk ry a0 a1 a2 a3 a4 ret X Y :
uniq(rk, rz, rx, ry, a0, a1, a2, a3, a4, ret, X, Y, r0) ->
{s' | Some (st, h) -- multi_add_s_s_u rk rz rx ry a0 a1 a2 a3 a4 ret X Y ---> s'}.
Proof.
move=> Hregs.
set c := multi_add_s_s_u _ _ _ _ _ _ _ _ _ _ _ _.
have : {s' | (Some (st, h) -- c ---> s') /\
(forall s, s' = Some s -> True)}.
rewrite /multi_add_s_s_u.
apply exists_seq_P with (fun s => forall s', s = Some s' -> True).
have : uniq(rk, ry, a0, a1, a2, r0) by Uniq_uniq r0.
case/(multi_is_zero_u_termination st h) => si Hsi.
by exists si.
move=> [[si hi]|] Hsi; last first.
exists None; split => //.
by apply while.exec_none.
apply exists_ifte_P.
apply exists_seq_P with (fun s => forall s', s = Some s' -> True).
have : uniq(rk,rz,rx,a0,a1,a2,a3,a4,r0) by Uniq_uniq r0.
case/(copy_s_s_termination si hi) => si' Hsi'.
by exists si'.
move=> [[sj hj]|] Hsj; last first.
exists None; split => //.
by apply while.exec_none.
by apply exists_addiu_P.
case/(multi_add_s_s_u0_termination si hi) : Hregs => s2 H2.
by exists s2.
case=> s2 H2.
exists s2; tauto.
Qed.