Library mont_square_strict_termination
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq.
Require Import ZArith_ext seq_ext machine_int uniq_tac.
Import MachineInt.
Require Import mips_cmd mips_tactics mips_contrib.
Require Import mont_mul_strict_prg mont_square_termination multi_lt_termination.
Require Import multi_sub_u_u_termination multi_zero_u_termination.
Import expr_m.
Local Open Scope machine_int_scope.
Local Open Scope mips_expr_scope.
Local Open Scope mips_cmd_scope.
Local Open Scope uniq_scope.
Lemma mont_square_strict_termination s h k alpha x z m one ext int_ X_ B2K_ Y_ M_ quot C_ t s_ :
uniq(k, alpha, x, z, m, one, ext, int_, X_, B2K_, Y_, M_, quot, C_, t, s_, r0) ->
{si | Some (s, h) --
mont_mul_strict k alpha x x z m one ext int_ X_ B2K_ Y_ M_ quot C_ t s_ ---> si }.
Proof.
move=> Hset; rewrite /mont_mul_strict.
apply exists_seq_P2 with (fun si => True).
- case/(termination_mont_square s h) : (Hset) => si Hsi; by exists si.
- move=> [si hi] Psi.
+ apply exists_ifte.
* apply exists_seq_P2 with (fun si => True).
- have : uniq(k, z, m, X_, B2K_, int_, ext, M_, Y_, r0) by Uniq_uniq r0.
case/(multi_lt_termination si hi) => sj Hsj.
by exists sj.
- move=> [sj hj] Psj.
+ apply exists_ifte.
* have : uniq(k, m, z, ext, int_, quot, C_, M_, B2K_, r0) by Uniq_uniq r0.
move/multi_sub_u_u_termination. case/(_ sj hj z) => sk Hk; by exists sk.
* apply exists_nop; by move: {Psj}(Psj _ (refl_equal _)).
* apply exists_addiu_seq.
exists_sw_new l Hl z0 Hz0.
repeat Reg_upd.
apply exists_addiu_seq.
repeat Reg_upd.
set s0 := store.upd _ _ _.
set h0 := heap.upd _ _ _.
have : uniq(ext, m, z, Y_, int_, quot, C_, M_, B2K_, r0) by Uniq_uniq r0.
move/multi_sub_u_u_termination. case/(_ s0 h0 z) => sk Hk.
eexists; by apply Hk.
Qed.
Lemma mont_square_strict_init_termination
s h k alpha x z m one ext int_ X_ B2K_ Y_ M_ quot C_ t s_ :
uniq(k, alpha, x, z, m, one, ext, int_, X_, B2K_, Y_, M_, quot, C_, t, s_, r0) ->
{ si | Some (s, h) --
mont_mul_strict_init k alpha x x z m one ext int_ X_ B2K_ Y_ M_ quot C_ t s_ ---> si }.
Proof.
move=> Hset; rewrite /mont_mul_strict_init.
apply exists_seq_P2 with (fun si => True).
- have : uniq(k, z, ext, M_, r0) by Uniq_uniq r0.
case/(multi_zero_u_termination s h) => si Hsi.
exists si; split; first by tauto.
done.
- move=> [si hi] Psi.
+ apply exists_seq_P2 with (fun sj => True).
* by apply exists_mflhxu_seq_P, exists_mthi_seq_P, exists_mtlo_P.
* move=> [sj hj] Psj.
- have : uniq(k, alpha, x, z, m, one, ext, int_, X_, B2K_, Y_, M_, quot, C_, t, s_, r0) by Uniq_uniq r0.
case/(mont_square_strict_termination sj hj) => x0 Hx0; by exists x0.
Qed.
Require Import ZArith_ext seq_ext machine_int uniq_tac.
Import MachineInt.
Require Import mips_cmd mips_tactics mips_contrib.
Require Import mont_mul_strict_prg mont_square_termination multi_lt_termination.
Require Import multi_sub_u_u_termination multi_zero_u_termination.
Import expr_m.
Local Open Scope machine_int_scope.
Local Open Scope mips_expr_scope.
Local Open Scope mips_cmd_scope.
Local Open Scope uniq_scope.
Lemma mont_square_strict_termination s h k alpha x z m one ext int_ X_ B2K_ Y_ M_ quot C_ t s_ :
uniq(k, alpha, x, z, m, one, ext, int_, X_, B2K_, Y_, M_, quot, C_, t, s_, r0) ->
{si | Some (s, h) --
mont_mul_strict k alpha x x z m one ext int_ X_ B2K_ Y_ M_ quot C_ t s_ ---> si }.
Proof.
move=> Hset; rewrite /mont_mul_strict.
apply exists_seq_P2 with (fun si => True).
- case/(termination_mont_square s h) : (Hset) => si Hsi; by exists si.
- move=> [si hi] Psi.
+ apply exists_ifte.
* apply exists_seq_P2 with (fun si => True).
- have : uniq(k, z, m, X_, B2K_, int_, ext, M_, Y_, r0) by Uniq_uniq r0.
case/(multi_lt_termination si hi) => sj Hsj.
by exists sj.
- move=> [sj hj] Psj.
+ apply exists_ifte.
* have : uniq(k, m, z, ext, int_, quot, C_, M_, B2K_, r0) by Uniq_uniq r0.
move/multi_sub_u_u_termination. case/(_ sj hj z) => sk Hk; by exists sk.
* apply exists_nop; by move: {Psj}(Psj _ (refl_equal _)).
* apply exists_addiu_seq.
exists_sw_new l Hl z0 Hz0.
repeat Reg_upd.
apply exists_addiu_seq.
repeat Reg_upd.
set s0 := store.upd _ _ _.
set h0 := heap.upd _ _ _.
have : uniq(ext, m, z, Y_, int_, quot, C_, M_, B2K_, r0) by Uniq_uniq r0.
move/multi_sub_u_u_termination. case/(_ s0 h0 z) => sk Hk.
eexists; by apply Hk.
Qed.
Lemma mont_square_strict_init_termination
s h k alpha x z m one ext int_ X_ B2K_ Y_ M_ quot C_ t s_ :
uniq(k, alpha, x, z, m, one, ext, int_, X_, B2K_, Y_, M_, quot, C_, t, s_, r0) ->
{ si | Some (s, h) --
mont_mul_strict_init k alpha x x z m one ext int_ X_ B2K_ Y_ M_ quot C_ t s_ ---> si }.
Proof.
move=> Hset; rewrite /mont_mul_strict_init.
apply exists_seq_P2 with (fun si => True).
- have : uniq(k, z, ext, M_, r0) by Uniq_uniq r0.
case/(multi_zero_u_termination s h) => si Hsi.
exists si; split; first by tauto.
done.
- move=> [si hi] Psi.
+ apply exists_seq_P2 with (fun sj => True).
* by apply exists_mflhxu_seq_P, exists_mthi_seq_P, exists_mtlo_P.
* move=> [sj hj] Psj.
- have : uniq(k, alpha, x, z, m, one, ext, int_, X_, B2K_, Y_, M_, quot, C_, t, s_, r0) by Uniq_uniq r0.
case/(mont_square_strict_termination sj hj) => x0 Hx0; by exists x0.
Qed.