Library mont_square_strict_init_triple

From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq.
Require Import ssrZ ZArith_ext ssrnat_ext seq_ext machine_int multi_int uniq_tac.
Import MachineInt.
Require Import mips_seplog mips_frame mips_contrib mips_tactics mapstos.
Require Import mont_mul_strict_prg multi_zero_u_prg multi_zero_u_triple.
Require Import mont_square_strict_triple.
Import expr_m.
Import assert_m.

Local Open Scope machine_int_scope.
Local Open Scope eqmod_scope.
Local Open Scope heap_scope.
Local Open Scope uniq_scope.
Local Open Scope mips_expr_scope.
Local Open Scope mips_assert_scope.
Local Open Scope mips_cmd_scope.
Local Open Scope mips_hoare_scope.
Local Open Scope multi_int_scope.
Local Open Scope zarith_ext_scope.

Section mont_square_strict_init.

Variables k alpha x z m one ext int_ X_ Y_ M_ Z_ quot C t s_ : reg.

Lemma mont_square_strict_init_triple :
  uniq(k, alpha, x, z, m, one, ext, int_, X_, Y_, M_, Z_, quot, C, t, s_, r0) ->
  forall nk valpha vx vm vz X M,
  u2Z (M `32_ 0) * u2Z valpha =m -1 {{ \B^1 }} ->
  size X = nk -> size M = nk ->
  u2Z vz + 4 * Z_of_nat nk.+1 < \B^1 ->
  \S_{ nk } X < \S_{ nk } M ->
  {{ fun s h => exists Z, size Z = nk /\
    [x]_s = vx /\ [z]_s = vz /\ [m]_s = vm /\ u2Z [k]_s = Z_of_nat nk /\ [alpha]_s = valpha /\
    (var_e x |--> X ** var_e z |--> Z ++ zero32 :: nil ** var_e m |--> M ++ zero32 :: nil) s h }}
  mont_mul_strict_init k alpha x x z m one ext int_ X_ Y_ M_ Z_ quot C t s_
  {{fun s h => exists Z, size Z = nk /\
    [x]_s = vx /\ [z]_s = vz /\ [m]_s = vm /\
    u2Z [k]_s = Z_of_nat nk /\ [alpha]_s = valpha /\
    (var_e x |--> X ** var_e z |--> Z ++ zero32::nil ** var_e m |--> M ++ zero32::nil) s h /\
    \B^nk * \S_{ nk } Z =m \S_{ nk } X * \S_{ nk } X {{ \S_{ nk } M }} /\ \S_{ nk } Z < \S_{ nk } M }}.
Proof.
move=> Hset nk valpha vx vm vz X M Halpha HlenX HlenM Hnz HXM.
rewrite /mont_mul_strict_init.

multi_zero ext k Z z ;

apply pull_out_exists => Z.

apply (hoare_prop_m.hoare_stren (!(fun s => size Z = nk) **
  (fun s h => [x]_s = vx /\ [z]_s = vz /\ [m]_s = vm /\
    u2Z [k]_s = Z_of_nat nk /\ [alpha]_s = valpha /\
    ((var_e x |--> X ** var_e z |--> Z ++ zero32 :: nil) ** var_e m |--> M ++ zero32 :: nil) s h))).

move=> s h [HlenZ [Hrx [Hrz [Hrm_ [Hrk [Hralpha Hmem]]]]]].
exists heap.emp, h; repeat (split => //).
by map_tac_m.Disj.
by map_tac_m.Equal.
by rewrite conAE.

apply pull_out_bang => HlenZ.

apply (hoare_prop_m.hoare_stren
  ((fun s h => [z]_s = vz /\ u2Z [k]_s = Z_of_nat nk /\ (var_e z |--> Z) s h) **
    (fun s h => [x]_s = vx /\ [m]_s = vm /\ [alpha]_s = valpha /\
      (var_e x |--> X ** var_e z \+ int_e (Z2u 32 (Z_of_nat (4 * nk))) |~> int_e zero32 **
        var_e m |--> M ++ zero32 :: nil) s h))).

move=> s h [Hrx [Hrz [Hrm_ [Hrk [Hralpha Hmem]]]]].

rewrite decompose_last_equiv HlenZ !assert_m.conAE assert_m.conCE !assert_m.conAE in Hmem.
case: Hmem => h1 [h2 [Hdisj [Hunion [Hmem1 Hmem2]]]].
exists h1, h2; repeat (split; trivial).
by assoc_comm Hmem2.

apply while.hoare_seq with (
  (fun s h => [z]_s = vz /\ u2Z [k]_s = Z_of_nat nk /\ (var_e z |--> nseq nk zero32) s h) **
  (fun s h => [x]_s = vx /\ [m]_s = vm /\ [alpha]_s = valpha /\
    (var_e x |--> X ** var_e z \+ int_e (Z2u 32 (Z_of_nat (4 * nk))) |~> int_e zero32 **
      var_e m |--> M ++ zero32 :: nil) s h)).

apply frame_rule_R.
- eapply multi_zero_u_triple; eauto.
  + by Uniq_uniq r0.
  + rewrite Z_S in Hnz; lia.
- by Inde_frame.
- move=> ?; by Inde_mult.

apply while.hoare_seq with (fun s h => [x]_s = vx /\ [z]_s = vz /\ [m]_s = vm /\
  u2Z [k]_s = Z_of_nat nk /\ [alpha]_s = valpha /\
  (var_e x |--> X ** var_e z |--> nseq nk zero32 ++ zero32 :: nil ** var_e m |--> M ++ zero32 :: nil) s h /\
  store.multi_null s).

(mflhxu r0 ;

apply hoare_mflhxu with (fun s h =>[x]_s = vx /\ [z]_s = vz /\ [m]_s = vm /\
  u2Z [k]_s = Z_of_nat nk /\ [alpha]_s = valpha /\
  (var_e x |--> X ** var_e z |--> nseq nk zero32 ++ zero32 :: nil ** var_e m |--> M ++ zero32 :: nil) s h /\
  store.acx s = Z2u store.acx_size 0).

move=> s h [h1 [h2 [Hdisj [Hunion [[Hrz [Hrk Hmem1]] [Hrx [Hrm_ [Hralpha Hmem2]]]]]]]].
rewrite /wp_mflhxu.
repeat Reg_upd; repeat (split; trivial).
move: {Hmem1 Hmem2}(assert_m.con_cons _ _ _ _ _ Hdisj Hmem1 Hmem2) => Hmem.
rewrite Hunion decompose_last_equiv size_nseq store.upd_r0.
Assert_upd; by assoc_comm Hmem.

by apply store.acx_mflhxu_op.

mthi r0 ;

apply hoare_mthi with (fun s h => [x]_s = vx /\ [z]_s = vz /\ [m]_s = vm /\
  u2Z [k]_s = Z_of_nat nk /\ [alpha]_s = valpha /\
  (var_e x |--> X ** var_e z |--> nseq nk zero32 ++ zero32 :: nil ** var_e m |--> M ++ zero32 :: nil) s h /\
  store.acx s = Z2u store.acx_size 0 /\ store.hi s = zero32).

move=> {Z HlenZ} s h [Hrx [Hrz [Hrm_ [Hrk [Hralpha [Hmem Hacx]]]]]].
rewrite /wp_mthi.
repeat Reg_upd; repeat (split; trivial).
by Assert_upd.
by rewrite store.acx_mthi_op.
by rewrite store.hi_mthi_op.

mtlo r0) ;

apply hoare_mtlo'.

move=> {Z HlenZ} s h [Hrx [Hrz [Hrm_ [Hrk [Hralpha [Hmem [Hacx Hhi]]]]]]].
rewrite /wp_mtlo.
repeat Reg_upd; repeat (split; trivial).
by Assert_upd.
apply store.utoZ_multi_null.
by rewrite store.utoZ_def store.hi_mtlo_op store.acx_mtlo_op store.lo_mtlo_op Hacx Hhi /zero32 !Z2uK.

mont_mul_strict k alpha x y z m one ext int X Y M Z quot C t s.

by eapply mont_square_strict_verif; eauto.
Qed.

End mont_square_strict_init.