Library frag_list_init10
From mathcomp Require Import ssreflect eqtype.
Require Import List Max ZArith EqNat.
Require Import bipl seplog.
Require Import expr_b_dp.
Require Import frag_list_entail frag_list_triple.
Import seplog_Z_m.
Import seplog_Z_m.assert_m.expr_m.
Import seplog_Z_m.assert_m.
Local Open Scope heap_scope.
Local Open Scope seplog_expr_scope.
Local Open Scope seplog_cmd_scope.
Local Open Scope frag_list_scope.
Local Close Scope Z_scope.
Require Import List Max ZArith EqNat.
Require Import bipl seplog.
Require Import expr_b_dp.
Require Import frag_list_entail frag_list_triple.
Import seplog_Z_m.
Import seplog_Z_m.assert_m.expr_m.
Import seplog_Z_m.assert_m.
Local Open Scope heap_scope.
Local Open Scope seplog_expr_scope.
Local Open Scope seplog_cmd_scope.
Local Open Scope frag_list_scope.
Local Close Scope Z_scope.
initialize some field of an array of data-structure
Definition ptr : var.v := 1.
Definition startl : var.v := 2.
Definition size: var.v := 3.
Definition idx: var.v := 4.
Definition init_val: var.v := 5.
Fixpoint init_body (n : nat) {struct n}: @while.cmd cmd0 expr_b :=
match n with
0 => skip
| S n' =>
(var_e ptr \+ var_e idx) *<- var_e init_val;
ptr <- var_e ptr \+ var_e size;
init_body n'
end.
Definition init (n : nat) : @while.cmd cmd0 expr_b :=
ptr <- var_e startl;
init_body n.
Fixpoint init_precond_sigma (n : nat) {struct n} : Sigma :=
match n with
0 => frag_list_entail.emp
| S n' => star
(cell (var_e startl \+ var_e idx \+ var_e size \* cst_e (Z_of_nat n')))
(init_precond_sigma n')
end.
Definition init_precond (n : nat) : assrt :=
(var_e startl \> cst_e 0%Z, init_precond_sigma n).
Fixpoint init_postcond_sigma (n : nat) {struct n}: Sigma :=
match n with
0 => frag_list_entail.emp
| S n' => star
(singl (var_e startl \+ var_e idx \+ var_e size \* cst_e (Z_of_nat n')) (var_e init_val))
(init_postcond_sigma n')
end.
Definition init_postcond (n : nat) : assrt :=
(var_e startl \> cst_e 0%Z, init_postcond_sigma n).
with bigtoe
Lemma init_verif_bigtoe_10 : forall n, n = 10 ->
{{{ init_precond n }}} init n {{{ init_postcond n }}}.
Proof.
intros; subst n.
rewrite /init; simpl init_body.
rewrite /init_precond; simpl init_precond_sigma.
rewrite /init_postcond; simpl init_postcond_sigma.
rewrite /ptr /startl /size /idx /init_val.
eapply tritra_use.
simpl; intuition.
Tritra.
Qed.