Library frag_list_examples
Require Import List ZArith EqNat.
From mathcomp Require Import ssreflect ssrbool eqtype.
Require Import bipl seplog.
Require Import frag_list_entail frag_list_triple frag_list_vcg.
Require Import expr_b_dp.
Import seplog_Z_m.assert_m.
Import seplog_Z_m.assert_m.expr_m.
Import seplog_Z_m.
Local Open Scope heap_scope.
Local Open Scope seplog_expr_scope.
Local Open Scope seplog_cmd_scope.
Local Open Scope seplog_assert_scope.
Local Open Scope seplog_hoare_scope.
Local Close Scope Z_scope.
From mathcomp Require Import ssreflect ssrbool eqtype.
Require Import bipl seplog.
Require Import frag_list_entail frag_list_triple frag_list_vcg.
Require Import expr_b_dp.
Import seplog_Z_m.assert_m.
Import seplog_Z_m.assert_m.expr_m.
Import seplog_Z_m.
Local Open Scope heap_scope.
Local Open Scope seplog_expr_scope.
Local Open Scope seplog_cmd_scope.
Local Open Scope seplog_assert_scope.
Local Open Scope seplog_hoare_scope.
Local Close Scope Z_scope.
an initialization of a field for an array of structure
Definition ptr : var.v := 1.
Definition startl : var.v := 2.
Definition size: var.v := 3.
Definition idx: var.v := 4.
Definition init_val: var.v := 5.
Fixpoint init_body (n : nat) : @while.cmd cmd0 expr_b :=
match n with
| 0 => skip
| S n' =>
(var_e ptr \+ var_e idx) *<- var_e init_val;
ptr <- (var_e ptr) \+ (var_e size);
init_body n'
end.
Definition init (n : nat) : @while.cmd cmd0 expr_b :=
ptr <- var_e startl ;
init_body n.
Fixpoint init_precond_sigma (n : nat) : Sigma :=
match n with
| 0 => frag_list_entail.emp
| S n' => star
(cell (var_e startl \+ var_e idx \+ var_e size \* cst_e (Z_of_nat n')))
(init_precond_sigma n')
end.
Definition init_precond (n : nat) : assrt :=
(var_e startl \> cst_e 0%Z, init_precond_sigma n).
Fixpoint init_postcond_sigma (n : nat) : Sigma :=
match n with
| 0 => frag_list_entail.emp
| S n' => star
(singl
(var_e startl \+ var_e idx \+ var_e size \* cst_e (Z_of_nat n'))
(var_e init_val))
(init_postcond_sigma n')
end.
Definition init_postcond (n : nat) : assrt :=
(var_e startl \> cst_e 0%Z, init_postcond_sigma n).
Lemma init_verif : forall n, n = 3 ->
{{ assrt_interp (init_precond n) }}
init n
{{ Assrt_interp (init_postcond n :: nil) }}.
Proof.
intros; subst n.
rewrite /init; simpl init_body.
rewrite /init_precond; simpl init_precond_sigma.
rewrite /init_postcond; simpl init_postcond_sigma.
rewrite /ptr /startl /size /idx /init_val.
eapply tritra_use.
simpl; reflexivity.
Tritra.
Qed.
Local Open Scope frag_list_vc_scope.
Lemma init_verif' : forall n, n = 2 ->
{{ Assrt_interp (init_precond n :: nil) }}
init n
{{ Assrt_interp (init_postcond n :: nil) }}.
Proof.
intros; subst n.
rewrite /init; simpl init_body.
rewrite /init_precond; simpl init_precond_sigma.
rewrite /init_postcond; simpl init_postcond_sigma.
rewrite /ptr /startl /size /idx /init_val.
match goal with
|- {{ _ }} ?C {{ _ }} =>
replace C with (frag_list_vcg.proj_cmd
(1 <- var_e 2 ;
(var_e 1 \+ var_e 4 *<- var_e 5 ;
(1 <- var_e 1 \+ var_e 3 ;
(var_e 1 \+ var_e 4 *<- var_e 5 ;
(1 <- var_e 1 \+ var_e 3) ;
skip'')))))
end.
apply bigtoe_fun_correct.
vm_compute; reflexivity.
reflexivity.
Qed.
Local Close Scope frag_list_vc_scope.
Lemma test1 : {{ assrt_interp (true_b, frag_list_entail.emp) }}
If (var_e 1 \>= var_e 2) Then
If (var_e 1 \>= var_e 3) Then
(0 <- var_e 1)
Else
(0 <- var_e 3)
Else
If (var_e 2 \>= var_e 3) Then
(0 <- var_e 2)
Else
(0 <- var_e 3)
{{ Assrt_interp ((true_b,frag_list_entail.emp) :: nil) }}.
Proof.
eapply tritra_use.
simpl; reflexivity.
Tritra.
Qed.
Lemma test2 :
{{ Assrt_interp ((true_b, frag_list_entail.emp) :: nil) }}
If (var_e 1 \>= var_e 2) Then
If (var_e 1 \>= var_e 3) Then
(0 <- var_e 1)
Else
(0 <- var_e 3)
Else
If (var_e 2 \>= var_e 3) Then
(0 <- var_e 2)
Else
(0 <- var_e 3)
{{ Assrt_interp ((var_e 0 \= var_e 1 \|| var_e 0 \= var_e 2 \|| var_e 0 \= var_e 3, frag_list_entail.emp)::nil) }}.
Proof.
Local Open Scope frag_list_vc_scope.
match goal with
|- {{ _ }} ?C {{ _ }} =>
replace C with
(frag_list_vcg.proj_cmd (ifte'' (var_e 1 \>= var_e 2)
(ifte'' (var_e 1 \>= var_e 3) (0 <- var_e 1) (0 <- var_e 3))
(ifte'' (var_e 2 \>= var_e 3) (0 <- var_e 2) (0 <- var_e 3))))
end.
Local Close Scope frag_list_vc_scope.
apply bigtoe_fun_correct.
compute; reflexivity.
reflexivity.
Qed.
Lemma test3 :
{{ assrt_interp (true_b, frag_list_entail.emp) }}
If (var_e 1 \>= var_e 2) Then
If (var_e 1 \>= var_e 3) Then
(0 <- var_e 1)
Else
(0 <- var_e 3)
Else
If (var_e 2 \>= var_e 3) Then
(0 <- var_e 2)
Else
(0 <- var_e 3)
{{ Assrt_interp ((var_e 0 \= var_e 1 \|| var_e 0 \= var_e 2 \|| var_e 0 \= var_e 3, frag_list_entail.emp)::nil) }}.
Proof.
eapply tritra_use.
simpl; reflexivity.
Tritra.
Qed.