Basic results about spaces of sumable sequences in Coq

Florian Steinberg

For a fixed positive real number \(p \) consider the space \(\ell_p \) of sequences whose \(p \)-th power is absolutely sumable and on this space consider the \(p \)-norm. I.e.

\[
\ell_p := \{ x : \mathbb{N} \rightarrow \mathbb{R} \mid \sum |x_n|^p < \infty \}, \quad \| x \|_p := \left(\sum |x_n|^p \right)^{\frac{1}{p}}.
\]

For \((\ell_p, \| \cdot \|_p)\) is a Banach space whenever \(1 \leq p \leq \infty \). In particular the Minkowski inequality \(\| x+y \|_p \leq \| x \|_p + \| y \|_p \) asserts that the triangle-inequality holds. \(\ell^p \)-spaces are popular as basic examples for Banach-Spaces and extremely well investigated in classical mathematics.

I present formalizations of basic facts about \(\ell_p \) spaces in the proof assistant Coq that I have recently done. In particular I instanciated \(\ell_p \) in Coquelicot’s [1] NormedModule type and for this formalized proofs of Minkowski’s and Hölder’s inequalities and of Young’s inequality for products. Just like Coquelicot, the work is based on a classical axiomatization of the real numbers and therefore non-constructive. I did not adhere to Coquelicot’s convention to be conservative over this axiomatization and use functional extensionality and proof-irrelevance to avoid the need to replace equality with equivalence relations on spaces of sequences. Some parts of the development also use classical reasoning, for instance those that use the mean value theorem as the current proof from the standard-library is classical. Still, constructive aspects naturally make an appearance as the \(\ell_p \)-norms are best defined as functions into the positive upper reals and the difference between least upper bound and supremum is essential to the definition of the \(\ell_p \)-norms as functions.

The more general \(L_p \)-spaces of measurable functions have been formalized in other proof-assistants, for instance in Isabelle/Hol [3]. I used these developments as a guideline for mine. To my knowledge, no treatment in Coq is available. This may be due to additional problems with quotients in Coq, which is also one of the reasons why I decided to restrict to the case \(\ell_p \) where taking the quotient can be done by assuming functional extensionality. I attempted to formulate the results in such a way that they can be reused for more general development of \(L_p \) theory at a later point in time.

Some parts of this work may be of separate interest, for instance I developed some basic properties of convex sets and functions. This is because the standard proof of Young’s inequality for products relies on the fact that any function on a convex set whose derivative is strictly increasing is already convex. While the result is only needed when applied to the logarithm function, it is proven in full generality in the development. The proof of this statement, in turn, relies on the mean value theorem from the standard library which is restated in a slightly stronger form that replaces the assumption that the function is continuous in
each point of an interval by the weaker assumption that its restriction to the
interval is continuous which is closer to the usual mathematical formulation.

The part of this work that is about convex functions can be obtained from
a designated github repository [6]. The inequalities for- and definition of \(\ell_p \)
is located in the folder for unfinished examples of the Incone library [7]. This
is because this work is meant to be the basis of an investigation of \(\ell_p \) spaces
from the point of view of computable analysis. Duality theory makes \(\ell_p \)-spaces
valuable as examples that can help in developing a toolbox for computability
and complexity theory on continuous structures. The Banach-space dual of \(\ell_p \)
is \(\ell_q \), where \(1/p + 1/q = 1 \) and Banach-Space duality has been investigated in
computable analysis [2]. An alternate approach is to consider the dual as a
subspace of a function space in the cartesian closed category \(\text{QCB}_0 \) of quotients
of countably based spaces. In this case, the dual of \(\ell_p \) is \(\ell_q^\perp \) whose topology is
more similar to the weak topology and taking the dual again leads back to \(\ell_p \)
with the norm topology. The dual pairs \((\ell_p, \ell_q^\perp)\) consist of a pair of a Banach
space and a so-called co-polish space for both of which a complexity theoretical
treatment in the sense of computable analysis is available [5, 4]. This is while
the construction of the dual space involves taking a function space which is
known to be problematic for complexity theoretical treatment [8].

References

[1] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Coquelicot: A
user-friendly library of real analysis for Coq. Mathematics in Computer

boundary value problems in variational formulation. Journal of Complexity,

metric spaces and Banach spaces. In 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23,

[7] Florian Steinberg, Laurent Thery, and Holger Thies. Quantitative continuity
and computable analysis in Coq. HAL preprint, short version accepted for
presentation at ITP 2019, April 2019.