
Computable analysis, exact real arithmetic

and analytic functions in Coq∗

Florian Steinberg1 and Holger Thies2

1INRIA, Saclay 2Kyushu University, Fukuoka

Computable analysis is the application of computability and complexity theory to prob-
lems on real numbers and other uncountable spaces. Some of the basic aspects of com-
putable analysis have recently been formalized in the Incone library. In this library, a
represented space X is a record consisting of a type X of abstract objects to compute over,
countable inhabited types QX and AX of questions and answers, and a partial surjective
function δX : (QX → AX) → X called representation. Each ϕ : QX → AX with δX(ϕ) = x
is called a name for x. Topological and computability theoretical properties of functions
f :⊆ X → Y can be reduced to computing on names by means of realizers, functions
F : (QX → AX)→ (QY → AY) mapping names for elements x ∈ X to names for f(x) ∈ Y.
Realizers can often be defined as functions in Coq without resorting to any axioms, thus
making them executable inside of Coq and accessible to code extraction. Consequently, a
definition of such a realizer is considered as evidence that f is computable. While the realizer
should not use any non-computational components in its definition, classical reasoning and
controlled use of choice axioms can be used for proofs of correctness and other properties. In
particular the abstract data types are captured through classical descriptions along the lines
of the axiomatization of the reals in Coq’s standard library.

Using Incone, a representation for real numbers via rational approximations and realizers
for arithmetic operations and a limiting procedure can be defined by using the types for real
and rational numbers from Coq’s standard library. Here, the questions are rational accuracy
requirements and answers are rational approximations. A more detailed description of the
library and some applications can be found in our recent work [STT19]. While the former
mainly deals with more theoretical aspects of computable analysis, here we consider applica-
tions to actual computations with real numbers and functions and (maybe more interestingly)
operators such as integration or differentiation mapping real functions to real functions. In-
cone provides a function space construction that takes represented spaces X and Y and
returns the represented space XY of continuous functions from Y to X. This construction
can be used to make the source and target spaces of such operators, i.e. RR, accessible to
computation. However, it is well known that in this general setting many important operators
such as maximization or differentiation become infeasible or even uncomputable. Thus, real
number complexity theory is usually concerned with similar operations on smaller spaces of
functions whose representations provide additional information.

An example for such a space is Cω(B1(0)), the space of analytic functions that have no
singularities in the closed complex unit ball and return real values on real arguments. Any
f ∈ Cω(B1(0)) has a power series expansion a : N → R such that f(x) =

∑∞
i=0 anx

n for all
x ∈ [−1, 1]. On one hand, many operators such as differentiation or arithmetic operations
correspond to rather simple manipulations on the power series coefficients. On the other hand,
the power series alone is not sufficient for evaluation of the infinite sum as no tail-estimate is

∗This work was supported by JSPS KAKENHI Grant Number JP18J10407, by the Japan Society for the
Promotion of Science (JSPS), Core-to-Core Program (A. Advanced Research Networks), by the ANR project
FastRelax (ANR-14-CE25-0018-01) of the French National Agency for Research and by EU-MSCA-RISE
project 731143 Computing with Infinite Data (CID).

1

available. To mend this issue, one adds to the power series integer constants A, k ∈ N called

a series bound that are such that ∀n ∈ N, |an| ≤ A
(
1 + 1

k

)−n
. That such constants always

exist follows from basic theorems about analytic functions. The exact form of the bounds is
chosen such that the effort for many basic operations scales polynomially in the size of the
series bound [KMRZ15]. We represent the space of power series with radius of convergence
bigger than one as follows: a name of the power series is a name as series of real numbers
(using Incone’s infinite product construction) together with a series bound, i.e. integers A
and k as above. A realizer, e.g. for differentiation thus has to produce from a power series and
a series bound for f not only a power series for f ′ but also an appropriate series bound. We
implemented the evaluation procedure that witnesses that the above space of power series
is canonically isomorphic to a space of functions. We also defined realizers for standard
operations (e.g. arithmetic, derivatives and anti-derivatives) and elementary functions like
the exponential and trigonometric functions. All realizers come with full formal proofs of
their correctness. Our proofs rely on results about real numbers from the standard library
and make heavy use of the treatment of power series in the Coquelicot library [BLM15] and
also use the Coq-Interval library [Mel08] to prove inequalities over real numbers.

In spite of that the definitions of representations and realizers have been taken from results
in real number complexity theory where they are used to show polynomial-time computability,
our implementations are not very competitive in terms of efficiency. One reason for this is that
computing with rationals is not feasible. An equivalent but more practical way to encode real
numbers uses sequences of intervals with multi-precision floating point numbers as endpoints,
an approach similar to that used in many software packages for exact real arithmetic. Further
improvements can be made by using more sophisticated ideas from verified numerics such as
affine arithmetic or Taylor models. Similar methods have already been formalized in Coq,
for instance in the Coq-Interval library. The notion of correctness used in these libraries is
weaker than correctness in the sense of computable analysis as diameters of return intervals
are not required to approach zero as the precision goes to infinity. For a limited number
of simpler operations, for instance arithmetic operations on the reals, bounds are easy to
come by and we started proving them so that interval operations can be used to obtain
algorithms in the sense of computable analysis. For more elaborate problems like evaluation
of basic analytic functions, we hope to be able to modify our algorithms to produce a fallback
source of approximations used only if enclosures gained from the Coq-Interval library are
not tight enough. The idea is to use the series bound to obtain a rough upper bound of the
expected approximation quality of the fallback algorithm and check this bound against the
diameter of the return value in the Coq-Interval library. As the estimations are fairly simple
computations and it is not expected that the fallback algorithm is executed often, we hope
to achieve an acceptable overhead over the operations from the interval library together with
full correctness proofs of the merged algorithms in the sense of computable analysis.

References

[BLM15] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Coquelicot: A user-
friendly library of real analysis for Coq. Mathematics in Computer Science,
9(1):41–62, 2015.

[KMRZ15] Akitoshi Kawamura, Norbert Th. Müller, Carsten Rösnick, and Martin Ziegler.
Computational Benefit of Smoothness. Journal of Complexity, 2015.

[Mel08] Guillaume Melquiond. Proving bounds on real-valued functions with computa-
tions. In International Joint Conference on Automated Reasoning, pages 2–17.
Springer, 2008.

[STT19] Florian Steinberg, Laurent Thery, and Holger Thies. Quantitative continuity and
computable analysis in Coq. HAL preprint, short version accepted for presentation
at ITP 2019, April 2019.

2

