
Computable analysis, exact real arithmetic
and analytic functions in Coq

Holger Thies, Kyushu University
Florian Steinberg, INRIA Saclay

September 8, 2019

The Coq Workshop
Portland,OR, USA

1

Computable analysis

http://www.cca-net.de

Study problems from real analysis using methods from
computability theory and computational complexity theory.

• What problems can be computed in principle e.g. by Turing
machines?

• Which of these problems can be computed efficiently?

• The model provides a realistic model of computation not only
for real numbers but also spaces of functions etc.

2

Exact computation with real
numbers

Computing real numbers

A real number x ∈ R is called computable if there is a computable
function ϕ : Q→ Q such that ∀ε ∈ Q, |ϕ(n)− x | ≤ ε.

ϕ

ε ε-approx. to x

A function ϕ as above is called a name of x A real number is
computable if it has a computable name.

3

Computing real numbers

A real number x ∈ R is called computable if there is a computable
function ϕ : Q→ Q such that ∀ε ∈ Q, |ϕ(n)− x | ≤ ε.

ϕ

ε ε-approx. to x

A function ϕ as above is called a name of x A real number is
computable if it has a computable name.

3

Computing with real numbers

Real numbers are encoded by rational approximation functions.

• Computable functions: relate f : R→ R to approximation
function F : (Q→ Q)→ Q→ Q s.t. |F (ϕ)(ε)− f (x)| ≤ ε for
all ϕ that are names for x and all ε > 0.

• Equivalently the function F maps names of x to names of
f (x).

• Such a function F is called a realizer for F in computable
analysis.

4

Computing with real numbers

Real numbers are encoded by rational approximation functions.

• Computable functions: relate f : R→ R to approximation
function F : (Q→ Q)→ Q→ Q s.t. |F (ϕ)(ε)− f (x)| ≤ ε for
all ϕ that are names for x and all ε > 0.

• Equivalently the function F maps names of x to names of
f (x).

• Such a function F is called a realizer for F in computable
analysis.

4

Computing with real numbers

Real numbers are encoded by rational approximation functions.

• Computable functions: relate f : R→ R to approximation
function F : (Q→ Q)→ Q→ Q s.t. |F (ϕ)(ε)− f (x)| ≤ ε for
all ϕ that are names for x and all ε > 0.

• Equivalently the function F maps names of x to names of
f (x).

• Such a function F is called a realizer for F in computable
analysis.

4

Computing with reals in coq

Easy to define in Coq using the axiomatization of the reals in the
standard library:

(* A name for x encodes x by rational approximations *)
Definition is_name (phi : (Q -> Q)) (x : R) :=

forall eps, (0 < (Q2R eps)) ->
Rabs (x - (phi eps)) <= eps.

(* A name for zero *)
Lemma zero_name : (is_name (fun eps => eps) 0).

5

Computing with reals in coq

Easy to define in Coq using the axiomatization of the reals in the
standard library:

(* A name for x encodes x by rational approximations *)
Definition is_name (phi : (Q -> Q)) (x : R) :=

forall eps, (0 < (Q2R eps)) ->
Rabs (x - (phi eps)) <= eps.

(* A name for zero *)
Lemma zero_name : (is_name (fun eps => eps) 0).

5

Realizers for reals in coq

(* A realizer maps names to names *)
Definition is_realizer

(F: (Q -> Q) -> Q -> Q) (f : R -> R) :=
forall phi x, (is_name phi x) ->

(is_name (F phi) (f x)).

Definition double_realizer (phi : Q -> Q) eps :=
(2*(phi (eps/2)))%Q.

Lemma double_realizer_correct :
(is_realizer double_realizer (fun x => 2*x)).
[...]

Define realizers to specify algorithms and correctness proofs using
classical mathematics.

6

Realizers for reals in coq

(* A realizer maps names to names *)
Definition is_realizer

(F: (Q -> Q) -> Q -> Q) (f : R -> R) :=
forall phi x, (is_name phi x) ->

(is_name (F phi) (f x)).

Definition double_realizer (phi : Q -> Q) eps :=
(2*(phi (eps/2)))%Q.

Lemma double_realizer_correct :
(is_realizer double_realizer (fun x => 2*x)).
[...]

Define realizers to specify algorithms and correctness proofs using
classical mathematics.

6

Realizers for reals in coq

(* A realizer maps names to names *)
Definition is_realizer

(F: (Q -> Q) -> Q -> Q) (f : R -> R) :=
forall phi x, (is_name phi x) ->

(is_name (F phi) (f x)).

Definition double_realizer (phi : Q -> Q) eps :=
(2*(phi (eps/2)))%Q.

Lemma double_realizer_correct :
(is_realizer double_realizer (fun x => 2*x)).
[...]

Define realizers to specify algorithms and correctness proofs using
classical mathematics.

6

Representations

• Also want to consider other ways to encode reals.

• We do not only want to compute with real numbers but also
with e.g. real vectors, complex numbers or more complicated
spaces.

• In particular function spaces like C ([0, 1]) are interesting to
define computation of numerical operators such as integration,
differentiation, ODE solving, ...

More general encodings: Encode by a function
from “questions” to “answers”.
In computable analysis encodings of spaces of
continuum cardinality are called representations.

x ∈ X

q ∈ QX a ∈ AX

7

Representations

• Also want to consider other ways to encode reals.

• We do not only want to compute with real numbers but also
with e.g. real vectors, complex numbers or more complicated
spaces.

• In particular function spaces like C ([0, 1]) are interesting to
define computation of numerical operators such as integration,
differentiation, ODE solving, ...

More general encodings: Encode by a function
from “questions” to “answers”.
In computable analysis encodings of spaces of
continuum cardinality are called representations.

x ∈ X

q ∈ QX a ∈ AX

7

Representations

• Also want to consider other ways to encode reals.

• We do not only want to compute with real numbers but also
with e.g. real vectors, complex numbers or more complicated
spaces.

• In particular function spaces like C ([0, 1]) are interesting to
define computation of numerical operators such as integration,
differentiation, ODE solving, ...

More general encodings: Encode by a function
from “questions” to “answers”.
In computable analysis encodings of spaces of
continuum cardinality are called representations.

x ∈ X

q ∈ QX a ∈ AX

7

Representations

• Also want to consider other ways to encode reals.

• We do not only want to compute with real numbers but also
with e.g. real vectors, complex numbers or more complicated
spaces.

• In particular function spaces like C ([0, 1]) are interesting to
define computation of numerical operators such as integration,
differentiation, ODE solving, ...

More general encodings: Encode by a function
from “questions” to “answers”.
In computable analysis encodings of spaces of
continuum cardinality are called representations.

x ∈ X

q ∈ QX a ∈ AX

7

Representations

• Also want to consider other ways to encode reals.

• We do not only want to compute with real numbers but also
with e.g. real vectors, complex numbers or more complicated
spaces.

• In particular function spaces like C ([0, 1]) are interesting to
define computation of numerical operators such as integration,
differentiation, ODE solving, ...

More general encodings: Encode by a function
from “questions” to “answers”.
In computable analysis encodings of spaces of
continuum cardinality are called representations.

x ∈ X

q ∈ QX a ∈ AX

7

Representations

Representation for a space X : A partial surjective function
δ :⊆ B → X .

(Q → A)

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5 ...

X

x1

x2

x3...

names for x3

δX

Represented space X := (X , δX).

8

Computable analysis in Coq

• Partial functions important in computable analysis use
relations.

• The incone library (Steinberg) is an attempt to formalize
results from computable analysis in Coq.

• 21528 loc in 109 files

• It provides formal definitions of represented spaces and
continuity similar to those in computable analysis.

• Realizers should be constructive, i.e., executable inside Coq.

• Reasoning about correctness and the relation between
represented space and abstract space non-constructive (e.g.
use axiomatization of the reals in the standard library, classical
reasoning, countable choice)

9

Computable analysis in Coq

• Partial functions important in computable analysis use
relations.

• The incone library (Steinberg) is an attempt to formalize
results from computable analysis in Coq.

• 21528 loc in 109 files

• It provides formal definitions of represented spaces and
continuity similar to those in computable analysis.

• Realizers should be constructive, i.e., executable inside Coq.

• Reasoning about correctness and the relation between
represented space and abstract space non-constructive (e.g.
use axiomatization of the reals in the standard library, classical
reasoning, countable choice)

9

Computable analysis in Coq

• Partial functions important in computable analysis use
relations.

• The incone library (Steinberg) is an attempt to formalize
results from computable analysis in Coq.

• 21528 loc in 109 files

• It provides formal definitions of represented spaces and
continuity similar to those in computable analysis.

• Realizers should be constructive, i.e., executable inside Coq.

• Reasoning about correctness and the relation between
represented space and abstract space non-constructive (e.g.
use axiomatization of the reals in the standard library, classical
reasoning, countable choice)

9

Computable analysis in Coq

• Partial functions important in computable analysis use
relations.

• The incone library (Steinberg) is an attempt to formalize
results from computable analysis in Coq.

• 21528 loc in 109 files

• It provides formal definitions of represented spaces and
continuity similar to those in computable analysis.

• Realizers should be constructive, i.e., executable inside Coq.

• Reasoning about correctness and the relation between
represented space and abstract space non-constructive (e.g.
use axiomatization of the reals in the standard library, classical
reasoning, countable choice)

9

Computable analysis in Coq

• Partial functions important in computable analysis use
relations.

• The incone library (Steinberg) is an attempt to formalize
results from computable analysis in Coq.

• 21528 loc in 109 files

• It provides formal definitions of represented spaces and
continuity similar to those in computable analysis.

• Realizers should be constructive, i.e., executable inside Coq.

• Reasoning about correctness and the relation between
represented space and abstract space non-constructive (e.g.
use axiomatization of the reals in the standard library, classical
reasoning, countable choice)

9

Computable analysis in Coq

• Partial functions important in computable analysis use
relations.

• The incone library (Steinberg) is an attempt to formalize
results from computable analysis in Coq.

• 21528 loc in 109 files

• It provides formal definitions of represented spaces and
continuity similar to those in computable analysis.

• Realizers should be constructive, i.e., executable inside Coq.

• Reasoning about correctness and the relation between
represented space and abstract space non-constructive (e.g.
use axiomatization of the reals in the standard library, classical
reasoning, countable choice)

9

Represented spaces in Coq

Instead of encoding everything by string functions encode by
“simple” types in Coq.

Represented space

A represented space X consists of

• An abstract base type X .

• Types of questions Q and answers A.

• Proofs that Q and A are
countable and non-empty.

• A relation δ : (Q → A)→ X → Prop.

• A proof that δ is single-valued and surjective.

10

x ∈ X

q ∈ Q a ∈ A

Represented spaces in Coq

Instead of encoding everything by string functions encode by
“simple” types in Coq.

Represented space

A represented space X consists of

• An abstract base type X .

• Types of questions Q and answers A.

• Proofs that Q and A are
countable and non-empty.

• A relation δ : (Q → A)→ X → Prop.

• A proof that δ is single-valued and surjective.

10

x ∈ X

q ∈ Q a ∈ A

Represented spaces in Coq

Instead of encoding everything by string functions encode by
“simple” types in Coq.

Represented space

A represented space X consists of

• An abstract base type X .

• Types of questions Q and answers A.

• Proofs that Q and A are
countable and non-empty.

• A relation δ : (Q → A)→ X → Prop.

• A proof that δ is single-valued and surjective.

10

x ∈ X

q ∈ Q a ∈ A

Represented spaces in Coq

Instead of encoding everything by string functions encode by
“simple” types in Coq.

Represented space

A represented space X consists of

• An abstract base type X .

• Types of questions Q and answers A.

• Proofs that Q and A are
countable and non-empty.

• A relation δ : (Q → A)→ X → Prop.

• A proof that δ is single-valued and surjective.

10

x ∈ X

q ∈ Q a ∈ A

Represented spaces in Coq

Instead of encoding everything by string functions encode by
“simple” types in Coq.

Represented space

A represented space X consists of

• An abstract base type X .

• Types of questions Q and answers A.

• Proofs that Q and A are
countable and non-empty.

• A relation δ : (Q → A)→ X → Prop.

• A proof that δ is single-valued and surjective.

10

x ∈ X

q ∈ Q a ∈ A

Represented spaces in Coq

Instead of encoding everything by string functions encode by
“simple” types in Coq.

Represented space

A represented space X consists of

• An abstract base type X .

• Types of questions Q and answers A.

• Proofs that Q and A are
countable and non-empty.

• A relation δ : (Q → A)→ X → Prop.

• A proof that δ is single-valued and surjective.

10

x ∈ X

q ∈ Q a ∈ A

Basic constructions

For represented space X and Y we can define a representation for
the product X × Y .

• Question space QX×Y := QX + QY.

• Answer space AX×Y := AX × AY.

• δX×Y(ϕ) = (x , y) ⇐⇒
δX(lprj ◦ ϕ ◦ inl) = x ∧ δY(rprj ◦ ϕ ◦ inr) = y .

Similar construction for infinite products (sequences), functions,
subspaces, hyperspaces.

11

Basic constructions

For represented space X and Y we can define a representation for
the product X × Y .

• Question space QX×Y := QX + QY.

• Answer space AX×Y := AX × AY.

• δX×Y(ϕ) = (x , y) ⇐⇒
δX(lprj ◦ ϕ ◦ inl) = x ∧ δY(rprj ◦ ϕ ◦ inr) = y .

Similar construction for infinite products (sequences), functions,
subspaces, hyperspaces.

11

Basic constructions

For represented space X and Y we can define a representation for
the product X × Y .

• Question space QX×Y := QX + QY.

• Answer space AX×Y := AX × AY.

• δX×Y(ϕ) = (x , y) ⇐⇒
δX(lprj ◦ ϕ ◦ inl) = x ∧ δY(rprj ◦ ϕ ◦ inr) = y .

Similar construction for infinite products (sequences), functions,
subspaces, hyperspaces.

11

Basic constructions

For represented space X and Y we can define a representation for
the product X × Y .

• Question space QX×Y := QX + QY.

• Answer space AX×Y := AX × AY.

• δX×Y(ϕ) = (x , y) ⇐⇒
δX(lprj ◦ ϕ ◦ inl) = x ∧ δY(rprj ◦ ϕ ◦ inr) = y .

Similar construction for infinite products (sequences), functions,
subspaces, hyperspaces.

11

Basic constructions

For represented space X and Y we can define a representation for
the product X × Y .

• Question space QX×Y := QX + QY.

• Answer space AX×Y := AX × AY.

• δX×Y(ϕ) = (x , y) ⇐⇒
δX(lprj ◦ ϕ ◦ inl) = x ∧ δY(rprj ◦ ϕ ◦ inr) = y .

Similar construction for infinite products (sequences), functions,
subspaces, hyperspaces.

11

Example (Cauchy reals)

(* A name for a real is a rational approx. function *)
Definition rep_RQ : (Q -> Q) ->> R :=

make_mf (
fun phi x => forall eps, 0 < Q2R eps->

Rabs(x - Q2R(phi eps)) <= Q2R eps
).

(* f \is_cototal == forall t, exists s, (f s t) *)
Lemma rep_RQ_sur: rep_RQ \is_cototal.
(* f \is_singlevalued == forall s t t’,

(f s) t -> (f s) t’ -> t = t’ *)
Lemma rep_RQ_sing: rep_RQ \is_singlevalued.
Definition RQ := (make_cs 0%Q 0%Q

count.Q_count count.Q_count
rep_RQ_sur rep_RQ_sing).

12

Example (Cauchy reals)

(* A name for a real is a rational approx. function *)
Definition rep_RQ : (Q -> Q) ->> R :=

make_mf (
fun phi x => forall eps, 0 < Q2R eps->

Rabs(x - Q2R(phi eps)) <= Q2R eps
).

(* f \is_cototal == forall t, exists s, (f s t) *)
Lemma rep_RQ_sur: rep_RQ \is_cototal.
(* f \is_singlevalued == forall s t t’,

(f s) t -> (f s) t’ -> t = t’ *)
Lemma rep_RQ_sing: rep_RQ \is_singlevalued.
Definition RQ := (make_cs 0%Q 0%Q

count.Q_count count.Q_count
rep_RQ_sur rep_RQ_sing).

12

Example (Addition)

(* phi is a name for (x,y) *)
Definition Rplus_rlzrf phi (eps: Q) :=

((lprj phi eps/2) + (rprj phi eps/2))%Q.

Lemma Rplus_rlzr_spec:
(F2MF Rplus_rlzrf) \realizes

(F2MF (fun x => Rplus x.1 x.2)
: (RQ *_cs RQ) ->> RQ).

[...]

13

Example (Limit)

(* efficient limit *)
Definition lim_eff (xn : nat -> R) (x : R) :=

forall n, (Rabs x - (xn n)) <= (/ 2 ^ n).

(* computes lim phin for n->infinity *)
Definition lim_eff_rlzrf phin eps :=

phin ((Pos_size (Qden eps)).+1,
(eps / 2)%Q): Q.

(* correctness of limit *)
Lemma lim_eff_rlzr_spec:

lim_eff_rlzrf \realizes lim_eff.

14

Exact real computation in Coq

Interval arithmetic

A representation for real numbers can be defined exactly as before
using rational approximations.
However, computing with rationals is not very efficient. Alternative:
approximate real numbers by intervals with dyadic endpoints.

Definition
Let ID be the set of intervals with dyadic endpoints. A
representation RID of the reals is given by QID = N, AID = ID.

δRID((In)n∈N) = x ⇐⇒ x ∈
⋂
n∈N

In and lim
n→∞

|In| = 0.

Use interval arithmetic for definition of realizers.

15

Interval Arithmetic

[a] = [a−, a+], [b] = [b−, b+]

[a] + [b] =
[
a− + b−, a+ + b+

]
[a]− [b] =

[
a− − b+, a+ − b−

]
[a]× [b] =

[
min(a−b−, a−b+, a+b−, a+b+),

max(a−b−, a−b+, a+b−, a+b+)
]

Rounded versions for efficiency.

Interval arithmetic

A representation for real numbers can be defined exactly as before
using rational approximations.
However, computing with rationals is not very efficient. Alternative:
approximate real numbers by intervals with dyadic endpoints.

Definition
Let ID be the set of intervals with dyadic endpoints. A
representation RID of the reals is given by QID = N, AID = ID.

δRID((In)n∈N) = x ⇐⇒ x ∈
⋂
n∈N

In and lim
n→∞

|In| = 0.

Use interval arithmetic for definition of realizers.

15

Interval Arithmetic

[a] = [a−, a+], [b] = [b−, b+]

[a] + [b] =
[
a− + b−, a+ + b+

]
[a]− [b] =

[
a− − b+, a+ − b−

]
[a]× [b] =

[
min(a−b−, a−b+, a+b−, a+b+),

max(a−b−, a−b+, a+b−, a+b+)
]

Rounded versions for efficiency.

Interval arithmetic in Coq

• The Coq interval library (Melquiond) provides interval
arithmetic in Coq.

• Main purpose of the interval library: Automatically proof
inequalities over the reals.

Type ID for intervals with (arbitrary precision) floating point
endpoints (m · 2e with m, e ∈ Z).

(* add p I J == add intervals I and J
and round mantissas to p digits*)

I.add : SFBI2.precision -> ID -> ID -> ID

16

Interval arithmetic in Coq

• The Coq interval library (Melquiond) provides interval
arithmetic in Coq.

• Main purpose of the interval library: Automatically proof
inequalities over the reals.

Type ID for intervals with (arbitrary precision) floating point
endpoints (m · 2e with m, e ∈ Z).

(* add p I J == add intervals I and J
and round mantissas to p digits*)

I.add : SFBI2.precision -> ID -> ID -> ID

16

Interval arithmetic in Coq

• The Coq interval library (Melquiond) provides interval
arithmetic in Coq.

• Main purpose of the interval library: Automatically proof
inequalities over the reals.

Type ID for intervals with (arbitrary precision) floating point
endpoints (m · 2e with m, e ∈ Z).

(* add p I J == add intervals I and J
and round mantissas to p digits*)

I.add : SFBI2.precision -> ID -> ID -> ID

16

Interval arithmetic in Coq

• The Coq interval library (Melquiond) provides interval
arithmetic in Coq.

• Main purpose of the interval library: Automatically proof
inequalities over the reals.

Type ID for intervals with (arbitrary precision) floating point
endpoints (m · 2e with m, e ∈ Z).

(* add p I J == add intervals I and J
and round mantissas to p digits*)

I.add : SFBI2.precision -> ID -> ID -> ID

16

Interval arithmetic in Coq

• The Coq interval library (Melquiond) provides interval
arithmetic in Coq.

• Main purpose of the interval library: Automatically proof
inequalities over the reals.

Type ID for intervals with (arbitrary precision) floating point
endpoints (m · 2e with m, e ∈ Z).

(* add p I J == add intervals I and J
and round mantissas to p digits*)

I.add : SFBI2.precision -> ID -> ID -> ID

16

Interval arithmetic in Coq

Correctness in interval arithmetic:

Lemma add_correct_R prec x y I J:
x \contained_in I -> y \contained_in J ->

(x + y) \contained_in (I.add prec I J).

To define a realizer we additionally need absolute error bounds to
show that intervals get arbitrarily small:

Lemma add_error’ I J n m p x y N:
diam I <= /2^n -> diam J <= /2^m ->
(x \contained_in I) -> (y \contained_in J) ->
(Rabs x) <= (powerRZ 2 N) -> (Rabs y) <= (powerRZ 2 N)
-> diam (I.add p I J) <= /2 ^ n + /2 ^ m +

(powerRZ 2 (N+5-[p]%bigZ)).

17

Interval arithmetic in Coq

Correctness in interval arithmetic:

Lemma add_correct_R prec x y I J:
x \contained_in I -> y \contained_in J ->

(x + y) \contained_in (I.add prec I J).

To define a realizer we additionally need absolute error bounds to
show that intervals get arbitrarily small:

Lemma add_error’ I J n m p x y N:
diam I <= /2^n -> diam J <= /2^m ->
(x \contained_in I) -> (y \contained_in J) ->
(Rabs x) <= (powerRZ 2 N) -> (Rabs y) <= (powerRZ 2 N)
-> diam (I.add p I J) <= /2 ^ n + /2 ^ m +

(powerRZ 2 (N+5-[p]%bigZ)).

17

Analytic functions in coq

Motivation

Numerical operators are functions from function spaces:

integral : C ([0, 1])→ C ([0, 1]), f 7→ (t 7→
∫ t

0
f (x) dx).

A representation for C ([0, 1]) can be defined in Incone.
However, real complexity theory suggests that working with such a
general space is not feasible:

• Parametric maximization
MAX (f)(x) := max{f (t) : 0 ≤ t ≤ x} is NP-hard
(Ko/Friedman).

• Integration is #P-hard (Friedman).

• Solving initial value problems for ordinary differential equations
with Lipschitz-continuous right-hand side is PSPACE-hard
(Kawamura).

18

Motivation

Numerical operators are functions from function spaces:

integral : C ([0, 1])→ C ([0, 1]), f 7→ (t 7→
∫ t

0
f (x) dx).

A representation for C ([0, 1]) can be defined in Incone.
However, real complexity theory suggests that working with such a
general space is not feasible:

• Parametric maximization
MAX (f)(x) := max{f (t) : 0 ≤ t ≤ x} is NP-hard
(Ko/Friedman).

• Integration is #P-hard (Friedman).

• Solving initial value problems for ordinary differential equations
with Lipschitz-continuous right-hand side is PSPACE-hard
(Kawamura).

18

Analytic Function

Idea: Restrict to a subset of functions where operations can be
done more efficiently.

Definition (Analytic Function)
f : D → C, D ⊆ C is analytic if for any x0 ∈ D the power series

T (x) :=
∞∑

m=0

am(x − x0)
m

converges to f (x) for x in a neighborhood of x0.

A function f : D → R, D ⊆ R is called real analytic if it has a
complex analytic extension.

Many operations on analytic functions (derivatives, integrals, etc.)
correspond to simple transformations of the power series.

19

Analytic Function

Idea: Restrict to a subset of functions where operations can be
done more efficiently.

Definition (Analytic Function)
f : D → C, D ⊆ C is analytic if for any x0 ∈ D the power series

T (x) :=
∞∑

m=0

am(x − x0)
m

converges to f (x) for x in a neighborhood of x0.
A function f : D → R, D ⊆ R is called real analytic if it has a
complex analytic extension.

Many operations on analytic functions (derivatives, integrals, etc.)
correspond to simple transformations of the power series.

19

Analytic Function

Idea: Restrict to a subset of functions where operations can be
done more efficiently.

Definition (Analytic Function)
f : D → C, D ⊆ C is analytic if for any x0 ∈ D the power series

T (x) :=
∞∑

m=0

am(x − x0)
m

converges to f (x) for x in a neighborhood of x0.
A function f : D → R, D ⊆ R is called real analytic if it has a
complex analytic extension.

Many operations on analytic functions (derivatives, integrals, etc.)
correspond to simple transformations of the power series.

19

Computing with power series

Many operators on analytic functions correspond to simple
transformations on the power series so allowing to operate directly
on the series seems reasonable encode power series?

Want to compute evaluation ((an)n∈N, x) 7→
∑∞

i=0 anx
n.

Do not know how big the error is when only summing finitely many
coefficients add this as additional information.
Following ideas from Kawamura, Rösnick, Müller, Ziegler (2013) we
consider computation on power series with radius of convergence
larger than 1 enriched by additional integers A, k such that

∀n, |an| ≤ A

(
1+

1
k

)−n
.

20

Computing with power series

Many operators on analytic functions correspond to simple
transformations on the power series so allowing to operate directly
on the series seems reasonable encode power series?
Want to compute evaluation ((an)n∈N, x) 7→

∑∞
i=0 anx

n.

Do not know how big the error is when only summing finitely many
coefficients add this as additional information.
Following ideas from Kawamura, Rösnick, Müller, Ziegler (2013) we
consider computation on power series with radius of convergence
larger than 1 enriched by additional integers A, k such that

∀n, |an| ≤ A

(
1+

1
k

)−n
.

20

Computing with power series

Many operators on analytic functions correspond to simple
transformations on the power series so allowing to operate directly
on the series seems reasonable encode power series?
Want to compute evaluation ((an)n∈N, x) 7→

∑∞
i=0 anx

n.
Do not know how big the error is when only summing finitely many
coefficients add this as additional information.
Following ideas from Kawamura, Rösnick, Müller, Ziegler (2013) we
consider computation on power series with radius of convergence
larger than 1 enriched by additional integers A, k such that

∀n, |an| ≤ A

(
1+

1
k

)−n
.

20

Computing with power series

The Coquelicot library already has some useful definitions and facts
about power series. We can add computational content by defining
a representation.

(* CV_radius == radius of convergence *)
Definition series1 a := (Rbar_lt (1%R) (CV_radius a)).
Definition series_bound a A k := (0 < k)%nat /\

(0 < A)%nat /\ forall n, ((Rabs (a n)) <=
(INR A) * (/ (1+/(INR k))) ^ n)%R.

Lemma Ak_exists a : (series1 a) ->
exists A k : nat, (series_bound a A k).

Definition powerseries1 := {a : nat -> R | series1 a }.

Representation for powerseries1: real sequence + series bound

21

Computing with power series

The Coquelicot library already has some useful definitions and facts
about power series. We can add computational content by defining
a representation.

(* CV_radius == radius of convergence *)
Definition series1 a := (Rbar_lt (1%R) (CV_radius a)).
Definition series_bound a A k := (0 < k)%nat /\

(0 < A)%nat /\ forall n, ((Rabs (a n)) <=
(INR A) * (/ (1+/(INR k))) ^ n)%R.

Lemma Ak_exists a : (series1 a) ->
exists A k : nat, (series_bound a A k).

Definition powerseries1 := {a : nat -> R | series1 a }.

Representation for powerseries1: real sequence + series bound

21

Problems

• Integer parameters for bounds quite coarse must read too
many coefficients of the power series.

• Better more abstract representation: Can compute power
series around any point + truncation error on an interval.

• Realizers can be extracted to Haskell or Ocaml code but
currently this is not very efficient.

• How to make extraction work the way we want it to?

22

Problems

• Integer parameters for bounds quite coarse must read too
many coefficients of the power series.

• Better more abstract representation: Can compute power
series around any point + truncation error on an interval.

• Realizers can be extracted to Haskell or Ocaml code but
currently this is not very efficient.

• How to make extraction work the way we want it to?

22

Problems

• Integer parameters for bounds quite coarse must read too
many coefficients of the power series.

• Better more abstract representation: Can compute power
series around any point + truncation error on an interval.

• Realizers can be extracted to Haskell or Ocaml code but
currently this is not very efficient.

• How to make extraction work the way we want it to?

22

Problems

• Integer parameters for bounds quite coarse must read too
many coefficients of the power series.

• Better more abstract representation: Can compute power
series around any point + truncation error on an interval.

• Realizers can be extracted to Haskell or Ocaml code but
currently this is not very efficient.

• How to make extraction work the way we want it to?

22

Conclusion and Future work

Multivariate analytic functions

The main idea is to reduce all operations to operations on power
series in one variable.
Bound on power series: |ai ,j | ≤ Al i+j .

∑
i∈N

∑
j∈N

ai ,jx
i
1x

j
2 =

∑
i∈N

bix
i
1

with bi :=
∑
j∈N

ai ,jx
j
2

Computing bi evaluating an analytic function.

23

Multivariate analytic functions

The main idea is to reduce all operations to operations on power
series in one variable.
Bound on power series: |ai ,j | ≤ Al i+j .∑

i∈N

∑
j∈N

ai ,jx
i
1x

j
2 =

∑
i∈N

bix
i
1

with bi :=
∑
j∈N

ai ,jx
j
2

Computing bi evaluating an analytic function.

23

ODE solving

ODEs of the form

ẏ(t) = F (y(t)), y(0) = y0 ∈ [0, 1]

with right-hand side function F analytic can be locally solved by
computing the power series of the solution from the power series of
F .
For higher precision, use more coefficients of the power series
(variable order), number of coefficients grows linear in the precision.
Iterating this method gives a single-step method where the step-size
does only depend on the function and not the required precision.

24

Conclusion and Future work

• The incone library can be used to implement real number
computations in Coq and do proofs in the style of computable
analysis.

• Use more advanced methods: Affine arithmetic, taylor models,
etc.

• Next step: Complete the ODE solver in Coq

• Probably need to prove some classical mathematical facts
about ODEs

• Code extraction

25

Conclusion and Future work

• The incone library can be used to implement real number
computations in Coq and do proofs in the style of computable
analysis.

• Use more advanced methods: Affine arithmetic, taylor models,
etc.

• Next step: Complete the ODE solver in Coq

• Probably need to prove some classical mathematical facts
about ODEs

• Code extraction

25

Conclusion and Future work

• The incone library can be used to implement real number
computations in Coq and do proofs in the style of computable
analysis.

• Use more advanced methods: Affine arithmetic, taylor models,
etc.

• Next step: Complete the ODE solver in Coq

• Probably need to prove some classical mathematical facts
about ODEs

• Code extraction

25

Conclusion and Future work

• The incone library can be used to implement real number
computations in Coq and do proofs in the style of computable
analysis.

• Use more advanced methods: Affine arithmetic, taylor models,
etc.

• Next step: Complete the ODE solver in Coq

• Probably need to prove some classical mathematical facts
about ODEs

• Code extraction

25

Conclusion and Future work

• The incone library can be used to implement real number
computations in Coq and do proofs in the style of computable
analysis.

• Use more advanced methods: Affine arithmetic, taylor models,
etc.

• Next step: Complete the ODE solver in Coq

• Probably need to prove some classical mathematical facts
about ODEs

• Code extraction

25

[1] F. Steinberg, L. Théry, T. Quantitative continuity and
computable analysis in Coq. Proc. of the 10th International
Conference on Interactive Theorem Proving (ITP 2019).

[2] Akitoshi Kawamura, Florian Steinberg, T., Parameterized
Complexity for Uniform Operators on Multidimensional
Analytic Functions and ODE Solving, Proceedings of the 25th
International Workshop on Logic, Language, Information, and
Computation, Springer, 2018, pp. 223–236.

Thank you!
Questions, Comments, Remarks?

26

	Exact computation with real numbers
	Exact real computation in Coq
	Analytic functions in coq
	Conclusion and Future work

