
Validating Mathematical Structures

Kazuhiko Sakaguchi∗

Abstract

Packed classes [1] method is a general design pattern to define and combine algebraic structures in the Coq
system. One can enable subtypings of classes and automated structure inference by combining some coercions and
canonical projections [2] with packed classes. The MathComp library [4] uses these methods ubiquitously to define
49 algebraic structures, and declares more than 400 coercions and more than 800 canonical projections to implement
their inheritances (Fig. 1). Declaring such a huge number of coercions and canonical projections correctly could
be a very difficult task. We have implemented a validation mechanism for packed classes and their inheritances as
a part of the Coq system and an external tool.

Choice

Countable

GRing.Zmodule

CountRing.Zmodule

Finite

GRing.Lmodule GRing.Ring

CountRing.ComRing

CountRing.ComUnitRingFinRing.ComRing

CountRing.IntegralDomainFinRing.ComUnitRing

CountRing.FieldFinRing.IntegralDomain

CountRing.DecidableField

CountRing.ClosedField

FinRing.Field

CountRing.Ring

CountRing.UnitRingFinRing.Ring

FinRing.UnitRingFinRing.Lalgebra

FinRing.UnitAlgebra

FinRing.Zmodule

FinRing.Lmodule

FinGroup

Equality

Falgebra

FieldExt

SplittingField

FinRing.Algebra

GRing.Algebra

GRing.UnitAlgebra

GRing.ClosedField

Num.ClosedField

GRing.ComRing

GRing.ComUnitRing

GRing.IntegralDomain

GRing.Field Num.NumDomain

GRing.DecidableField Num.NumField

Num.RealField

Num.RealDomain

GRing.Lalgebra Vector GRing.UnitRing

Num.ArchimedeanField Num.RealClosedField

Figure 1: The hierarchy of mathematical structures in the MathComp library 1.9.0

Declaring coercions and canonical projections to implement inheritances Let us show how coercions and
canonical projections work with the hierarchy consisting of rings, commutative rings, rings with units, and commutative
rings with units (Fig. 2). Implementations of these structures and their description can be found in the ssralg library
and [1, Sec. 3.2]. Therefore here we focus on their inheritances.

In Fig. 2, each edge A.type B.type means that the structure B.type (directly) inherits the structure A.type.

For any (direct or transitive) inheritance A.type B.type+ , B.type should be coercible to A.type as follows.

Type

Ring.type

ComRing.type UnitRing.type

ComUnitRing.type

...

Figure 2: The hierarchy diagram of the
ring structures

[Ring.sort] : Ring.type >-> Sortclass
[ComRing.sort] : ComRing.type >-> Sortclass
[UnitRing.sort] : UnitRing.type >-> Sortclass
[ComUnitRing.sort] : ComUnitRing.type -> Sortclass

[ComRing.ringType] : ComRing.type >-> Ring.type
[UnitRing.ringType] : UnitRing.type >-> Ring.type
[ComUnitRing.ringType] : ComUnitRing.type >-> Ring.type
[ComUnitRing.comRingType] : ComUnitRing.type >-> ComRing.type
[ComUnitRing.unitRingType] : ComUnitRing.type >-> UnitRing.type

For any inheritance A.type B.type+ , there should be a canonical

projection B.type <- A.type to solve a unification problem A.sort ?1 ∼
B.sort ?2 (and symmetric one) by instantiating ?1 with B.aType ?2, where
B.aType is the coercion from B.type to A.type. Therefore, the last 5
coercions should also be canonical projections.

ComRing.sort <- Ring.sort (ComRing.ringType)
UnitRing.sort <- Ring.sort (UnitRing.ringType)
ComUnitRing.sort <- Ring.sort (ComUnitRing.ringType)
ComUnitRing.sort <- ComRing.sort (ComUnitRing.comRingType)
ComUnitRing.sort <- UnitRing.sort (ComUnitRing.unitRingType)

There is one more missing canonical projection to solve a unification problem ComRing.sort ?1 ∼ UnitRing.sort ?2.
Both ComRing.type and UnitRing.type do not inherit each other, but their greatest common subclass (hereinafter,

∗University of Tsukuba, Japan, sakaguchi@coins.tsukuba.ac.jp

mailto:sakaguchi@coins.tsukuba.ac.jp

referred to as “join”) ComUnitRing.type should be inferred from this unification problem. A solution of this unifica-
tion problem is instantiating ?1 and ?2 with ComUnitRing.comRingType ?3 and ComUnitRing.com unitRingType ?3
respectively, where ?3 is a fresh unification variable of type ComUnitRing.type and ComUnitRing.com unitRingType

is the canonical projection here we need.

ComUnitRing.com_unitRingType : comUnitRingType -> unitRingType
ComRing.sort <- UnitRing.sort (ComUnitRing.com_unitRingType)

Join canonical projections could be defined in the opposite direction. Generally, one of them should be defined,
and the direction does not matter.

Validating coercions by a relaxed ambiguous path condition In the above example of ring structures, the
following inheritance paths have the same source and target classes ComUnitRing.type >-> Ring.type.

[ComUnitRing.ringType]
[ComUnitRing.comRingType; ComRing.ringType]
[ComUnitRing.unitRingType; UnitRing.ringType]

The function compositions of the above paths are convertible (judgementally equal) to each other thanks to the
packed classes method. Inheritances are considered to be broken if there is an inconvertible path because one would see
mysterious type mismatches on structures, but Coq had no mechanism to detect inconvertible paths until version 8.9.
Therefore we have refined the warning of ambiguous inheritance paths to report only inconvertible ones. Convertibility
checking of two inheritance paths is non-trivial in general. However, we have discovered and implemented a simple
checking procedure to do this for inheritance paths satisfying uniform inheritance condition [3].

Validating canonical projections We have implemented an external tool hierarchy.ml in OCaml to validate
two kinds of canonical projections on mathematical structures: inheritances and joins. Our tool takes the list of
canonical projections by using the Print Canonical Projections Vernacular command, filters out entries other
than inheritances, checks the transitivity of inheritance relation, and generates exhaustive assertions for automatic
structure inference as a .v file. The following assertions can be generated from the hierarchy of Fig. 2 by hierarchy.ml.

check_join Ring.type Ring.type Ring.type.
check_join Ring.type ComRing.type ComRing.type.
check_join Ring.type UnitRing.type UnitRing.type.
check_join Ring.type ComUnitRing.type ComUnitRing.type.
check_join ComRing.type Ring.type ComRing.type.
check_join ComRing.type ComRing.type ComRing.type.
check_join ComRing.type UnitRing.type ComUnitRing.type.
check_join ComRing.type ComUnitRing.type ComUnitRing.type.

check_join UnitRing.type Ring.type UnitRing.type.
check_join UnitRing.type ComRing.type ComUnitRing.type.
check_join UnitRing.type UnitRing.type UnitRing.type.
check_join UnitRing.type ComUnitRing.type ComUnitRing.type.
check_join ComUnitRing.type Ring.type ComUnitRing.type.
check_join ComUnitRing.type ComRing.type ComUnitRing.type.
check_join ComUnitRing.type ComUnitRing.type ComUnitRing.type.
check_join ComUnitRing.type UnitRing.type ComUnitRing.type.

check join is implemented as a tactic notation, and check join t1 t2 t3 asserts that the join of t1 and t2 is
t3. These assertions are generated by finding the join for all the ordered combinations of two structures using the
following join procedure.

Function join(t1, t2):

T := ({t | t1
+→ t} ∪ {t1}) ∩ ({t | t2

+→ t} ∪ {t2}); /* T is the set of all the common subclasses of t1 and t2. */

foreach t ∈ T do T ← {t′ ∈ T | t 6+→ t′};
if T = ∅ then return None; /* There is no join of t1 and t2. */

else if T is a singleton set {t} then return t; /* t is the join of t1 and t2. */

else fail; /* There are more than two join structures of t1 and t2. A join should not be ambiguous. */

Evaluation We have applied our validation mechanism to the MathComp 1.7.0 library, found no bugs on coercions,
and found the following bugs on canonical projections. 1. The joins of countType and some algebraic structures
(zmodType, ringType, etc.) are ambiguous because finalg has no inheritances from countalg. 2. There are 7
missing join canonical projections excluding ambiguous ones. 3. The inferred join of finType and countType is
extremal group because of its incorrect canonical finType instance implementation.

The current implementation of validation is incomplete. At least, we cannot check the hierarchies of morphisms
and sub-structures with our tool. Although, the above results sustain that our tool can detect some inheritance bugs.

Acknowledgement We appreciate the support of the Marelle project-team, INRIA Sophia Antipolis. In particular,
we want to thank Cyril Cohen and Enrico Tassi for providing help to understand packed classes and canonical structures
well and to implement our validation mechanisms.

References
[1] François Garillot, Georges Gonthier, Assia Mahboubi, and Laurence Rideau. “Packaging Mathematical Structures”. In: TPHOLs ’09.

Vol. 5674. LNCS. Springer, 2009, pp. 327–342.

[2] Assia Mahboubi and Enrico Tassi. “Canonical Structures for the Working Coq User”. In: ITP ’13. Vol. 7998. LNCS. Springer, 2013,
pp. 19–34.

[3] Kazuhiko Sakaguchi. Relax the ambiguous path condition of coercion. url: https://github.com/coq/coq/pull/9743.

[4] The Mathematical Components project. The Mathematical Components repository. url: https://github.com/math-comp/math-comp.

https://github.com/coq/coq/pull/9743
https://github.com/math-comp/math-comp

