
SSReflect in Coq 8.10

Érik Martin-Dorel1 and Enrico Tassi2

1IRIT, Université Toulouse 3 (erik.martin-dorel@irit.fr)
2Inria, Université Côte d’Azur (enrico.tassi@inria.fr)

July 22, 2019

SSReflect is a proof language for the Coq system. It was created by Georges Gonthier
as part of the proof of the Four Color Theorem [1] that was completed in 2005. The proof
language lived as an add-on for Coq since 2017 when it was integrated in the Coq code
repository. Today, any Coq user can activate that proof language by just writing Require
Import ssreflect, and can mix SSReflect’s proof commands with the standard ones

whenever it fits. With the release of Coq 8.10, the SSReflect proof language got support
for rewriting under binders and managing in a concise way the large number of proof
variables that is typical in programming languages’ metatheory proofs. This talk focuses
on these new features.

Rewriting under binders Many constructs in the Mathematical Components library [2]
can be defined using a higher-order iterator applied to one or several lambdas. The most
typical example is the notion of big operator, or bigop, for iterating sum, product, in-
tersection, etc. In this context, rewriting under binders is often needed and prior to
this work, SSReflect offered no support for it: the user was given congruence lemmas for
bigops, but its application had to be performed manually. The under tactic fills this gap.

In the following example, we use the eq_big congruence lemma, stating that two
bigop expressions are equal whenever their higher-order arguments are.
eq_big : ∀ R idx op I (r : list I) (P1 P2 : I -> bool) (F1 F2 : I -> R),

(∀ i, P1 i = P2 i) -> (∀ i, P1 i -> F1 i = F2 i) ->
\big[op/idx]_(i <- r | P1 i) F1 i = \big[op/idx]_(i <- r | P2 i) F2 i

Here op is the operation being iterated, idx its unit, and r the range. While the lemma
is generic, the Mathematical Component library provides specific notations for common
data types and operations, e.g., \sum stands for \big[plus/0].

The arguments P1, P2, F1 and F2 are higher order, and the under tactic gives a way
to obtain them “interactively,” instead of providing them by hand. For example:

Lemma test (n : nat) : \sum_(0 <= k < n | odd k && (k != 1)) (k - k) = 0.
Proof. under eq_big =>[i|i /andP[i_odd i_neq1]].

n, i : nat
i_odd : odd i

n, i : nat i_neq1 : i != 1 n : nat
=========================== =============== ===================================
’Under[odd i && (i != 1)] ’Under[i - i] \sum_(0 <= i < n | ?P2 i) ?F2 i = 0

The under tactic roughly behaves as SSReflect’s rewrite (including support for con-
textual patterns or occurrence selectors) but it uses existential variables (evars) to delay
the need to provide the higher-order terms. In this case P1 and F1 can be found by
matching the goal against the left hand side of the lemma, while evars are introduced for
the still missing P2 and F2 (see the third subgoal). The tactic runs the provided intro
patterns in the subgoals corresponding to the side conditions and protects the evars from
unwanted instantiation using the ’Under constant, e.g., replacing i - i = ?F2 i with
’Under[i - i] in the second subgoal. The user can then use the rewrite tactic to
manipulate the expressions under the binder that was crossed and can signal the end of
this process by using the over tactic or the over rewrite rule (i.e., by rewrite over).

1

mailto:erik.martin-dorel@irit.fr
mailto:enrico.tassi@inria.fr

The under tactic also provides a “one-liner” or batch mode where the tactics to be
used in each subgoal are given immediately. In particular:

under eq_big =>[i_1|i_2] do [tac1|tac2].

is a shorter form for, roughly:

(under eq_big) =>[i_1|i_2|]; [tac1; over | tac2; over |].

If the intro pattern is omitted, “under eq_lem do [tac1|...|tacn]” defaults to: “under
eq_lem => [* | ... | *] do [tac1|...|tacn]”, that is all variables are introduced

before running tactics. Finally, if there is only one side-condition, then the square brackets
can be omitted, as in “under eq_bigr => i do rewrite addnC.”

Intro patterns The SSReflect proof language enforces a very strict discipline with
respect to proof variables names: the ones given by the user are accessible, the ones
generated by the machine are not. The cost of spending time to actually give meaningful
names to hypotheses is trade for easy-to-repair scripts, since it is easy to spot when the
hypothesis names that are used in the proof do not correspond anymore to their types.
Still, there are domains where this strict discipline is often overwhelming: meta theory of
programming languages. In this domain, proofs typically branch in dozen of cases, each
one introducing a substantial amount of variables.

The block intro pattern feature, suggested by Cyril Cohen around 2012, lets one
declare “good names” for variables as part of an inductive type declaration and use these
names, proviso a prefix/suffix that makes them unique, at introduction time.

Inductive syntax := K1 (a : T) | ... | Kn (a : T) (b : T).

Lemma test : ∀ s t : syntax, P s t.
Proof. move => [^ _1] [^ _2].

a_1, a_2 : T a_1, b_1, a_2, b_2 : T
=================== ... ============================
P (K1 a_1) (K1 a_2) P (Kn a_1 b_1) (Kn a_2 b_2)

Here, both s and t are inspected by case analysis. All variables from s are named by
appending _1 to the names found in the constructors (_2 for them ones coming from t).

Another way of weakening the naming discipline while retaining its benefits was found
by Arthur Charguéraud and implemented by the introv tactic of the TLC library. The
idea is to name hypotheses rather than quantified variables, since there are used in the
proof script way more often than the other. The SSReflect > intro pattern introduces all
quantified variables letting one then name the hypothesis that follows them. For example:

Lemma test : ∀ x y : nat, x < y -> P x y. Proof. move=> >lt_xy.

x, _y_ : nat
lt_xy : _x_ < _y_

===================
P _x_ _y_

A few additional features were added to SSReflect in Coq version 8.10 and will be
presented if time permits.

References
[1] Georges Gonthier. The Four Colour Theorem: Engineering of a Formal Proof. In

ASCM, page 333, 2007. doi:10.1007/978-3-540-87827-8_28.

[2] Assia Mahboubi and Enrico Tassi. Mathematical Components. draft, v1-183-gb37ad7,
2018. URL: https://math-comp.github.io/mcb.

2

http://dx.doi.org/10.1007/978-3-540-87827-8_28
https://math-comp.github.io/mcb

