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Abstract

False matching due to errors in feature extraction and changes in illumination between frames may
occur in feature tracking in image sequences. False matching leads to outliers in feature motion tra-
jectory. One way of reducing the effect of outliers is stochastic filtering using a state space model for
motion trajectory. Hyper-parameters in the state space model, e.g., variances of noise distributions, must
be determined appropriately to control tracking motion and outlier rejection properly. Likelihood can be
used to estimate hyper-parameters, but it is difficult to apply online tracking due to computational cost.
To estimate hyper-parameters online, we include hyper-parameters in state vector and estimate feature
coordinates and hyper-parameters simultaneously. A Monte Carlo filter is used in state estimation, be-
cause adding hyper-parameters to state vector makes state space model nonlinear. Experimental results
using synthetic and real data show that the proposed method can estimate appropriate hyper-parameters
for tracking motion and reducing the effect of outliers.
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Chapter 1

Introduction

Feature tracking is essential to image sequence analysis in computer vision. False matching due to errors
in feature extraction and changes in illumination between frames may occur in feature tracking. False
matching leads to outliers in the feature motion trajectory. The effect of outliers must be reduced to yield
good data for subsequent processing such as shape from motion[1][2].

One way of reducing this effect is stochastic filtering using a state space model for motion trajec-
tory, as typified by the Kalman filter[3]–[7]. Since state estimation result based on stochastic filter-
ing varies with hyper-parameters, e.g., variances of noise distributions, in state space model, appropri-
ate hyper-parameters should be used to carry out state estimation properly. Likelihood p (y k | Yk−1),
k = 1, 2, . . . , t of time series of measurement Yt = {y1, y2, . . . , yt} can be used to estimate hyper-
parameters, but it is difficult to apply tracking due to computational cost; numerical search like coarse-
to-fine method for grid of hyper-parameters is necessary. Stochastic property of motion generally varies
with time and lag is not allowed in tracking, thus online estimation of hyper-parameters is quite important
to feature tracking.

The Multiple-Model adaptive filter[8] can be used for online estimation of hyper-parameters. Mul-
tiple models with different hyper-parameters are prepared, and state estimation results of these mod-
els are combined based on likelihoods of models for current measurement to use appropriate hyper-
parameters. Since all combinations of hyper-parameters should be given in this method, if appropriate
hyper-parameters are not in the given scope, the filter can not yield good state estimation results. In
addition, a lot of models may be necessary when many hyper-parameters are needed and/or quantization
of them must be fine to obtain good accuracy; it reduces efficiency of algorithm.

In this paper, we include hyper-parameters in state vector and estimate feature coordinates and hyper-
parameters simultaneously online. Using this simultaneous estimation, we can adjust hyper-parameters
to feature motion automatically. Since adding hyper-parameters to state vector makes state space model
nonlinear, we need state estimation method for nonlinear model. The sequential Monte Carlo (SMC)
method used for nonlinear/non-Gaussian state space models has been proposed recently[9]–[12], so the
Monte Carlo filter (MCF)[10], a type of the SMC, is applied to state estimation of our model. Online
estimation of hyper-parameters by adding them to state vector was proposed in 1970’s, but the extended
Kalman filter which needs linear approximation of model and assumption of Gaussian distribution for
state and noises could not yield good state estimation results[13][14]. The approximation and assumption
are not needed for the MCF.

The MCF allows us to use the non-Gaussian observation noise distribution which is useful to reduce
the effect of outliers[15][16]. Using heavy-tailed non-Gaussian distribution, e.g., Cauchy distribution,
we can represent both observation noise with high probability and outliers with low probability. Thus
state estimation for motion trajectory with outliers can be done.

Adaptive filtering for motion trajectory with time-dependent statistical property can be realized using
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CHAPTER 1. INTRODUCTION 2

online estimation of hyper-parameters and non-Gaussian noise distribution mentioned above. Experi-
ments using synthetic and real data are shown to discuss the usefulness of the proposed method.



Chapter 2

State Space Model for Motion Trajectory

2.1 Notation and prior models

A state space model is represented as follows:

xt = F xt−1 + Gvt (2.1)

yt = Hxt + wt (2.2)

where Eq. (2.1) is the state transition equation, x t is the state vector, and v t is the system noise vector.
Matrix F and G are system matrices. Equation (2.2) is the observation equation, y t is the observation
vector, and wt is the observation noise vector. Matrix H is an observation matrix.

Stochastic filtering based on the state space model is used to estimate state vector x t using time series
of measurement Yt = {y1, . . . , yt}, i.e., to calculate conditional probability density function p (x t | Yt).

The observation vector
yt = [x(t), y(t)]T (2.3)

represents coordinates of features in images. The following smoothness prior models, i.e., constant
velocity model, are used for motion trajectory:

x (t + 1) = 2x (t) − x (t − 1) (2.4)

y (t + 1) = 2y (t) − y (t − 1) (2.5)

This assumption means that the change in velocity of feature between 2 adjacent frames is small and the
velocity varies gradually in image sequence.

2.2 Noise distribution and hyper-parameters

Variables in system noise vector v t are independent, and their distributions are represented as q (v; m q, τ 2
)
,

where mq and τ are parameters of location and scale. The multivariate form of system noise distribution
is denoted as qv (vt; mvq, T ) . Variables in observation noise vector w t are independent, and their dis-
tributions are represented as r

(
w; mr, σ

2
)
, where mr and σ are parameters of location and scale. The

multivariate form of observation noise distribution is denoted as r v (wt; mvr, Σ). Since we assume the
mean of noise is zero, the entities in mvq and mvr are zero.

Parameters τ2 and σ2 in system noise and observation noise distribution are called hyper-parameters,
because their role is to control state estimation. Figure 2.1 shows an example of the effect of hyper-
parameters for state estimation. The prior models of Eq.(2.4) and (2.5) and Gaussian distribution for
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Figure 2.1: An example of the effect of hyper-parameters for state estimation. (a) τ 2 = 1.0 and σ2 = 1.0.
(b) τ2 = 0.01 and σ2 = 50.0.

system and observation noise were used. State estimation was done by the Kalman filter. The hyper-
parameters,

(
τ2, σ2

)
= (1.0, 1.0) (Fig.2.1 (a)) and (0.01, 50.0) (Fig.2.1 (b)), were used for the same

observation. As we can see from Fig.2.1(a) and (b), the state estimation results are completely different.
This example shows the importance of hyper-parameters in state estimation.

Likelihood p (yk | Yk−1), k = 1, 2, . . . , t, Y0 = φ of time series of measurement can be used to
determine hyper-parameters. It is difficult, however, to apply feature tracking due to computational cost.
Since lag is not allowed in feature tracking and stochastic property of motion generally varies with time,
online estimation of hyper-parameters is needed.

2.3 State space model to estimate hyper-parameters

From the prior models of Eq.(2.4) and (2.5), x (t) , y (t) , x (t − 1) and y (t − 1) are included in the state
vector. And hyper-parameters are also included in the state vector to estimate them online as follows:

xt =
[
xs (t) , ys (t) , xs (t − 1) , ys (t − 1) , log τ 2 (t) , logσ2 (t)

]T
(2.6)

The logarithm of hyper-parameters is used to preserve scale parameters as positive. Since hyper-parameters
are in the state vector, they are estimated online; both feature coordinates and hyper-parameters are esti-
mated simultaneously to adjust the hyper-parameters to feature motion automatically.

Since hyper-parameters are included in the state vector and time-dependent to follow feature motion,
we define the system matrices, observation matrix, system noise vector, and observation noise vector of
the state space model as follows:

F =




2 0 −1 0 0 0
0 2 0 −1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1




,G =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1




,H =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
(2.7)

vt = [vx(t), vy(t), vτ2(t), vσ2(t)]T (2.8)
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wt = [wx(t), wy(t)]
T (2.9)

where vτ2 and vσ2 are variables for system noise of hyper-parameters. The location and scale in multi-
variate form of system noise distribution qv (vt; mvq, T ) are mvq = [0, 0, 0, 0]T and T = diag

(
τ2, τ 2, ν2, ξ2

)
.

The location and scale in multivariate form of observation noise distribution are m vr = [0, 0]T and
Σ = diag

(
σ2, σ2

)
.

ν2 and ξ2 are called hyper-hyper-parameters, because these parameters govern change in hyper-
parameters.



Chapter 3

State Estimation by Monte Carlo Filter

3.1 Monte Carlo filter algorithm

Adding hyper-parameters to state vector makes the state space model nonlinear, since system and obser-
vation noise vectors are the function of hyper-parameters in the state vector. We need state estimation
method for such a nonlinear model, because the Kalman filter commonly used assumes a linear/Gaussian
model.

The sequential Monte Carlo method (SMC) was proposed for nonlinear/non-Gaussian models[9]-
[12]. The Monte Calro filter (MCF)[10], a type of the SMC, is applied to state estimation of the proposed
model. The procedure of the MCF is briefly described below.

In the MCF, probability distributions used in state estimation are approximated by m particles, i.e.,
m realizations from distributions, as follows:

prediction : p (xt | Yt−1) ,
{
p

(1)
t , . . . , p

(m)
t

}
filter : p (xt | Yt) ,

{
f

(1)
t , . . . , f

(m)
t

}
System noise distribution is approximated as follows:

system noise : qv (vt; mvq, T ) ,
{
v

(1)
t , . . . , v

(m)
t

}
State estimation is carried out by repeating the following one-step-ahead prediction and filter process:

[MCF algorithm]
[Step 1: generation of particles of initial distribution]
Generate m particles, i.e., m random vectors, from an initial distribution of state p 0 (x). These particles

f
(i)
0 (i = 1, . . . , m) are regarded as initial filter distribution.

[Step 2: filtering] Repeat next steps.

[Step 2-1: generation of particles for system noise] Generate m particles v
(i)
t ∼ qv (vt; mvq, T ), i =

1, . . . , m.
[Step 2-2: one-step-ahead prediction] Compute particles, p

(i)
t , representing the prediction distribution

p (xt | Yt−1) using the state transition equation:

p
(i)
t = Ff

(i)
t−1 + Gv

(i)
t , i = 1, . . . , m (3.1)[

Step 2-3: calculation of likelihood of p
(i)
t

]
Calculate the likelihood α

(i)
t of particle p

(i)
t using measure-

ment vector yt and observation noise distribution as follows:

α
(i)
t = rv

(
yt − Hp

(i)
t ; mvr ,Σ

)
, i = 1, . . . , m (3.2)
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Figure 3.1: An example of observation noise distributions with different hyper-parameters.

[Step 2-4: calculation of filter distribution] Calculate particles f
(i)
t of filter distribution by resampling

particles p
(i)
t in accordance with the following probabilities:

Pr
(
f

(i)
t = p

(i)
t

)
=

α
(i)
t

α
(1)
t + . . . + α

(m)
t

, i = 1, . . . , m (3.3)

3.2 Intuition for adaptation of hyper-parameters by the MCF

The likelihoods of particles used in resampling in Step 2-4 are determined by the difference between
measurement and predicted position, and observation noise distribution, i.e., r v

(
yt − Hp

(i)
t ; mvr,Σ

)
in Eq.(3.2). The particle with high likelihood survives the resampling, thus hyper-parameters in such
particle (state vector) are chosen as good one for adapting filter to feature motion.

Figure 3.1 shows an example of two observation noise distributions with different hyper-parameters.
If the difference between measurement and predicted position is -1, observation noise distribution A
gives higher likelihood than one given by observation noise distribution B. So the hyper-parameters of
distribution A is chosen with high probability. If the difference between measurement and predicted
position is 5, the hyper-parameters of distribution B survives with high probability. Hyper-parameters
are adapted to feature motion through such a selection mechanism in the MCF.



Chapter 4

Non-Gaussian Observation Noise
Distribution for Outlier Rejection

The MCF allows us to use the heavy-tailed non-Gaussian observation noise distribution which is useful
to reduce the effect of outliers[15][16]. The following Cauchy distribution C

(
0, σ2

)
is selected for

observation noise:
r
(
w; 0, σ2

)
=

σ

π {w2 + σ2} (4.1)

where σ is scale parameter. It is heavy-tailed (Fig.4.1) and represents both observation noise with high
probability and outliers with low probability. State estimation for motion trajectory with outliers, there-
fore, can be realized.
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Figure 4.1: Gaussian distribution and Cauchy distribution; location: 0, scale: 3.
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Chapter 5

Experimental Results

Experiments using synthetic and real data are done to discuss the usefulness of the proposed method.

5.1 Synthetic data: problem for controlling the tradeoff

First, the problem for controlling the tradeoff between tracking abrupt motion changes and outlier rejec-
tion is used to show the adaptation ability of the proposed filter.

Using heavy-tailed non-Gaussian distribution, we can realize state estimation for motion trajectory
with outliers as mentioned in Chapter 4. A problem remains, however: the delay in tracking abrupt
changes in feature motion (Fig.5.1). The purpose of this experiment is to control the tradeoff between out-
lier rejection and tracking abrupt motion changes. Tradeoff is controlled by changing hyper-parameters,
i.e., scale parameters of observation noise distribution and system noise distribution. The larger scale
parameter of system noise distribution, for example, enables higher tracking speed. Thus controlling
tradeoff is equivalent to adjusting hyper-parameters based on feature motion.

Synthetic data shown in Fig.5.2 was used where the solid line represents the true trajectory and the
dotted line represents observation with noise and outliers. This data contains 3 outliers (t = 15, 30 and 75)
and an abrupt change in motion (t = 50). The Cauchy distribution C

(
0, τ 2

)
was also used for system

noise to represent both smooth motion that may occur frequently and abrupt changes in motion that may
occur infrequently.

To evaluate the best performance of the proposed filter, log-likelihood was used to determine hyper-
hyper-parameters ν2 and ξ2[17]. Log-likelihood for the proposed filter can be computed using approxi-
mation as follows[10]:

l
(
ν2, ξ2

) ∼=
N∑

t=1

log

(
m∑

i=1

α
(i)
t

)
− N logm (5.1)

Outlier

Abrupt change

Figure 5.1: Tradeoff between outlier rejection and tracking abrupt changes in motion.
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Figure 5.2: Synthetic data used in the experiment.

Table 5.1: Hyper-hyper-parameters determined for the proposed filter, hyper-parameters determined for
Kalman fitler, and mean squared error between estimated and true trajectories of both filters.

Proposed filter Kalman fitler
ν2 ξ2 MSE τ2 σ2 MSE

0.006 0.034 0.118 0.20 8.5 0.269

where α
(i)
t is likelihood calculated in Step 2-3 of the MCF algorithm and N is the length of the sequence

of measurement Yt. A coarse-to-fine method was used to determine hyper-hyper-parameters; first, coarse
grid {1, 2, . . . , 20} × {1, 2, . . . , 20} was used as the candidate of parameters and then a more detailed
grid was selected based on the maximum log-likelihood in the coarse grid. Parameters determined for
synthetic data are shown in Table 5.1.

The number of particles in the MCF, m, was 10,000. The initial distribution for coordinates of fea-
tures was Gaussian with mean vector [x (1) , y (1) ,x (1) , y (1)] T and covariance matrix diag (10, 10, 10, 10).
The initial distribution for hyper-parameters was uniform distribution in [−8, 8]. Estimated coordinates
of features were obtained from the mode of 2D distribution of x s (t) and ys (t) computed from parti-

cles f
(i)
t using a Parzen estimator[18]. The estimate of each hyper-parameter is also obtained using 1D

distribution.
The proposed filter was compared to the Kalman filter for linear/Gaussian model which was ob-

tained by removing hyper-parameters from state vector and using Gaussian distribution for both system
and observation noise. Log-likelihood was also used to determine hyper-parameters τ 2 and σ2 for the
linear/Gaussian model to compare the best performance. Log-likelihood for the model is represented as
follows:

lLGM

(
τ2, σ2

)
= −1

2

{
nN log 2π +

N∑
t=1

log
∣∣∣V t|t−1

∣∣∣+ N∑
t=1

(
yt − mt|t−1

)T
V −1

t|t−1

(
yt − mt|t−1

)}

(5.2)
where n is the number of dimensions of the state vector and m t|t−1 and V t|t−1 are the mean vector and
covariance matrix of prediction distribution calculated in the Kalman filter. Determined parameters are
shown in Table 5.1.

Figure 5.3 and 5.4 show the estimated trajectories and errors of coordinates. The effect of outliers
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Figure 5.3: Filtering results for synthetic data. (a) proposed filter. (b) Kalman filter.

was clearly reduced by the proposed filter (Fig.5.3 (a) and Fig.5.4 (a),(b)), while it was appeared in
the results of the Kalman filter (Fig.5.3 (b) and Fig.5.4 (c),(d)). The tradeoff between tracking abrupt
changes and outlier rejection was controlled properly by the proposed filter, because the scale parameter
of system noise distribution, τ 2, was increased very rapidly at t = 50 (Fig.5.5). Since the larger scale
parameter enables higher tracking speed, errors in coordinates of the proposed filter were smaller than
that of the Kalman filter around t = 50 (Fig.5.4). Table 5.1 shows the mean squared error between
estimated and true trajectories; the proposed filter was more accurate than the Kalman filter.

5.2 Synthetic data: problem for improving accuracy of motion and shape

The effect of filtering for improving the accuracy of motion and shape estimation is shown. The factoriza-
tion based method[1] which can eliminate the projection error due to affine approximation of perspective
projection was used to estimate motion and shape from motion trajectories of feature points. 62 feature
points on sphere and motion trajectoies of them obtained from synthetic motion were used. True trajec-
toies and observation with Gaussian noise and outliers are shown in Fig.5.6 (a) and (b). The variance of
the Gaussian noise for each trajectory was changed randomly using uniform distribution in [1:16] and
outliers obtained from unifrom distribution in [-20:20] were added to the Gaussian noise with 6% prob-
abilty. Since each trajectory has different statistical property and the property varies with time due to
outliers, different hyper-parameters for each trajectory and time are needed. Using the proposed fileter,
we can estimate hyper-parameters for each trajectory online. A large amount of computation was nec-
essary to estimate hyper-hyper-parameters based on the likelihood Eq.(5.1) for every trajectory, thus the
same hyper-hyper-parameters used in 5.1, ν2=0.006 and ξ2=0.034, were used instead. Other conditions
in 5.1, e.g., the number of particles, were also used.

Although some noise components remained, the effect of noise and outliers was reduced from the
observation by the proposed filter (Fig.5.6 (b) and (c)): Fig.5.6 (d) shows typical results of the filter for
the trajectories selected from Fig.5.6 (c) .

The rotation angles of sphere recovered from observation had increasing error and some bumpy
changes (Fig.5.7 (a)), while such error and changes were reduced in the rotation angles recovered from
estimated trajectoies (Fig.5.7 (b)). Multi-frame algorithm like the factorization based method used here
reduces the effect of noise by averaging. If the mean of noise components is not close to zero, offset
remains after averaging and it affects the result of motion and shape estimation. Offset is caused by
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Figure 5.4: Error in coordinates for synthetic data. Abscissa represents time. (a),(b): error in x and y
coordinates for the proposed filter. (c),(d): error in x and y coordinates for the Kalman filter. Vertical
lines show when outliers (t=15,30,75) and abrupt change in motion (t=50) occur.

outliers and the proposed filter can reduce its effect, thus the errors of motion are reduced as shown in
Fig.5.7. Shape error was measured by ‖Strue − Sestimated‖ / ‖Strue‖ where S is shape matrix. The
error of shape reconstructed from the observation was 5.8% while one reconstructed from the estimated
trajectoies was 2.5%.

5.3 Real data: online estimation of hyper-parameters for eye tracker

In results for online implementation, the proposed method was incorporated into an eye tracker. The
template of the right eye was stored and used to track the eye in the image sequence (Fig.5.8): exhaustive
search was used to detect the eye position in the first frame and a local search based on the eye position
in the previous frame was used in successive frames. An image processing board with hardware for
computing normalized correlations was used in template matching. The proposed filter was applied to
estimate hyper-parameters online.

Hyper-parameters were properly varied based on changes in motion: large scale parameter of system
noise distribution was used for large velocities and small one selected for the small velocities (Fig.5.9(a)
and (b)). This result shows the adaptation ability of the proposed filter for the real online system. The
frame rate was about 10 [frame/s] on PC with Pentium III 500MHz.

We should give care to the lower bound of the scale parameter of system noise distribution in practical
application. For example, if the object being tracked remains stationary for a long period, the scale
parameter would decay to very small number and thus the system noise would decay to almost zero. If
the object moves again, tracking may fail. So the lower bound of the scale parameter should be defined.
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It is done easily because it is almost equivalent to define the smallest search region size for the local
search: -3 was used in this experiment.
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Figure 5.6: Motion trajectories obtained from 62 feature points on sphere. (a) True motion trajectories.
(b) Observation with noise and outliers. (c) Estimated trajectories obtained from the proposed filter. (d)
Typical results of the proposed filter selected from (c).
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Figure 5.7: Errors in recovered rotation angles: roll, pitch and yaw. (a) Errors in rotation angles obtained
from observation. (b) Errors in rotation angles obtained from estimated trajectoies.



CHAPTER 5. EXPERIMENTAL RESULTS 15

Figure 5.8: Snapshots of the eye tracking image sequence. The arc in pictures shows the estimated eye
position obtained from the proposed filter.
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Figure 5.9: Changes in Hyper-parameters and velocity. (a) Changes in hyper-parameters. (b) Changes in
feature velocity.



Chapter 6

Conclusions

Stochastic filtering for a motion trajectory with estimation of hyper-parameters has been proposed.
Hyper-parameters governing state estimation were included in state vector and estimated simultaneously
with feature coordinates. Experimental results for synthetic data and online implementation verified the
usefulness of our proposed method.

One of the problems of the proposed filter is the effect of approximation of distribution by particles
for state estimation. Estimation using particles sometime converges only on a number of varieties of
particles; this phenomenon is called as “sample impoverishment”[19]. The algorithm for increasing
varieties of particles should be incorporated to avoid the phenomenon and keep the adaptation ability of
the filter especially for long image sequences. This is a projected work in our research.
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