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Abstract

False matching due to errors in feature extraction and
changes in illumination between frames may occur in fea-
ture tracking in image sequences. False matching leads
to outliers in feature motion trajectory. One way of re-
ducing the effect of outliers is stochastic filtering using a
state space model for motion trajectory. Hyper-parameters
in the state space model, e.g., variances of noise distribu-
tions, must be determined appropriately to control tracking
motion and outlier rejection properly. Likelihood can be
used to estimate hyper-parameters, but it is difficult to ap-
ply online tracking due to computational cost. To estimate
hyper-parameters online, we include hyper-parameters in
state vector and estimate feature coordinates and hyper-
parameters simultaneously. A Monte Carlo filter is used
in state estimation, because adding hyper-parameters to
state vector makes state space model nonlinear. Exper-
imental results using synthetic data show that the pro-
posed method can estimate appropriate hyper-parameters
for tracking motion and reducing the effect of outliers.

1 Introduction

Feature tracking is essential to image sequence analysis
in computer vision. False matching due to errors in feature
extraction and changes in illumination between frames may
occur in feature tracking. False matching leads to outliers in
the feature motion trajectory. The effect of outliers must be
reduced to yield good data for subsequent processing such
as shape from motion[1][2] and motion segmentation[3].

One way of reducing this effect is stochastic filter-
ing using a state space model for motion trajectory, as
typified by the Kalman filter[4]–[6]. Since state esti-
mation result based on stochastic filtering varies with
hyper-parameters, e.g., variances of noise distributions, in

state space model, appropriate hyper-parameters should
be used to carry out state estimation properly. Likeli-
hood p (yk | Yk−1), k = 1, 2, . . . , t of time series of mea-
surement Yt = {y1, y2, . . . , y t} can be used to estimate
hyper-parameters, but it is difficult to apply tracking due
to computational cost; numerical search like coarse-to-fine
method for grid of hyper-parameters is necessary. Stochas-
tic property of motion generally varies with time and lag
is not allowed in tracking, thus online estimation of hyper-
parameters is quite important to feature tracking.

The Multiple-Model adaptive filter[7] can be used for
online estimation of hyper-parameters. Multiple models
with different hyper-parameters are prepared, and state esti-
mation results of these models are combined based on like-
lihoods of models for current measurement to use appro-
priate hyper-parameters. Since all combinations of hyper-
parameters should be given in this method, if appropriate
hyper-parameters are not in the given scope, the filter can
not yield good state estimation results. In addition, a lot of
models may be necessary when many hyper-parameters are
needed and/or quantization of them must be fine to obtain
good accuracy; it reduces efficiency of algorithm.

In this paper, we include hyper-parameters in state vec-
tor and estimate feature coordinates and hyper-parameters
simultaneously online. Using this simultaneous estima-
tion, we can adjust hyper-parameters to feature motion au-
tomatically. Since adding hyper-parameters to state vector
makes state space model nonlinear, we need state estimation
method for nonlinear model. The sequential Monte Carlo
(SMC) method used for nonlinear/non-Gaussian state space
models has been proposed recently[8]–[11], so the Monte
Carlo filter (MCF)[9], a type of the SMC, is applied to
state estimation of our model. Online estimation of hyper-
parameters by adding them to state vector was proposed in
1970’s, but the extended Kalman filter which needs linear
approximation of model and assumption of Gaussian distri-
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Figure 1. An example of the effect of hyper-
parameters for state estimation. (a) τ 2 = 1.0
and σ2 = 1.0. (b) τ 2 = 0.01 and σ2 = 50.0.

bution for state and noises could not yield good state esti-
mation results[12][13]. The approximation and assumption
are not needed for the MCF.

The MCF allows us to use the non-Gaussian observa-
tion noise distribution which is useful to reduce the effect of
outliers[14]. Using heavy-tailed non-Gaussian distribution,
e.g., Cauchy distribution, we can represent both observation
noise with high probability and outliers with low probabil-
ity. Thus state estimation for motion trajectory with outliers
can be done.

Adaptive filtering for motion trajectory with time-
dependent statistical property can be realized using online
estimation of hyper-parameters and non-Gaussian noise dis-
tribution mentioned above. Experiments using synthetic
data are shown to discuss the usefulness of the proposed
method.

2 State Space Model for Motion Trajectory

2.1 Notation and prior models

A state space model is represented as follows:

xt = Fxt−1 + Gvt (1)

yt = Hxt + wt (2)

where Eq. (1) is the state transition equation, xt is the state
vector, and vt is the system noise vector. Matrix F and G
are system matrices. Equation (2) is the observation equa-
tion, yt is the observation vector, and wt is the observation
noise vector. Matrix H is an observation matrix.

Stochastic filtering based on the state space model is
used to estimate state vector xt using time series of mea-

surement Yt = {y1, . . . , yt}, i.e., to calculate conditional
probability density function p (x t | Yt).

The observation vector

yt = [x(t), y(t)]T (3)

represents coordinates of features in images. The following
smoothness prior models, i.e., constant velocity model, are
used for motion trajectory:

x (t + 1) = 2x (t) − x (t − 1) (4)

y (t + 1) = 2y (t) − y (t − 1) (5)

This assumption means that the change in velocity of fea-
ture between 2 adjacent frames is small and the velocity
varies gradually in image sequence.

2.2 Noise distribution and hyper-parameters

Variables in system noise vector vt are independent, and
their distributions are represented as q (v; mq, τ 2

)
, where

mq and τ are parameters of location and scale. The mul-
tivariate form of system noise distribution is denoted as
qv (vt; mvq, T ) . Variables in observation noise vector wt

are independent, and their distributions are represented as
r
(
w; mr, σ

2
)
, where mr and σ are parameters of location

and scale. The multivariate form of observation noise dis-
tribution is denoted as rv (wt; mvr, Σ). Since we assume
the mean of noise is zero, the entities in mvq and mvr are
zero.

Parameters τ2 and σ2 in system noise and observa-
tion noise distribution are called hyper-parameters, because
their role is to control state estimation. Figure 1 shows
an example of the effect of hyper-parameters for state es-
timation. The prior models of Eq.(4) and (5) and Gaus-
sian distribution for system and observation noise were
used. State estimation was done by the Kalman filter. The
hyper-parameters,

(
τ2, σ2

)
= (1.0, 1.0) (Fig.1 (a)) and

(0.01, 50.0) (Fig.1 (b)), were used for the same observa-
tion. As we can see from Fig.1(a) and (b), the state estima-
tion results are completely different. This example shows
the importance of hyper-parameters in state estimation.

Likelihood p (yk | Yk−1), k = 1, 2, . . ., t, Y0 = φ of
time series of measurement can be used to determine hyper-
parameters. It is difficult, however, to apply feature tracking
due to computational cost. Since lag is not allowed in fea-
ture tracking and stochastic property of motion generally
varies with time, online estimation of hyper-parameters is
needed.

2.3 State space model to estimate hyper-
parameters

From the prior models of Eq.(4) and (5), x (t) , y (t) ,
x (t − 1) and y (t − 1) are included in the state vector. And
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hyper-parameters are also included in the state vector to es-
timate them online as follows:

xt = [xs (t) , ys (t) , xs (t − 1) , ys (t − 1) ,

log τ 2 (t) , logσ2 (t)
]T

(6)

The logarithm of hyper-parameters is used to preserve scale
parameters as positive. Since hyper-parameters are in the
state vector, they are estimated online; both feature coor-
dinates and hyper-parameters are estimated simultaneously
to adjust the hyper-parameters to feature motion automati-
cally.

Since hyper-parameters are included in the state vector
and time-dependent to follow feature motion, we define the
system matrices, observation matrix, system noise vector,
and observation noise vector of the state space model as
follows:

F=




2 0 −1 0 0 0
0 2 0 −1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1



,G=




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1




,

H =
[

1 0 0 0 0 0
0 1 0 0 0 0

]
(7)

vt = [vx(t), vy(t), vτ2 (t), vσ2(t)]T (8)

wt = [wx(t), wy(t)]
T (9)

where vτ2 and vσ2 are variables for system noise of hyper-
parameters. The location and scale in multivariate form
of system noise distribution qv (vt; mvq, T ) are mvq =
[0, 0, 0, 0]T and T = diag

(
τ2, τ 2, ν2, ξ2

)
. The location and

scale in multivariate form of observation noise distribution
are mvr = [0, 0]T and Σ = diag

(
σ2, σ2

)
.

ν2 and ξ2 are called hyper-hyper-parameters, because
these parameters govern change in hyper-parameters.

3 State Estimation by Monte Carlo Filter

3.1 Monte Carlo filter algorithm

Adding hyper-parameters to state vector makes the state
space model nonlinear, since system and observation noise
vectors are the function of hyper-parameters in the state vec-
tor. We need state estimation method for such a nonlinear
model, because the Kalman filter commonly used assumes
a linear/Gaussian model.

The sequential Monte Carlo method (SMC) was pro-
posed for nonlinear/non-Gaussian models[8]-[11]. The
Monte Carlo filter (MCF)[9], a type of the SMC, is applied

to state estimation of the proposed model. The procedure of
the MCF is briefly described below.

In the MCF, probability distributions used in state esti-
mation are approximated by m particles, i.e., m realizations
from distributions, as follows:

prediction : p (xt | Yt−1) ,
{

p
(1)
t , . . . , p

(m)
t

}
filter : p (xt | Yt) ,

{
f

(1)
t , . . . , f

(m)
t

}
System noise distribution is approximated as follows:

system noise : qv (vt; mvq, T ) ,
{

v
(1)
t , . . . , v

(m)
t

}
State estimation is carried out by repeating the following
one-step-ahead prediction and filter process:

[MCF algorithm]
[Step 1: generation of particles of initial distribution]
Generate m particles, i.e., m random vectors, from an
initial distribution of state p 0 (x). These particles f

(i)
0

(i = 1, . . . , m) are regarded as initial filter distribution.
[Step 2: filtering] Repeat next steps.
[Step 2-1: generation of particles for system noise] Gener-

ate m particles v
(i)
t ∼ qv (vt; mvq, T ), i = 1, . . . , m.

[Step 2-2: one-step-ahead prediction] Compute particles,

p
(i)
t , representing the prediction distribution p (x t | Yt−1)

using the state transition equation:

p
(i)
t = Ff

(i)
t−1 + Gv

(i)
t , i = 1, . . . , m (10)[

Step 2-3: calculation of likelihood of p
(i)
t

]
Calculate the

likelihood α
(i)
t of particle p

(i)
t using measurement vector

yt and observation noise distribution as follows:

α
(i)
t = rv

(
yt − Hp

(i)
t ; mvr,Σ

)
, i = 1, . . . , m (11)

[Step 2-4: calculation of filter distribution] Calculate parti-

cles f
(i)
t of filter distribution by resampling particles p

(i)
t

in accordance with the following probabilities:

Pr
(
f

(i)
t = p

(i)
t

)
=

α
(i)
t

α
(1)
t + . . . + α

(m)
t

, i = 1, . . . , m(12)

3.2 Intuition for adaptation of hyper-parameters
by the MCF

The likelihoods of particles used in resampling in Step
2-4 are determined by the difference between measurement
and predicted position, and observation noise distribution,

i.e., rv

(
yt − Hp

(i)
t ; mvr,Σ

)
in Eq.(11). The particle

with high likelihood survives the resampling, thus hyper-
parameters in such particle (state vector) are chosen as good
one for adapting filter to feature motion.
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Figure 2. An example of observation noise
distributions with different hyper-parameters.

Figure 2 shows an example of two observation noise dis-
tributions with different hyper-parameters. If the difference
between measurement and predicted position is -1, obser-
vation noise distribution A gives higher likelihood than one
given by observation noise distribution B. So the hyper-
parameters of distribution A is chosen with high probabil-
ity. If the difference between measurement and predicted
position is 5, the hyper-parameters of distribution B sur-
vives with high probability. Hyper-parameters are adapted
to feature motion through such a selection mechanism in the
MCF.

4 Non-Gaussian Observation Noise Distribu-
tion for Outlier Rejection

The MCF allows us to use the heavy-tailed non-Gaussian
observation noise distribution which is useful to reduce the
effect of outliers[14]. The following Cauchy distribution
C
(
0, σ2

)
is selected for observation noise:

r
(
w; 0, σ2

)
=

σ

π {w2 + σ2} (13)

where σ is scale parameter. It is heavy-tailed (Fig.3) and
represents both observation noise with high probability and
outliers with low probability. State estimation for motion
trajectory with outliers, therefore, can be realized.

5 Experimental Results

The problem for controlling the tradeoff between track-
ing abrupt motion changes and outlier rejection is used to
show the adaptation ability of the proposed filter.

Using heavy-tailed non-Gaussian distribution, we can re-
alize state estimation for motion trajectory with outliers as
mentioned in Section 4. A problem remains, however: the
delay in tracking abrupt changes in feature motion (Fig.4).
The purpose of this experiment is to control the tradeoff be-
tween outlier rejection and tracking abrupt motion changes.

0
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Gauss
Cauchy

Figure 3. Gaussian distribution and Cauchy
distribution; location: 0, scale: 3.

Outlier

Abrupt change

Figure 4. Tradeoff between outlier rejection
and tracking abrupt changes in motion.

Tradeoff is controlled by changing hyper-parameters, i.e.,
scale parameters of observation noise distribution and sys-
tem noise distribution. The larger scale parameter of sys-
tem noise distribution, for example, enables higher tracking
speed. Thus controlling tradeoff is equivalent to adjusting
hyper-parameters based on feature motion.

Synthetic data shown in Fig.5 was used where the solid
line represents the true trajectory and the dotted line rep-
resents observation with noise and outliers. This data con-
tains 3 outliers (t = 15, 30 and 75) and an abrupt change
in motion (t = 50). The Cauchy distribution C

(
0, τ 2

)
was

also used for system noise to represent both smooth motion
that may occur frequently and abrupt changes in motion that
may occur infrequently.

To evaluate the best performance of the proposed fil-
ter, log-likelihood was used to determine hyper-hyper-
parameters ν2 and ξ2[15]. Log-likelihood for the proposed
filter can be computed using approximation as follows[9]:

l
(
ν2, ξ2

) ∼= N∑
t=1

log

(
m∑

i=1

α
(i)
t

)
− N log m (14)

where α
(i)
t is likelihood calculated in Step 2-3 of the MCF

algorithm and N is the length of the sequence of measure-
ment Yt. A coarse-to-fine method was used to determine
hyper-hyper-parameters; first, coarse grid {1, 2, . . ., 20} ×
{1, 2, . . ., 20} was used as the candidate of parameters and
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Figure 5. Synthetic data used in the experi-
ment.

then a more detailed grid was selected based on the max-
imum log-likelihood in the coarse grid. Parameters deter-
mined for synthetic data are shown in Table 1.

The number of particles in the MCF, m, was 10,000. The
initial distribution for coordinates of features was Gaussian
with mean vector [x (1) , y (1) ,x (1) , y (1)]T and covari-
ance matrix diag (10, 10, 10, 10). The initial distribution for
hyper-parameters was uniform distribution in [−8, 8]. Esti-
mated coordinates of features were obtained from the mode
of 2D distribution of x s (t) and ys (t) computed from parti-

cles f
(i)
t using a Parzen estimator[16]. The estimate of each

hyper-parameter is also obtained using 1D distribution.
The proposed filter was compared to the Kalman filter

for linear/Gaussian model which was obtained by remov-
ing hyper-parameters from state vector and using Gaussian
distribution for both system and observation noise. Log-
likelihood was also used to determine hyper-parameters τ 2

and σ2 for the linear/Gaussian model to compare the best
performance. Log-likelihood for the model is represented
as follows:

lLGM

(
τ2, σ2

)
= −1

2

{
nN log 2π +

N∑
t=1

log
∣∣V t|t−1

∣∣

+
N∑

t=1

(
yt − mt|t−1

)T
V −1

t|t−1

(
yt − mt|t−1

)}
(15)

where n is the number of dimensions of the state vector
and mt|t−1 and V t|t−1 are the mean vector and covariance
matrix of prediction distribution calculated in the Kalman
filter. Determined parameters are shown in Table 1.

Figure 6 and 7 show the estimated trajectories and errors
of coordinates. The effect of outliers was clearly reduced
by the proposed filter (Fig.6 (a) and Fig.7 (a),(b)), while it
was appeared in the results of the Kalman filter (Fig.6 (b)
and Fig.7 (c),(d)). The tradeoff between tracking abrupt

Table 1. Hyper-hyper-parameters determined
for the proposed filter, hyper-parameters de-
termined for Kalman filer, and mean squared
error between estimated and true trajectories
of both filters.

Proposed filter Kalman filer
ν2 ξ2 MSE τ2 σ2 MSE

0.006 0.034 0.118 0.20 8.5 0.269
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Figure 6. Filtering results for synthetic data.
(a) proposed filter. (b) Kalman filter.

changes and outlier rejection was controlled properly by
the proposed filter, because the scale parameter of system
noise distribution, τ 2, was increased very rapidly at t = 50
(Fig.8). Since the larger scale parameter enables higher
tracking speed, errors in coordinates of the proposed filter
were smaller than that of the Kalman filter around t = 50
(Fig.7). Table 1 shows the mean squared error between es-
timated and true trajectories; the proposed filter was more
accurate than the Kalman filter.

The other experimental results for shape from mo-
tion and an online implementation can be seen in
the technical report which is a longer version of this
manuscript [17]. It is available via the WWW:
http://staff.aist.go.jp/naoyuki.ichimura/.

6 Conclusions

Stochastic filtering for a motion trajectory with esti-
mation of hyper-parameters has been proposed. Hyper-
parameters governing state estimation were included in
state vector and estimated simultaneously with feature coor-
dinates. Experimental result for synthetic data verified the
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Figure 7. Error in coordinates for synthetic
data. Abscissa represents time. (a),(b): error
in x and y coordinates for the proposed filter.
(c),(d): error in x and y coordinates for the
Kalman filter. Vertical lines show when out-
liers (t=15,30,75) and abrupt change in motion
(t=50) occur.

usefulness of our proposed method.
One of the problems of the proposed filter is the effect of

approximation of distribution by particles for state estima-
tion. Estimation using particles sometime converges only
on a number of varieties of particles; this phenomenon is
called as “sample impoverishment”[18]. The algorithm for
increasing varieties of particles should be incorporated to
avoid the phenomenon and keep the adaptation ability of
the filter especially for long image sequences. This is a pro-
jected work in our research.
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