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Point Using Non-Gaussian State Space Model

Naoyuki ICHIMURA†, Member and Norikazu IKOMA††, Nonmember

SUMMARY Filtering and smoothing using a non-Gaussian
state space model are proposed for motion trajectory of feature
point in image sequence. A heavy-tailed non-Gaussian distribu-
tion is used for measurement noise to reduce the effect of outliers
in motion trajectory. Experimental results are presented to show
the usefulness of the proposed method.
key words: feature point tracking, image sequence, non-
Gaussian state space model, sequential Monte Carlo method

1. Introduction

Feature point tracking in an image sequence is essen-
tial to shape from motion, motion segmentation, and
motion based control of active camera. False matching
due to error in feature extraction and change in illu-
mination between frames may occur in feature point
tracking. The false matching leads to outliers in mo-
tion trajectory of feature point. A method to reduce
the effect of outliers is important to give good data for
the subsequent processing.

A method to reduce the effect of outliers is stochas-
tic filtering using state space model for motion trajec-
tory. The Kalman filter[1] is well known as a typical
method. It has been used in many applications, but
the lack of robustness for outliers has been pointed out;
if measurement noise distribution deviates from Gaus-
sian, the Kalman filter cannot estimate state properly,
because linear Gaussian state space model is assumed
in it[2]. Such deviation from Gaussianness can be fre-
quently observed in real data.

Filtering and smoothing using a non-Gaussian
state space model are proposed to reduce the effect of
outliers. In the proposed method, heavy-tailed non-
Gaussian distribution is used for measurement noise.
We can represent both measurement noise with high
probability and outliers with low probability using it.
Thus state estimation which takes account of the exis-
tence of outliers can be realized.

A problem on the use of non-Gaussian distribution
is state estimation; the Kalman filter cannot be applied
to non-Gaussian model. We use the sequential Monte
Carlo method(SMC)[3]-[6] for state estimation of non-
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Gaussian model.
Experimental results including the comparison

with Gaussian model are presented to confirm the use-
fulness of the proposed method.

2. Non-Gaussian State Space Model for Mo-
tion Trajectory

2.1 State Vector, System Matrices and Measurement
Matrix

A state space model is represented as follows:

xt = Fxt−1 + Gvt (1)
yt = Hxt +wt (2)

where Eq.(1) is state transition equation, xt is state
vector and vt is system noise vector. The matrix F
and G are system matrices. Equation(2) is measure-
ment equation, yt is measurement vector and wt is
measurement noise vector. The matrix H is measure-
ment matrix.

The measurement vector yt = [x(t), y(t)]T is co-
ordinates of feature point in image. It is assumed as
a prior knowledge that the second order difference of
coordinates of feature point takes zero; if there is no
noise, the coordinates of feature point satisfy the fol-
lowing equations:

x (t + 1) = 2x (t) − x (t − 1) (3)
y (t + 1) = 2y (t) − y (t − 1) (4)

From this assumption, state vector, system matrices,
measurement matrix, measurement noise vector and
system noise vector of the state space model are de-
fined as follows:

xt = [xs (t) , ys (t) , xs (t − 1) , ys (t − 1)]T (5)

F=




2 0 −1 0
0 2 0 −1
1 0 0 0
0 1 0 0


,G=



1 0
0 1
0 0
0 0


 ,

H =
[
1 0 0 0
0 1 0 0

]
(6)

vt = [vx(t), vy(t)]
T (7)
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Fig. 1 Gaussian distribution (dotted line) and Cauchy distri-
bution (solid line); location:0,scale:3.

wt = [wx(t), wy(t)]
T (8)

where xs and ys are the coordinates of feature point
to be estimated, vx and vy are the variables for sys-
tem noise, wx and wy are the variables of measurement
noise.

2.2 Non-Gaussian Measurement Noise Distribution

The variables in system noise vector vt are inde-
pendent, and their distributions are represented as
q (v;mq , τ 2

)
, where mq and τ are the parameters of lo-

cation and scale. The Gaussian distribution N
(
0, τ 2

)
is used for system noise. The multivariate form of the
system noise distribution is denoted as qv (vt;mvq, T )
where mvq = [0, 0]T and T = diag

(
τ2, τ 2

)
.

The variables in measurement noise vector wt are
independent, and their distributions are represented as
r
(
w;mr, σ

2
)
, where mr and σ are the parameters of

location and scale. A heavy-tailed distribution is used
as r

(
w;mr, σ

2
)
to represent the existence of the out-

liers due to false matching in tracking. The following
Cauchy distribution C

(
0, σ2

)
is selected for measure-

ment noise.

r
(
w; 0, σ2

)
=

σ

π {w2 + σ2} (9)

It is heavy-tailed(Fig.1) and thus can represent both
measurement noise with high probability and outliers
with low probability. State estimation which takes ac-
count of the existence of outliers, therefore, can be
realized. The multivariate form of the measurement
noise distribution is denoted as rv (wt;mvr, Σ) where
mvr = [0, 0]T and Σ = diag

(
σ2, σ2

)
.

The parameters τ2 and σ2 are called the hyper-
parameters, since they have the role to control state
estimation. The hyper-parameters can be determined
using log-likelihood as shown in Section 4.

3. State Estimation by SequentialMonte Carlo
Method

Since Kalman filter commonly used for state estimation

assumes Gaussian model, it cannot be used for the non-
Gaussian model shown in Section 2. The sequential
Monte Carlo method(SMC) which can be used for non-
Gaussian model has been proposed recently[3]-[6]. The
Monte Calro filter(MCF)[4] which is a kind of the SMC
is applied to state estimation of the proposed model.
The procedure of the MCF is briefly described in below.

In the MCF, the probability distributions used in
state estimation are approximated by m particles, i.e.
m realizations from the distributions, as follows:

prediction : p (xt | Yt−1) ,
{
p

(1)
t , . . . , p

(m)
t

}
filter : p (xt | Yt) ,

{
f

(1)
t , . . . , f

(m)
t

}
smoothing : p (xt−L | Yt) ,

{
s

(1)
t−L| t, . . . , s

(m)
t−L| t

}
where Yt = {y1, . . . , y t} is a sequence of measurement
vector and L (> 0) is the lag in fixed-lag smoothing.
The system noise distribution is also approximated as
follows:

system noise : qv (vt;mvq, T ) ,
{

v
(1)
t , . . . , v

(m)
t

}
State estimation is carried out by repeating one step
ahead prediction and filter process using these parti-
cles as summarized below.
[MCF algorithm]
[Step1:generation of particles of initial distribution]
Generate m particles, i.e. m random vectors, from an
initial distribution of state p0 (x). These particles f

(i)
0

(i = 1, . . . , m) can be regarded as initial distribution of
filter.
[Step2:filtering] Repeat next steps.
[Step2-1:generation of particles for system noise] Gen-
erate m particles v

(i)
t ∼ qv (v;mvq, T ), i = 1, . . . , m.

[Step2-2:one step ahead prediction] Compute the par-
ticles, p

(i)
t , representing the distribution of prediction

p (xt | Yt−1) using state transition equation:

p
(i)
t = Ff

(i)
t−1 + Gv

(i)
t , i = 1, . . . , m (10)[

Step2-3:calculation of likelihood of p
(i)
t

]
Calculate the

likelihoodα
(i)
t of particle p

(i)
t using measurement vector

yt and measurement noise distribution as follows:

α
(i)
t = rv

(
yt − Hp

(i)
t ;mvr,Σ

)
, i = 1, . . . , m (11)

[Step2-4:calculation of filter distribution] Calculate par-
ticles f

(i)
t of filter distribution by resampling the parti-

cles p
(i)
t in accordance with the following probabilities:

Pr
(
f

(i)
t = p

(i)
t

)
=

α
(i)
t

α
(1)
t + . . .+ α

(m)
t

, i = 1, . . . , m(12)

The fix-lag smoothing algorithm can be obtained
by resampling the past particles simultaneously with
the current particles p

(i)
t [4]. That is, Step2-4 in the
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Fig. 2 Synthetic data used in the experiment. The solid line
represents true trajectory and the dotted line represents obser-
vation.

Table 1 Determined hyper-parameters for the synthetic data.
GM:Gaussian model, NGM:non-Gaussian model.

GM NGM
τ2 σ2 τ2 σ2

0.20 11 0.45 0.20

filtering algorithm should be modified in the fix-lag
smoothing algorithm as follows:

[Step2-4:calculation of smoothing distribution] Calcu-
late particles s

(i)
t−L|t of fix-lag distribution p (xt−L | Yt)

by resampling a set of particles
(
s
(i)
t−L|t−1

, . . . , s
(i)
t−1|t−1

,

p
(i)
t

)
in accordance with the probability of Eq.(12).

At the beginning of the fix-lag smoothing, particles(
f

(i)
0 , p

(i)
1

)
are resampled, and the result is

(
s
(i)
0|1, s

(i)
1|1
)

where s
(i)
1|1 = f

(i)
1 . This procedure is continued by

adding particles p
(i)
t and resampling them with the

stored particles s
(i)
j|t−1 ( if t ≤ L then j = 0, . . . , t − 1.

if t > L then j = t − L, . . . , t − 1.) at each time to ob-
tain s

(i)
t−L|t.

4. Experimental Results

The experimental results for synthetic and real data
are shown. The comparison with Gaussian model with
state estimation by the Kalman filter is also presented;
the Gaussian distribution N

(
0, σ2

)
is used for measure-

ment noise in the Gaussian model.

4.1 Synthetic Data

The synthetic data shown in Fig.2 was used: the solid
line represents the true trajectory and the dotted line
represents the observation with noise and outliers.

The log-likelihood can be used to determine the
hyper-parameters τ2 and σ2[7]. The log-likelihood for
the Gaussian model is represented as follows:
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Fig. 3 Filtering results for the synthetic data. (a) Gaussian
model. (b) non-Gaussian model.
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Fig. 4 Smoothing results for the synthetic data. (a) Gaussian
model. (b) non-Gaussian model.

lGM

(
τ2, σ2

)
= −1

2

{
nN log 2π +

N∑
t=1

log
∣∣V t|t−1

∣∣

+
N∑

t=1

(
yt − mt|t−1

)T
V −1

t|t−1

(
yt − mt|t−1

)}
(13)

where n is the number of dimension of state vector,
N is the length of the sequence of measurement Yt,
and mt|t−1 and V t|t−1 are the mean vector and the
covariance matrix of prediction distribution calculated
in the Kalman filter. The log-likelihood for the non-
Gaussian model can be approximated as follows[4]:

lNGM

(
τ2, σ2

) ∼= N∑
t=1

log

(
m∑

i=1

α
(i)
t

)
− N logm (14)

where α
(i)
t is likelihood calculated in Step2-3 of the

MCF algorithm. A coarse-to-fine method was used
to determine the hyper-parameters; first, coarse grid[
τ2, σ2

]
: {1, 2, . . ., 20} × {1, 2, . . . , 20} was used as

the candidates of the hyper-parameters and then more
detailed grid was selected according to the maximum
log-likelihood in coarse grid. The determined hyper-
parameters for the synthetic data are shown in Table
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Table 2 Mean squared error for the estimates of the syn-
thetic data. GM: Gaussian model, NGM:non-Gaussian model,
F:filtering, S:smoothing.

GM NGM
F S F S

0.326 0.276 0.156 0.144
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248 250 252 254 256 258 260 262 264

Observation; real data

Fig. 5 Real data used in the experiment.

(a) (b)

Fig. 6 Image sequence used in the experiment. (a) first frame.
(b) frame 60. The black rectangles in image are feature points.

1.
Filtering and fixed-lag smoothing with L = 25

were carried out. The number of particles in the MCF
was 10,000. The initial distribution of state p0 (x) was
Gaussian with the mean [x (1) , y (1) , x (1) , y (1)]T and
the identity matrix as covariance one. In the MCF, the
estimated coordinates of feature point were obtained
from the mode of 2D histogram of xs (t) and ys (t) com-
puted from particles f

(i)
t or s

(i)
t−L|t .

The results of filtering and smoothing show that
the effect of outliers was appeared in the estimates of
the Gaussian model (Fig.3 (a) and Fig.4 (a)) while it
was clearly reduced by the non-Gaussian model(Fig.3
(b) and Fig.4 (b)). The usefulness of the non-Gaussian
model was also verified quantitatively by the mean
squared errors between estimates and true trajec-
tory(Table 2).

4.2 Real Data

The motion trajectory of feature point shown in Fig.5
was obtained from the real image sequence shown in
Fig.6; the motion trajectory of the feature point on the

Table 3 Determined hyper-parameters for the real data.

GM NGM
τ2 σ2 τ2 σ2

0.055 2.5 0.03 0.07
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Fig. 7 Filtering results for the real data. (a) Gaussian model.
(b) non-Gaussian model.
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Fig. 8 Smoothing results for the real data. (a) Gaussian
model. (b) non-Gaussian model.

bottom of the book grabbed by the right hand was se-
lected, since the false matchings were contained. The
feature points in the image sequence, the black rect-
angles in Fig.6, were extracted by the corner detec-
tor shown in [8], and they were tracked using block
matching based on normalized correlation. The hyper-
parameters for the real data were also determined using
the log-likelihood(Table 3), and the conditions, e.g. the
number of particles, for the synthetic data were used.

Since the book in the image sequence was moved
smoothly, smooth estimates should be obtained. The
estimates by the Gaussian model, however, were clearly
affected by the outliers due to the false matchings
(Fig.7(a) and Fig.8(a)). On the other hand, the non-
Gaussian model reduced the effect of the outliers, thus
its estimates were desirable(Fig.7(b) and Fig.8(b)).

These experimental results show the usefulness of
the proposed method.
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5. Conclusions

Filtering and smoothing using the non-Gaussian state
space model have been proposed. The proposed
method can reduce the effect of outliers in motion tra-
jectory of feature point; its usefulness was confirmed by
the experiments using the synthetic and real data.
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