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Abstract

Motion se gmentation using feature correspondences
can be regarded as a combinatorial pr oblem. A mo-
tion segmentation algorithm using fe ature selection
and subspace method is proposed to solve the combina-
torial problem. Feature selection is carried out as com-
putation of a basis of the linear space that represents
the shape of objects. Features can be selected from
\each" object \without segmentation information" by
keeping the correspondence of basis vectors to features.
Only four or less features of each object are used; the
combination in se gmentation is r educed by feature se-
lection. Thus the combinatorial pr oblem can be solved
without optimization. The remaining fe atures in se-
lection are classi�ed using the subspace method based
on the segmentation result of selected features. Ex-
periments are done to consider the usefulness of the
proposed method.

1 Introduction

Segmen tation is fundamental processing in comput-
er vision. Motion segmentation has attracted great
attention, because it can be used for applications such
as modeling by shape from motion, video coding, and
the analysis of movement. Many algorithms ha ve been
proposed for motion segmentation based on Hough
transformation [1], clustering [2], random �elds model
[3], etc. Although motion parameters are used in these
methods, segmentation information is needed to esti-
mate the motion parameters correctly . This situation
leads to a chicken and egg problem.

Factorization method [4]-[6] has been used to avoid
the chicken and egg problem. A measurement ma-
trix with the coordinates of feature correspondences
as entities is decomposed into two matrices only once.
Initial segmentation is not needed, since these matri-
ces contain motion and shape information of multiple
objects.

The algorithm proposed in the present paper is in-
spired by the work of Costeira and Kanade [6]. A
shape interaction matrix which is a kind of proximit y
matrix of motions is used for segmentation. If ob-
jects are segmen ted correctly, shape interaction ma-

trix becomes block-diagonal. Hence the optimization
method that minimizes the total energy of all possi-
ble o�-diagonal blocks of shape interaction matrix was
used. If the number of objects and the number of fea-
tures are large, however, the exhaustive search of all
possible o�-diagonal blocks causes a combinatorial ex-
plosion. A nonlinear optimization has been applied in
such case, but it may involve local minima and high
computational cost.

A motion segmen tation algorithm using feature se-
lection and subspace method is proposed in this paper.
Only four or less features per object are selected to re-
duce the number of the combinations in segmentation.
Thus stable and simple numerical computation can be
used to solve the combinatorial problem; the nonlin-
ear optimization is not needed. Classi�cation of the
remaining features in selection is done by the subspace
method based on the segmentation result of selected
features.

The problem in feature selection is how to selec-
t features from \each" object \without segmentation
information". Feature selection is systematically car-
ried out as computation of the basis of shape space
which is the linear space that represents the shape of
objects. Features can be selected from each object
without segmentation information by keeping the cor-
respondence of basis vectors to features. That is, the
chicken and egg problem is also avoided in feature se-
lection; this is an important advantage of our method.

Section 2 shows the summary of shape in teraction
matrix and the problems of the con ventional method.
Section 3 describes the proposed method. Section 4
presents experimental results. Section 5 shows con-
clusions.

2 Shape In teraction Matrix and Seg-
mentation

The summary of shape interaction matrix[6] is
shown. The features, e.g., points, in image sequence
are tracked to obtain feature correspondence. Fea-
ture correspondences obtained from P features and
F frames are collected in measurement matrix W
(2F � P ). Under the a�ne projection model, mea-
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surement matrix is decomposed by the SVD [7].

W
2F�P

= U r
2F�r

�r
r�r

V t
r

r�P

(1)

where �r is diagonal matrix with singular values and
r is the rank of measurement matrix. For full-3D
case where the shapes of objects are not degenerate,
r = 4N for N objects; the feature correspondences of
one object are represented by four dimensional sub-
space corresponding to submatrix of W whose rank
is four. This condition is broken in shape degenerate
case where planes and lines are included in scene.

The orthogonal basis in Ur and V r contain motion
and shape information of objects[7]. Thus the linear
space spaned by the basis in V r represents the shape
of objects; the shape space is spaned by V r. The num-
ber of dimension of shape space for m ultiple objects is
equal to the rank of measurement matrix r and one for
single object is four or less: 3D shape is represented
by four dimensional shape space, plane is represented
by three dimensional shape space, etc.

A shape interaction matrix is de�ned as follows:

X
P�P

= V rV
t
r = (x1; . . . ;xP )

t (2)

The size of this matrix is P � P ; both columns and
rows correspond to P features. The entities xij of X
have the following property:

xij

8>>>><
>>>>:

6= 0; If features corresponding to the
i-th row and j-th column
belong to the same object.

= 0; If features corresponding to the
i-th row and j-th column
belong to a di�erent object.

(3)

From above property, shape interaction matrix is
block-diagonalized under correct segmentation result.
Thus Costeira and Kanade used the optimization
method that minimizes the total energy of all possible
o�-diagonal blocks over all sets of the permutations of
the rows and the columns of shape interaction matrix
for segmentation[6].

The conventional method has following problems.
(i) the number of combinations in segmentation

Before segmentation, the number of features of each
object, that is, the sizes of block matrices in shape in-
teraction matrix corresponding to segmen tation result
are unknown (Fig.1). Thus the optimization method
that minimizes the total energy of all possible o�-
diagonal blocks over all sets of the permutations is
needed.

For N objects and P features, the number of com-
binations for dividing P features into N subsets is
1
N!

PN
k=1 (�1)

N�k
NCkk

P . ForN = 4 and P = 1230�,
the number of combinations is approximately 2�10740.
The exhaustive search of this combination is very dif-
�cult, or may be impossible. A nonlinear optimization
can be applied in such case. However, it may involve
local minima and high computational cost.
(ii) di�culty in degenerate analysis

�This is a condition of the experiments shown in section 4.

Figure 1: The shape interaction matrix corresponding
to segmen tation result. The sizes of the block matrices
in the shape interaction matrix vary with the number
of features of each object as shown above.

The method using shape in teraction matrix can be
used to segment the degenerate shape such as plane
and line. However shape interaction matrix does not
give the information about degenerate shape; there
is no way to know which block matrix corresponds
to degenerate shape without extra processing such as
the SVD. An exceptional treatment should be used
to reconstruct degenerate shape. Thus the algorithm
that can discriminate degenerate object is useful.

3 Segmentation Using Feature Selec-
tion and Subspace Method

3.1 Ov erview of Proposed Algorithm

To solve the above-mentioned problem, the segmen-
tation algorithm using feature selection and subspace
method is proposed. Figure 2 shows its overview.

In the �rst step, measurement matrix is decom-
posed using the SVD. The rank of measurement ma-
trix r can be estimated using singular values. The sec-
ond step is an essential part: r features are selected
using shape space. The computation of basis of shape
space using the QR decomposition can select features
from \each" object \without segmentation informa-
tion". Thus there is no the chicken and egg problem
in feature selection. In the third step, the selected
features are segmented. The problem on com bination
does not occur, since only r features are used. Esti-
mation of the num ber of objects and discrimination
of degenerate shape are simultaneously carried out in
this segmentation. In the fourth step, the remaining
P � r features are classi�ed using subspace method
based on the segmentation result of selected features.

The details of each step are described in the subse-
quent sections.

3.2 Feature Selection Based on Basis of
Shape Space

Since the rank of measuremen t matrix isr, only r
features are linear independent. Thus r features can
be selected from P ones to eliminate the redundancy,
e.g. four features are selected for each object under
full-3D case.

For N objects, r should be decomposed as follows:

r = r1+ r2+ . . .+ rN ; 1 � ri � 4 (i = 1; . . . ; N)
(4)
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Singular value decomposition and estimation
of rank of measurement matrix

W
2F�P

= U r
2F�r

�r
r�r

V t
r

r�P

+
Feature selection based on basis of shape space

V t
r

r�P

�
P�P

= Q
r�r

R
r�P

+
Segmentation of selected features, estimation

of the number of objects, and discrimination of
degenerate shape

+
Classi�cation of remaining features

Figure 2: The overview of the proposed algorithm.
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Figure 3: The correspondence of basis vectors to fea-
tures. Each basis vector of shape space corresponds to
a feature of object. The basis vectors are assigned to
objects without redundancy. Thus the features need-
ed to represent the shape of objects can be selected
through the computation of the basis.

where ri is the number of dimensions of the shape
space of each object. That is, ri features should be
selected from the i-th object.

The problem in feature selection is how to select
ri features from the i-th object without segmentation
information. W e propose feature selection through the
computation of the basis of shape space; the basis of
shape space is computed in the manner that eac h basis
vector corresponds to a feature of object (Fig.3).

The basis vectors of shape space are assigned to
each object without redundancy. Hence r features se-
lected by the proposed feature selection can be decom-
posed as shown in Eq.(4). Because, if k > ri vectors
correspond to the i-th object, the representation of
the i-th object is redundant and one of another object
is insu�cient; these vectors are not proper to repre-
sent shape space of multiple objects. This contradicts
the condition of basis. The proposed feature selec-
tion based on the computation of basis, therefore, can
select ri features from the i-th object without segmen-
tation information.

To keep the correspondence of basis vectors to
features, basis vectors should be computed from r

columns of V t
r corresponding to r features. This pro-

cedure can be realized by the QR decomposition[8].
The QR decomposition is represented as follo ws:

V t
r

r�P

�
P�P

= Q
r�r

R
r�P

(5)

where Q, � and R are the matrices whose columns
are the orthonormal basis of the columns of V t

r, the
permutation matrix of the columns ofV t

r, and upper
triangular matrix. Since the columns of the matrix Q
are the orthonormal basis of the columns of V t

r, these
are the basis vectors of shape space: the redundancy
of P dimensional basis vectors in V r is eliminated in
Q.

The following is an example of the perm utation of
the columns of V t

r by �.

V t
r = (v1;v2;v3; v4;v5; . . .)

#

V t
r� = (v140;v11; v30;v259;v182; . . .)

The �rst �ve basis vectors in Q are derived from the
column vectors in V t

r corresponding to the 140th,
11th, 30th, 259th and 182th features. That is, the
correspondence between the basis vectors and features
is kept by the permutation matrix �. Thus we can
see that r features corresponding to the permutated
columns are the set of ri features obtained from each
object.

3.3 Segmen tation of Selected F eatures

The selected features are segmen ted using shape
interaction matrix. The matrix V t

r is divided by the
QR decomposition as follo ws:

V t
r

r�P

�
P�P

=

 
V t

11
r�r

����� V t
12

r�(P�r)

!
(6)

The shape interaction matrix of the selected feature is
calculated by the matrix V 11.

X11
r�r

= V 11V
t
11 = fxijg i; j = 1; . . . ; r (7)

The size of this matrix is alwa ysr � r regardless the
number of features P .

The property of shape interaction matrix shown in
section 2 and the fact that the number of selected
features for one object is four or less are used in the
following segmen tation algorithm.
[Step 1] Initialization:i = 0 ; k = 0; S = f1; 2; . . . ; rg.
[Step 2] Sort the entities in the rows of shape interac-
tion matrix in the descending order.
[Step 3] Let fx1; x2; . . . ; xrg be the sorted entities of
the row of X11 with the row number indicated by the
�rst entity of S. The entity which satis�es the follow-
ing rule is extracted from these entities.

jxj+1j < � and xj+1=xj < � (8)

with the smallest j + 1, 1� j � r
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where � is threshold.
[Step 4] Construct the subset Sk = (sk1; . . . ; skrk ),
where skj ; j = 1; . . . ; rk are the original column num-
bers of the �rst rk entities which have greater values
than the extracted entity in Step 3. Sk shows the per-
mutation result of sorting in Step 2.
[Step 5] Collect the rk rows whose permutation is e-
qual to the set Sk. The row numbers of the collected
rows should be identical to the entities of Sk.
[Step 6] Remov e the row numbers of the collected
rk rows from S, and add them into the set Sseg.
i := i+ rk.
[Step 7] If i < r, then k := k + 1 and go to Step 3.
Otherwise, go to Step 8.
[Step 8] The segmen tation result is the set Sseg =
fS1; . . . ; Skg and the number of objects isk. The num-
ber of dimensions of the shape space of each object is
rk. The perm utation of shape interaction matrix by
the set Sseg leads to the block-diagonal matrix corre-
sponding to the segmentation result.

The rule in Step 3 shown by Eq.(8) is for search of the
position of the �rst entity which can be regarded as
zero. Thus the value of � should be nearly zero such as
10�5. The entity which satis�es the rule is in the �rst
�ve entities of row, because the maximum number of
features for each object is four. Since the number of
features is always four for full-3D case, the above rule
is not needed; it is only needed for degenerate case.

The degeneracy of object shape can be detected
from the size of block matrix rk, and the number of
block matrices k represents the number of objects; dis-
crimination of degenerate shape and estimation of the
number of objects are simultaneously carried out in
segmentation.

Figure 4 shows an example of segmen tation of s-
elected features. The white blocks in Fig.4(a) show
the entities regarded as zero. In this example, S =
f1;2; 3; 4; 5; 6; 7g. The rows of the shape interaction
matrix are sorted by Step 2 (Fig.4(b)). The result
of Step 3 and Step 4 is S1 = f1; 2; 4g. The dimen-
sion of the shape space corresponding to S1 is three:
this shape space represents the degenerate shape, i.e.
plane. Since the second and fourth rows have the same
permutation results, the sets are updated in Step 5 and
Step 6 as follows:S = f3; 5; 6; 7g and Sseg = f1; 2; 4g.
After Step 3 to Step 6 applied for the updated S, S2 =
f3;7; 5; 6g and segmentation is done with the result
Sseg = f1; 2; 4; 3; 7; 5; 6g. The shape interaction ma-
trix is block-diagonalized using the permutation rep-
resented by Sseg (Fig.4(c)).

3.4 Classi�cation of Remaining Features
Using Subspace Method

The columns of the matrix Q in Eq.(5) can be per-
mutated using the segmentation result of selected fea-
tures as follows:

~Q
r�r

=

�
~
Q1

r�r1

; ~
Q2

r�r2

; . . . ; ~
QN

r�rN

�
(9)

1 2 4
2 4 1
3 7 5 6
4 2 1
5 6 3 7
6 7 5 3
7 6 53

(a) (b) (c)

Figure 4: An example of the segmentation of selected
features.

The columns of ~
Qi (i = 1; . . . ;N) are the basis vec-

tors of shape space of the i-th object. The subspaces

spaned by ~
Qi can be used to classify the remaining

P � r features.
W e use the projection matrix Gi proposed by

Noguchi[9] in classi�cation.

ObjNo (j) = argmax
i

�

Givj


2� (10)

Gi

r�r
= ~
Qi

(
~
Qi

�
~
Qi

t ~
Qi

�
�1
)t

(11)

i = 1; . . . ; N; j = 1; . . . ; P

where ObjNo (j) is the object number assigned
to the j-th feature, and vj is the columns of

V t
r =(v1;v2; . . . ; vP ). The projection matrix Gi has

following property:(
Givj 6= 0; vj 2 span( ~Q

i
)

Givj = 0; vj =2 span( ~Q
i
)

(12)

If the orthogonal projection matrix for each subspace
is simply used, the di�erence of the dimension of sub-
space a�ects projection results; the norm of the pro-
jection vector for shape space of degenerate shape may
be smaller than one of 3D shape. This leads to the er-
ror of classi�cation. The projection matrix used here
does not a�ected by the di�erence of the dimension of
shape space due to the property shown in Eq.(12).

4 Experimental Results

To con�rm the e�ectiveness of the proposed
method, the data obtained from objects with known
shape and segmentation were used.

4.1 Tracking of Objects

The objects used in the experiments are shown
in Fig.5. A model-based tracking was used to trac k
the object motion. In the experimen ts, the sampling
points on wire-frame model of the objects were used as
features (Fig.8). Each object was tracked separately,
then the feature correspondences of the objects were
permutated randomly to construct measurement ma-
trix. The num ber of frames was 50, and the number
of features of the objects were 328,326,296 and 280.
Using the tracking result, we carried out two experi-
ments: full-3D case and degenerate case.
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(a) (b)

(c) (d)

Figure 5: Four objects used in the experiments.

4.2 Full-3D Case

The four objects shown in Fig.5 were used. Figure
6 shows the correspondences of 1230 features. Ta-
ble 1 shows the 18 singular values obtained by the
SVD of the measurement matrix. Two smallest singu-
lar values were vanished using the threshold obtained
by multiplying the maxim um singular value by 10�6.
Thus the rank of the measurement matrix was esti-
mated as 16, and 16 features w ere selected from 1230
ones.

Figure 7 shows the segmen tation result. The shape
interaction matrix constructed by the selected features
was block-diagonalized by the algorithm described in
section 3.3 (Fig.7 (a),(b)). The remaining features
were classi�ed using Eq.(10). The shape interac-
tion matrix of all features was also block-diagonalized
(Fig.7 (c),(d)). This interaction matrix shows that the
four objects were correctly segmented.

The 3D shapes of the segmented objects w ere recon-
structed by the factorization method for single object
[7]. The shapes of objects were correctly reconstructed
(Fig.8).

4.3 Degenerate Case

The three objects shown in Fig.5 (b),(c) and (d)
were used. For the mug, only the circle of the bot-
tom w as tracked; this shape was degenerate. Figure
9 shows the correspondences of 772 features. Table 2
shows 14 singular values. The rank of the measure-
ment matrix was estimated as 11.

The dimension of each shape space and the num-
ber of the objects were correctly estimated. Thus the
shape interaction matrix constructed by 11 selected
features was block-diagonalized (Fig.10 (a),(b)). The
shape interaction matrix of all features w as also block-
diagonalized (Fig.10 (c),(d)). The 3D shapes w ere cor-
rectly reconstructed (Fig.11).

5 Conclusions

The motion segmen tation method using feature se-
lection and subspace method has been proposed. The
features were selected through the computation of the
basis of shape space. The features could be selected
from each object without segmen tation information by
keeping the correspondence of basis vectors to features
as shown in Fig.3. Feature selection was realized us-
ing the QR decomposition. Since only r features were
used, segmentation could be carried out without opti-
mization. The degeneracy analysis and estimation of
the number of objects could be done simultaneously.
The experimen tal results showed the e�ectiveness of
the proposed method.
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Figure 6: Feature correspondences of the four objects.
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Figure 7: The segmen tation result of the full-3D case.
(a) the shape interaction matrix constructed by the
selected features. (b) segmentation result of (a). (c)
the shape interaction matrix constructed by the all
features. (d) segmentation result of (c). In (c) and
(d), every 8 features are sampled to display the shape
interaction matrix clearly.
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Figure 8: Results of the shape reconstruction in the
full-3D case. The \Selected Points" in the �gures are
the features selected in segmentation.
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Figure 9: Feature correspondences of the three object-
s. The object with degenerate shape, plane, is includ-
ed in this data.
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Figure 10: The segmen tation result of the degenerate
case. (a) the shape interaction matrix constructed by
the selected features. (b) segmentation result of (a).
(c) the shape interaction matrix constructed by the all
features. (d) segmentation result of (c).
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Figure 11: Results of the shape reconstruction in the
degenerate case. The \Selected Points" in the �gures
are the features selected in segmentation.
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Table 1: Singular values of the full-3D case.

Order Singular Order Singular
Value Value

1 130739 10 15.9511
2 35807.2 11 13.3373
3 313.306 12 11.8829
4 201.673 13 11.1419
5 47.1147 14 9.89105
6 37.6064 15 7.08395
7 23.8859 16 5.34026
8 21.7266 17 8.30671e-11
9 18.9427 18 3.5091e-11

Table 2: Singular values of the degenerate case.

Order Singular Order Singular
Value Value

1 110092 8 14.0002
2 28609.3 9 11.3941
3 229.167 10 8.44566
4 132.309 11 6.61284
5 41.211 12 7.45128e-11
6 27.9543 13 2.05956e-11
7 19.3066 14 1.30156e-11
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