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Abstract
A motion segmentation algorithm based on factoriza-

tion method and discriminant criterion is proposed. This
method uses a feature with the most useful similarities for
grouping, selected using motion information calculated by
factorization method and discriminant criterion. A group
is extracted based on discriminant analysis for the selected
feature’s similarities. The same procedure is applied re-
cursively to the remaining features to extract other groups.
This grouping is robust against noise and outliers because
features with no useful information are automatically re-
jected. Numerical computation is simple and stable. No
prior knowledge is needed on the number of objects. Ex-
perimental results are shown for synthetic data and real
image sequences.

1 Introduction
Segmentation is fundamental processing in computer

vision. Motion segmentation has attracted great attention,
because it can be used for applications such as modeling
by shape from motion, video coding, and the analysis of
movement.

Many algorithms have been proposed for motion seg-
mentation based on Hough transformation [1], mixture
model [2], random field model [3] [4], and epipolar con-
straints between views [5] [6] etc. Basically, these involve
two concepts. One is optimization based on maximum
likelihood method, e.g., the EM algorithm. The other is
sampling and verification: some data are randomly sam-
pled and then it is verified whether constraints for data are
satisfied. The former requires appropriate initial guesses of
motion information. The latter incorporates spatial prox-
imity into random sampling to increase the possibility for
extracting data that belong to the same group. These facts
mean that information about “each group” is necessary in
advance to obtain information used in segmentation – the
chicken and egg problem.

To avoid this problem, the algorithm based on multiple
epipolar constraints has been proposed [7]. The epipolar
equation for multiple objects is constructed by the tensor
product of the epipolar constraint of each object. The
essential matrix of each object is calculated directly using
the epipolar equation for multiple objects, and the motion
and shape of each object are obtained from the essential
matrix. Thus segmentation can be carried out without

initial segmentation. This algorithm is difficult to apply,
however, if the number of objects exceeds two.

Factorization method [8]-[11] has also been used to
avoid the chicken and egg problem. A measurement ma-
trix with the coordinates of feature correspondences as
entities is factorized into two matrices only once. Initial
segmentation is not needed, since these matrices contain
motion parameters and 3D coordinates of features of mul-
tiple objects. This is easy to apply if the number of objects
varies.

In factorization-based procedures, optimization based
on the energy represented by the sum of entities of the
shape interaction matrix [9] and bipartite graph [10] have
been used for grouping noisy data. This optimization is
needed to solve the combinatorial problem in grouping, but
may involve local minima and high computational cost.
The lack of robustness for noisy data is also a problem
[11].

A motion segmentation algorithm using the similarity
matrix on motion obtained from factorization method and
discriminant criterion is proposed for grouping noisy data.
A feature with the most useful similarities for grouping
is selected based on a discriminant criterion. A group is
extracted based on the result of discriminant analysis for
the selected feature’s similarities. The same procedure
is applied recursively to remaining features to extract
other groups. Since features with no useful information
are rejected automatically, the method is robust against
noise and outliers. No combinatorial problem occurs in
grouping, since only one feature is used. The proposed
method differs from the conventional in this systematic
feature selection based on a discriminant criterion which
is numerically stable and able to eliminate combinatorial
problem. Additionally, no prior knowledge is needed
on the number of objects because groups are extracted
recursively.

Section 2 shows how to calculate the similarity matrix
on motion, the so-called shape interaction matrix[9], using
factorization. Section 3 describes the motion segmentation
algorithm using feature selection based on the discriminant
criterion. Section 4 shows experimental results of seg-
mentation and weak calibration for synthetic data and real
image sequences. Section 5 presents conclusions.



2 Similarity Matrix on Motion Obtained
from Factorization Method

The features, e.g., points, in image sequence are tracked
to obtain feature correspondence. Feature correspondences
obtained from P features and F frames are collected in
measurement matrix W (2F � P ). Under the affine
projection model, the measurement matrix is decomposed
by SVD[11][12].
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where r=1; : : : ; P . If r is identical to the number of
nonzero singular values, it is the rank of the measurement
matrix.

The shape interaction matrix is defined as follows[9]:

X
P�P

=V rV
t
r=(x1; : : : ;xP )t (2)
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Since the shape interaction matrix has the above property,
it is regarded as the similarity matrix of motions among
objects.

The proof on the property of shape interaction matrix
shown above has been given by Kanatani[13]. The sum-
mary of the proof is shown here. The key of the proof is
the exchange of the basis of KerW . KerW is spaned by
orthonormal basis fvr+1; : : : ;vP g, where vi (i=1; : : : ; P )
are the columns of matrix V P =fv1; : : : ;vPg and r is the
rank ofW .

Let us assume that segmentation of tracked features are
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N
�N

o
, can be represented as follows:

fvr+1; : : : ;vP g =
n
ñ
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where C is the exchange matrix of two bases. Since both
bases are orthonormal, C is orthogonal matrix.

The correlation matrix of fvr+1; : : : ; vP g is the block
diagonal matrix.
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Above result is derived from Eq.(5) and the orthogonality
of exchange matrix C. Each block matrixDi has the size
P i � P i.

The correlation matrix of fv1; : : : ;vP g is as follows:
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t
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where IP is the P � P identity matrix. This shows that
shape interaction matrix X is block diagonal. This result
is valid under arbitrary permutation of the basis of KerW .
Therefore shape interaction matrix has the property shown
in Eq.(3).

The property, however, is not exactly satisfied for data
with noise and outliers. The lack of robustness for such
data is a problem for the method using shape interaction
matrix[11].

3 Motion Segmentation Based on Discrimi-
nant Criterion

3.1 Algorithm
All entities of a matrix that show similarities among

motions are used in conventional methods [9][10]. On the
other hand, only a feature with the most useful information
for grouping is selected in the present method. This
feature selection reduces the effect of noise and outliers
automatically, and eliminates the combinatorial problem in
grouping.

The usefulness of feature selection can be explained
using the example shown in Fig.1. A group containing
features with similar motion is extracted if changes in
similarities in the row of matrix Eq.(2) are as shown in
Fig.1(b) after sorting; features with large similarity are
detected clearly. Only part of the features, however, may
have information useful for grouping. For example, Fig.1
(b) and (c) show the change in distance from data A and B
(Fig.1(a)) to others, and Fig.1(c) has no useful information
for grouping, while Fig.1(b) does. Data such as B, i.e.
outlier, is normally observed in real image sequences.
Thus feature selection is introduced to extract a feature
with the most useful information for grouping, and to
reject features with no useful information.

Given r in Eq.(1), similarity matrix X is computed.
Entities of each row xk ofX (k=1; : : : ; P ) are then sorted.
The following discriminant criterion[14] is used to separate
entities of row vector xk into two groups:
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Figure 1: Typical example of data with information useful
for grouping (data A) and without (data B).

where "̄1, "̄2, �2
1 , �2

2, N1, and N2 are the mean, variance,
and the number of entities of each group, �2

B and �2
W are

the variance between groups and one within groups. To
find the grouping that maximizes �, xkl (l=1; : : : ; P ) are
used as a threshold for entities of xk=fxk1; xk2; : : : ; xkPg.

Let �k be the maximum of the discriminant criterion
for the k-th row vector. The feature with the most useful
information for grouping is selected as follows:

kselect=arg max
k
�k (11)

A group is extracted using the threshold of similarities of
row vector xkselect maximizing the discriminant criterion.

The same procedure is applied recursively to remaining
features to extract other groups. If the mean and discrimi-
nant criterion of similarities of the selected row is smaller
than given thresholds, the procedure stops. Remaining fea-
tures are regarded as a group because no useful information
is found.

The meaning of the proposed algorithm is interpreted us-
ing the concept of the orthogonal projection matrix. Matrix
X of Eq.(2) is computed from orthogonal vectors in matrix
V r. Thus matrix X is the orthogonal projection matrix
for the subspace spaned by r orthogonal vectors. This
subspace is constructed by N subspaces corresponding to
N objects in the scene, and thus conventional algorithms
attempt to decompose this subspace using all similarities
[8]- [11]. The present method extracts only one axis in
R

P space of P tracked features, maximizing separation
among the projections to each subspace corresponding to
each object. This procedure coincides with that maximiz-
ing separation among subspaces, because the orthogonal
projection matrix has a one-to-one correspondence to sub-
spaces.
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Figure 2: Segmentation result of synthetic data. (a) Data
with Gaussian noise with 5.0 standard deviation. (b)
Change in the sum of discriminant criteria as a function
of r. (c) Change in entities of a row with maximum
discriminant criterion. (d) Change in entities of a row with
minimum discriminant criterion.

3.2 Determination of Parameter r

In Section 3.1, parameter r in Eq.(1) is the rank of the
measurement matrix if it can be estimated correctly. The
rank, however, is difficult to estimate for a real situation.
In this research, parameter r is determined from the view
on separation. The algorithm shown in Section 3.1 is
applied using parameter r in some range, e.g., [2:10]. The
segmentation result maximizing the following equation,
sum of �kselect of extracted g groups, is used:

� (r)=
gX
i=1

�kselect (i; r) (12)

4 Experimental Results
The experiments using synthetic data and real image

sequences are shown to confirm the usefulness of the pro-
posed method. For real image sequences, the calculation
of epipolar constraint for each motion in a scene is also
presented to show the validity of segmentation results.

4.1 Synthetic Data
Data included two objects – object 1 constructed of

curves and object 2 constructed of lines (Fig.2 (a)). Ro-
tations of objects were ( 1; �1; �1) = (0:5; 0:5; 0:5) [deg]
and ( 2; �2; �2)= (1:0; 0:0;�1:0) [deg], where  , �, � are
roll, pitch, and yaw. Translation vectors of objects were
(1:0; 1:0; 1:0) [mm] and (0:0;�1:5;�1:5) [mm].

To simulate the effect of noise in images and false
matches, Gaussian noise with standard deviation 5.0 was
added only to data after motion (Fig.2 (a)). Data were
projected on to a 2D plane using the perspective projection
matrix of a lens with 8[mm] focal length. The distance
between the camera and object was 2[m].



(a) (b)

Figure 3: Robot arm image sequence. (a) Frame 1. (b)
Frame 60.
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Figure 4: Segmentation result for a robot arm image
sequence. (a) Change in sum of discriminant criteria as a
function of r. (b),(c) Trajectories of motion for each group.

The thresholds to stop recursive procedure of segmen-
tation were 1:5 � 10�3 and 6.0 for mean of similarities
and discriminant criterion. The result for r=3 was used in
accordance with the changes in the value of Eq.(12) (Fig.2
(b)). The feature with a maximum discriminant criterion
had useful information for grouping under fairly large noise
(Fig.2 (c)), while one with a minimum discriminant crite-
rion had no useful information (Fig.2 (d)). The two objects
were segmented correctly using the information of selected
features.

4.2 Real Image Sequences

The results for three image sequences containing a robot
arm, car, and human being are shown. The feature points in
images were extracted using the corner detector proposed
in [15]. Detected features are tracked by block matching.
Features with large matching error due to occlusion were
removed in tracking, but no other processing was used to
remove noise and outliers. Thresholds to stop recursive
procedures of segmentation were 1:5 � 10�3 and 3.0.

(a) (b)

Figure 5: Car image sequence. (a) Frame 1. (b) Frame 10.
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Figure 6: Segmentation results for a car image sequence.
(a) Change in sum of discriminant criteria as a function of
r. (b),(c) Trajectories of motion for each group.

4.2.1 Segmentation Results

For the robot arm sequence (Fig.3), 60 frames were
used. The arm was rotated and the background was still.
The result for r=6 was used (Fig.4 (a)). The two groups
extracted mostly corresponded to the arm and background
(Fig.4 (b), (c)).

For the car sequence (Fig.5), 10 frames were used. Both
the camera and car were moved; the background was not
still for this sequence. The result for r=6 was used (Fig.6
(a)). The two groups extracted mostly corresponded to the
car and background (Fig.6 (b), (c)).

For the human sequence (Fig.7), 60 frames were used.
The result for r=4 was used (Fig.8 (a)). The three groups
extracted mostly corresponded to the left hand, face and
shoulders, and background (Fig.8 (b)-(d)).

Although the data used in these experiments had many
errors due to simple block matching and homogeneous
regions such as the white wall in the room, the proposed
method gave adequate results.
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Figure 7: Human image sequence. (a) Frame 1. (b) Frame
60.
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Figure 8: Segmentation result for a human image sequence.
(a) Change in sum of discriminant criteria as a function of
r. (b)-(d) Trajectories of motion for each group.

4.2.2 Calculation of Epipolar Constraint of Each
Group

Using segmentation results, we calculated the epipolar
constraint for each group. Factorization method can be
used to calculate epipolar constraints. The use of factoriza-
tion method under perspective projection is still difficult,
however, particularly for noisy data, although some ex-
tensions have been considered [16]-[18]. A two-views
algorithm was therefore used: the fundamental matrix
for each group was calculated using the first and the last
frames.

The algorithm proposed in [19] is used to calculate the
fundamental matrix. Algorithms for the initial guess of
epipole and outlier rejection were needed to obtain an ade-
quate solution. An affine epipolar geometry algorithm [20]
and outlier rejection based on the eigen value perturbation
theory [21] were used for these purposes.

The calculated epipolar constraints clearly reflected the
motion of each group (Figs.9-11), e.g., rotation of a robot
arm. The epipolar constraints for the second group of robot
arm image sequence and the third group of human image
sequence (Fig.4 (c), Fig.8 (d)) could not be calculated,

(a) (b)

Figure 9: Epipolar constraints for a robot arm image
sequence. (a),(b) Epipolar constraints for the first group.
Epipolar constraints for the second group could not be
calculated because no motion appeared.

(a) (b)

(c) (d)

Figure 10: Epipolar constraints for a car image sequence.
(a),(b) Epipolar constraints for the first group. (c),(d)
Epipolar constraints for the second group.

since these groups corresponded to a still background.
This could be detected from entities of the fundamental
matrix.

Images containing multiple motions could thus be
weakly calibrated using the segmentation results of the
proposed method. The calibration results can be utilized
to refine segmentation results and calculate 3D map of the
scene using dence matching.

5 Conclusions
A motion segmentation algorithm based on factorization

method and discriminant criterion features:
� Simultaneous calculation of motions based on factoriza-
tion method.
� Robustness against noise and outliers due to feature se-
lection based on discriminant criterion.
� Simple, stable numerical computation.
� No need for prior knowledge on the number of objects.
Experimental results using real image sequences demon-
strated the usefulness of the proposed algorithm in practical
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Figure 11: Epipolar constraints for a human image se-
quence. (a),(b) Epipolar constraints for the first group.
(c),(d) Epipolar constraints for the second group. Epipo-
lar constraints for the third group could not be calculated
because no motion appeared.

situations.
The proposed method requires approximation of a cam-

era model because it is based on factorization method
under affine projection. Although factorization method
under perspective projection has been proposed [16]-[18],
all algorithms use a single motion assumption, preventing
them from being used directly for multiple motions – prob-
lem for important future work.
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