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Content-Based Coding of Volume Data Using Finite

Mixture Model, Octree and Shape-Adaptive DCT

N. ICHIMURA

A content-based coding method of volume data is proposed in this paper. The pro-

posed method is based on \texture-contour" approach. First, volume data is segmented,

then shape, texture and opacity information of contents are coded. Each processing is car-

ried out using methods and the representations as follows: (i)segmentation: probability

density function estimation using �nite mixture model, (ii)shape: depth-�rst (DF) rep-

resentation of octree, (iii)texture: shape-adaptive DCT (SA-DCT) and entropy coding,

(iv)the parameters of �nite mixture model. Using content-based coding, one can obtain

shape of object which is useful in visualization of decoded data. Experimental results for

CT data are shown.

x1 Introduction

Volume data is sampled function of three spatial di-

mensions. It is useful to represent internal structure

of object; a typical example is data generated from a

set of CT images. However, the size of volume data

is normally very large. Thus coding method for vol-

ume data is needed. In addition, since volume data has

three dimensional data structure, visualization method

is needed to display contents in it. To visualize desired

contents properly, contents should be segmented. Thus

segmentation is also needed.

Coding method for volume data has been developed

based on waveform coding using vector quantization[1],

DCT[2], wavelet[3], fractal[4], etc. However, not only

waveform coding but also content-based coding is suit-

able for volume data, because segmentation is indis-

pensable in visualization of volume data (Fig.1).

A region-based coding method of volume data is pro-

posed in this paper. An overview of the proposed

method is shown in Fig.2. The proposed method is
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based on texture-contour approach[5]; volume data is

segmented, then shape, texture and opacity informa-

tion of contents are coded.

Volume data is segmented into 3D regions via esti-

mation of probability density function of the data using

�nite mixture model. The contents to be coded are ex-

tracted by selecting the 3D regions. The shape of the

contents is represented by octree[12] and coded using

depth �rst(DF) representation[13] of it. Octree divides

the shape of the contents into blocks. The texture in

each block is transformed by shape-adaptive DCT(SA-

DCT) and coded using transform coeÆcients.
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Figure 1: Relationship among segmentation, visualiza-
tion and coding of volume data.
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Figure 2: Outline of the proposed coding method.
(a)Encoding. (b)Decoding.

Volume rendering[8] is used in visualization of de-

coded data. Opacity of each region used in volume ren-

dering is represented as a posteriori probability calcu-

lated from the parameters of �nite mixture model used

in segmentation.

An advantage of the proposed algorithm is combi-

nation of octree and SA-DCT. To construct octree,

contents are divided into the blocks with the size of

power of 2. All locations of the blocks are hierarchi-

cally stored in octree. Thus the locations of the blocks

to be transformed by shape-adaptive manner can be eas-

ily searched using octree; the blocks on region boundary

can be detected as gray nodes in octree.

Section 2 explains volume rendering used in visual-

ization of decoded data, and the relationship between

segmentation and volume rendering. Section 3 presents

the segmentation method using �nite mixture model.

Section 4 describes the coding of shape using DF rep-

resentation of octree. Section 5 shows the coding of

texture by SA-DCT. Section 6 shows the coding of opc-
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Figure 3: Volume rendering.

ity using the parameters of �nite mixturem model. Sec-

tion 7 demostraits the experimental results for CT data.

Section 8 presents conclusions.

x2 Volume Rendering

In volume rendering, the portions to be visualized in

volume data should be segmented to be assigned high

opacity. After segmentation, the colors of voxels cal-

culated by shading process are projected onto image

plane I(X;Y ) through transparencies added from back

to front along viewing ray (Fig.3). This process can be

represented as follows:

I (X;Y ) =
KX
i=1

�
cioi

K

�
j=i+1

(1� oj)

�
(1)

where ci and oi are color and opacity of the i-th voxel

(i = 1; : : : ;K) which intersects viewing ray. Obviously,

segmentation is indispensable to visualize desired por-

tions in volume data by volume rendering.

x3 Region Segmentation Using

Finite Mixture Model[6][7]

Volume data is segmented by a feature space approach.

The distribution of a set of the feature vectors V =

fxigNi=1 obtained from volume data is represented by

the following �nite mixture model.

f (x j� ) =
rX

j=1

�j�j (x j�j ) (2)



where x is a feature vector in Rn, r is the number of

component densities �j (), f�jgrj=1 are mixing propor-

tions such that
Pr

j=1 �j = 1; 0 � �j � 1, �j is a set of

parameters of �j (), and � =
n
f�jgrj=1 f�jgrj=1

o
is a

set of the parameters.

A multivariate t distribution[9] is used as a compo-

nent.
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where � = fm;V ; �g, and m (n� 1), V (n� n) and

� are location, scatter matrix and degree of freedom,

respectively. This distribution is identical to the nor-

mal distribution when � !1, and can represent more

heavy tailed distribution by changing �.

The parameters of the �nite mixture model are esti-

mated by a maximum likelihood method. The evalua-

tion function for parameter estimation is as follows:

E =
NX
i=1

log
rX

j=1

�j�j (xi j�j )� �
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@ rX
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�j � 1

1
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where � is a Lagrange multiplier. Expectation-

Maximization(EM) algorithm [10] [11] can be used to

maximize above evaluation function. The EM algorithm

for the current model is as follows:

[Step 1(E-step)] Calculate a posteriori probability

P (Sj jxi ) for the j-th component Sj and a weight

w
�
d2mi j�c

�
under the current approximation of the pa-

rameters �c = f ��cj	rj=1
;
�
�
c
j

	r
j=1

g.
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i = 1; : : : ; N ; j = 1; : : : ; r

[Step 2(M-step)] Calculate the parameters �+.

�+j =
1

N
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j = 1; : : : ; r

[Step 3(M-step)] Calculate the parameters
�
�+j
	r
j=1

maximizing eq.(6) using the quasi-Newton method un-

der �j
+, mj

+,V j
+ calculated in Step 2.

[Step 4] If

��l (�c)� l
�
�

+
��� < � (13)

is satis�ed or the number of iteration exceeds a given

number, then terminate this algorithm. Otherwise, up-

date �c by �+ and go to Step 1.

The maximum likelihood solution for � can not be

represented in closed-form, so the numerical search in

Step 3 is needed.

The weight of eq.(8) shows that the data far from

the location of the t distribution have small e�ect for

parameter estimation. That is, segmentation using this

�nite mixture model can reduce the e�ect of outliers in

parameter estimation.

Since the component density is corresponded to re-

gion in volume data, volume data is segmented via

this probability density function estimation; a posteriori

probability given by eq.(7) is used to segment volume

data. The component densities corresponding to the

regions to be coded are selected, and a posteriori prob-

abilities of all voxels are calculated using them. Then

contents are segmented by extracting the voxels with

larger a posteriori probability than a given threshold.

x4 Shape Coding by Octree

Encoding, decoding and processing for only desired por-

tions are important requirements for content-based cod-

ing. Thus the representations which can be used to
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Figure 4: An example of octree. (a)Object. (b)Octree
of the object. (c)DF representation of the octree.

search and compress the locations of contents are de-

sirable to represent shape. Octree[12] is one of such

representations.

Octree is a solid model which is constructed by re-

cursive subdivision of 3D regions into the entities com-

posed by eight cubes (Fig.4(a)). 3D regions divided

into blocks with the size of power of 2; major por-

tions are represented by the blocks with large size, e.g.,

32�32�32, while detailed portions are represented by

the blocks with small size, e.g., 4�4�4. The structure
of octree is represented by a tree including nodes with

eight children (Fig.4(b)). All the locations of contents

are hierarchically stored in the tree; search of the loca-

tions of contents can be easily carried out as one of the

tree.

The nodes of octree have three types: black, white

and gray. The blocks corresponding to black and white

nodes have \interesting" and \uninteresting" portions.

The blocks corresponding to gray nodes include both

\interesting" and \uninteresting" portions; gray node

represents boundary of contents.

Octree is constructed from the binary volume data

obtained as segmentation result. Samet's algorithm[14]

for quadtree can be extended to construct octree. DF
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Figure 5: Shape-Adaptive DCT.

representation[13] is used as a compressed form of

octree. In DF representation, the node types, i.e.

black, white and gray, are ordered by depth �rst

manner(Fig.4(c)). Shape information is coded by as-

signing binary code to each symbol in DF representa-

tion.

x5 Texture coding by SA-DCT

Texture in the blocks of octree is coded via orthogonal

transformation and entropy coding of transform coeÆ-

cients. DCT is used for the blocks in contents, while

SA-DCT is used for the blocks on the boundary of con-

tents. The locations of the blocks can be searched using

octree. By this search, the 3D regions are divided into

the blocks with the size corresponding to the searched

level of octree.

A SA-DCT used in this paper is the extension of 2D

version[15]. A variable length DCT basis is used in the

SA-DCT. The length of the basis is the same as one of

the region on each axis. The basis with the length M,

DCT-M, is given as follows:

DCT-M (u; k) = a0 � cos
�
(2k + 1)u�

2M

�
(14)

a0 =

�
1=
p
2; u = 0

0; otherwise
(15)

k; u = 0; : : : ;M � 1

where u and k are spatial frequency and coordinate of

voxel, respectively. The DCT coeÆcient cx;y;z for lo-



cal coordinate (x; y; z) in the block is calculated using

successive 1D transformation for each axis as shown in

Fig.5.

The coeÆcients are quantized as follows:

cqx;y;z = round

�
cx;y;z

s � qx;y;z

�
(16)

where s is scale factor, qx;y;z is quantization step size

and round() is round-o� operation.

The quantized coeÆcients are coded via Zig-Zag scan-

ning, run-length coding and entropy coding like JPEG.

x6 Opacity Coding by Finite

Mixture Model

The opacity of each voxel used in volume rendering

is represented by the parameters of the �nite mixture

model. A posteriori probability calculated by eq.(7)

shows the membership of each voxel for contents. Thus

a posteriori probability can be used as the opacity. In

decoding process, the opacity is calculated using recon-

structed data and the parameters of the �nite mixture

model(Fig.2(b)）.

x7 Experimental Results

The CT data of a head(128�128�128, 12[bit/voxel])
and a wrist(128�128�128, 8[bit/voxel]) were used. The
block size of the SA-DCT was 8�8�8. The quantization
step for the DCT coeÆcients was determined by the sum

of local coordinate values v = x+y+z. The quantization

table is shown in Table 1.

7.1 Segmentation Results

The feature used in segmentation was the CT number

of each voxel(Fig.6(a) and 7(a)). The probability den-

sity function of the CT number was estimated by the

�nite mixture model(Fig.6(b) and 7(b)). The 8 and 10

components were used for the head and the wrist data,

respectively; these components were needed to segment

the volume data into meaningful portions.

In the head data, the components covered the range

[-1500,0], [-400,500] and [0,2000] in the histogram of the

CT number mainly corresponded to air, soft tissue and

skull, respectively(Fig.6(b)). The contents to be coded

Table 1: Quantization table for DCT coeÆcients.

v 0 1 2 3 4 5 6
qx;y;z 16 12 12 14 17 26 34

v 7 8 9 10 11 12 >12
qx;y;z 55 64 80 85 90 100 100
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Figure 6: Estimation result of the probability density
function for the histogram of the head data by the �nite
mixture model with 8 components. (a) histogram of the
CT number. (b) estimated probability density function
using the �nite mixture model.

were the soft tissue and the skull. Hence, a posteri-

ori probabilities of all voxels were calculated using the

components covered the range [-400,2000]. Then voxels

with larger probability than the threshold 0.1 were ex-

tracted. In this case, the contents can be segmented by

simple thresholding. However, the probability density

function of the CT number can not be obtained; the

opacity used in visualization can not be calculated.

In the wrist data, the components covered the

range [0,30], [20,120] and [190,250] in the histogram

mainly corresponded to air, skin and muscle and bone,
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Figure 7: Estimation result of the probability density
function for the histogram of the wrist data by the �-
nite mixture model with 10 components. (a) histogram
of the CT number. (b) estimated probability density
function using the �nite mixture model.

Figure 8: The octree of the CT data of the head.

respectively(Fig.7(b)). The components covered the

range [20,250] were used to calculate the probability.

The segmentation was carried out the same manner as

the head data.

(a) (b)

(c) (d)

Figure 9: Experimental result for the CT data of the
head. The comparison on the slice image. (a)Original
slice. (b)Scale factor:0.5. (c)Scale factor:1. (d)Scale
factor:3.

7.2 Coding Results

The shape of the contents of the head data was repre-

sented by the octree(Fig.8). The slice of the decoded

data shows that the shape and the texture were prop-

erly coded(Fig.9). To render the decoded data, the

opacities were calculated by eq.(7) using the parame-

ters of the �nite mixture model included in the coded

data. The rendering results of the decoded data showed

that the major features of the contents were suÆciently

reconstructed(Fig.10). The approximation error of the

texture leads to the semi-transparent region appeared in

the rendering results; the opacities assigned to the vox-

els are varied with the CT numbers of the decoded data

with the error due to the quantization of DCT coeÆ-

cients. Furthermore, the discontinuity between \inter-

esting" and \uninteresting" portions lead to an artifact;

the smoothness of the surface in the rendering results

were lost due to the discontinuity(Fig.10)

The SA-DCT was useful to improve a coding per-

formance; the compression ratio and the PSNR of the

SA-DCT were superior to that of the DCT(Table 2).
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Figure 10: Experimental result for the CT data of
the head. The comparison on the rendering result.
(a)Original data. (b)Scale factor:0.5. (c)Scale factor:1.
(d)Scale factor:3.

C.R.1 and C.R.2 in Table 2 are de�ned as follows:

C:R:1 =
number of bits in coded contents

number of bits in contents
(17)

C:R:2 =
number of bits in coded contents

number of bits in volume data
(18)

The data reduction by segmentation is taken into ac-

count in C.R.2.

The amount of bits for the texture was larger than one

for the shape and the opacity(Table 3). Thus the use

of the SA-DCT was important to improve the coding

performance.

Almost the same results were obtained for the CT

data of the wrist(Fig. 11{13, Table 4 and 5).

x8 Conclusions and Future

Works

The content-based coding of volume data has been pro-

posed. The feature of the proposed algorithm is the

combination of octree and coding of the texture using

SA-DCT; the search of the locations of the blocks trans-

formed by shape-adaptive manner can be easily carried

out as one of octree. The experimental results for the

CT data showed the usefulness of the proposed method.

Table 2: Coding performance for the CT data of the
head.

Method Scale PSNR C.R.1 C.R.2
factor [dB]

1 35.9 7.3 32.3
SA-DCT 3 32.0 10.4 46.0

5 30.6 11.8 52.2
1 35.0 5.8 25.7

DCT 3 31.0 8.1 35.9
5 29.5 9.1 40.3

Table 3: Required bits for each information of the CT
data of the head.

Method Scale Shape Texture Opacity
factor

1 618823
SA-DCT 3 158880 386829 1037

5 321873
1 818642

DCT 3 158880 541732 1037
5 463965

Figure 11: The octree of the CT data of the wrist.

In the experiments, bits were allocated only \inter-

esting" portions. However if one allocates bits for \un-

interesting" portions, the boundary between the two

portions becomes smooth; the quality of the visualiza-

tion result of decoded data can be improved. More-

over one may allocate bits adaptively for the portions by

switching the coding parameters, i.e., scaling factor, to

preserve compression ratio while improving the quality

of visualization. The preliminary results of the \adap-

tive bits allocation" are shown in Fig.14 and 15. The

smoothness of the surface in the rendering results was

improved. However, the blocking distortions in \unin-

teresting" portions were appeared. More detailed con-
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Figure 12: Experimental result for the CT data of the
wrist. The comparison on the slice image. (a)Original
slice. (b)Scale factor:0.1. (c)Scale factor:0.4. (d)Scale
factor:0.8.

(a) (b)

(c) (d)

Figure 13: Experimental result for the CT data of
the wrist. The comparison on the rendering result.
(a)Original data. (b)Scale factor:0.1. (c)Scale fac-
tor:0.4. (d)Scale factor:0.8.

sideration for adaptive bits allocation remains as an im-

portant future work.
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