NUMERICAL SIMULATION OF DROPS IN A SHEAR FLOW
BY A LATTICE-BOLTZMANN BINARY FLUID MODEL

Naoki Takada†, Akio Tomiyama‡, Shigeo Hosokawa†

Abstract
For simulating immiscible two-phase flows and realizing the easy adjustment of surface tension and interface thickness to desired values, a lattice-Boltzmann binary fluid model is improved by (a) the adoption of a particle number density function at a local equilibrium state for the convection term of the lattice Boltzmann equation and (b) the introduction of two parameters in a surface free energy. Neutrally-buoyant drops in simple shear flows are simulated using the improved method to examine its accuracy and characteristics of drop breakup. As a result, it is confirmed that (1) the method can give good predictions for deformation and breakup of single drops and (2) the critical Reynolds number at which drop breakup takes place depends not only on the capillary number and the number density of drops but also on the initial spatial arrangement of drops.

Key Words: Lattice Boltzmann Method, Binary Fluid Model, Drop, Free Energy

1 INTRODUCTION
The lattice Boltzmann method, LBM [1][2], has been developed as an alternative approach for simulating incompressible fluid flows from a statistical-thermodynamic point of view such that collisions and translations of microscopic particles represented by a particle number density function result in a local equilibrium state corresponding to a macroscopic fluid motion. The main advantages of LBM, which are originated from the lattice gas cellular automaton [3], are the easiness in the implementation of boundary conditions for complex geometry, the high efficiency in parallel computing, and the spontaneous formation of fluid-fluid interface. These benefits result from the kinetic equations of particles consisting of a rectilinear convection (or streaming) operator, a local collision operator and a repulsive interaction between particles. Macroscopic variables in the continuum fluid dynamics are obtained by averaging the particle number density functions. The validity of LBM equations and the macroscopic variables is supported by the fact that the continuity and Navier-Stokes equations are recovered by applying the Chapman-Enskog expansion to the LBM equations. Unlike conventional numerical methods based on the continuum equations, the pressure in LBM is also obtained by averaging the number densities so that there is no need to solve a CPU-time-consuming Poisson equation.

Lattice Boltzmann methods based on a free energy theory have been applied not only to one-component vapor-liquid flows [4],[5] but also to two-component binary fluid flows [6],[7]. Hereafter the LBM for binary fluids is referred to as the BF model. The free energy theory has been also utilized in several numerical methods based on the continuum equations such as second gradient methods [8] and phase-field methods [9]. The main reason why the free energy is introduced for simulating two-phase flows is that fluid-fluid interfaces with accurate surface tension force are spontaneously formed by the surface free energy, which in turn means that no interface tracking schemes and no surface tension force models are required for tracking the interface. The LBM based on BF therefore possesses a large potential of simulating complex deformation of multiple interfaces easily and efficiently.

Since the conventional BF model cannot keep the interface thickness small due to a sort of numerical diffusion of number density functions, a simple but effective scheme to keep the interface thickness within a couple of grids is proposed in this study. In addition, the proposed scheme enables us to easily adjust the value of surface tension. The improved lattice-Boltzmann BF model is applied to motions of
neutrally-buoyant drops in a shear flow between two parallel plates moving in opposite directions. Predicted deformation and breakup of drops are compared with available data [10,11] to verify the accuracy of the proposed method.

2 LATTICE-BOLTZMANN BINARY FLUID MODEL

In the binary fluid (BF) model [6], a repulsive interaction between two kinds of fluid particle components A and B is taken into account by using a free energy. Two independent macroscopic variables are introduced to compute pressure and phase distributions, i.e. the total number density \( n = n_A + n_B \), and its difference \( \Delta n = n_A - n_B \). These variables are evaluated by using two velocity distribution functions for particle number densities, \( f_a \) and \( g_a \), where the subscript \( a \) denotes the label to distinguish the particles by their velocity vectors \( \mathbf{e}_a \). The variables, \( n, \Delta n \), and the macroscopic flow velocity \( \mathbf{u} \) are defined as follows:

\[
\begin{align*}
n &= \sum_a f_a = \sum_a f_a^{eq}, \quad (1) \\
\Delta n &= \sum_a g_a = \sum_a g_a^{eq}, \quad (2) \\
n \mathbf{u} &= \sum_a f_a \mathbf{e}_a = \sum_a f_a^{eq} \mathbf{e}_a, \quad (3) \\
\Delta n \mathbf{u} &= \sum_a g_a^{eq} \mathbf{e}_a, \quad (4)
\end{align*}
\]

where the superscript \( eq \) denotes a local equilibrium distribution. The total density \( n \) is proportional to pressure and approximately constant in a whole flow field, while the density difference \( \Delta n \) takes either positive or negative values in each phase and then represents phase distributions.

Time evolution of \( f_a \) and \( g_a \) is predicted by the following lattice Boltzmann equations (LBE):

\[
\begin{align*}
\frac{\partial f_a (t, \mathbf{r})}{\partial t} + \mathbf{e}_a \cdot \nabla f_a (t, \mathbf{r}) &= -\frac{1}{\tau_1} [f_a (t, \mathbf{r}) - f_a^{eq} (t, \mathbf{r})] \quad (5) \\
\frac{\partial g_a (t, \mathbf{r})}{\partial t} + \mathbf{e}_a \cdot \nabla g_a (t, \mathbf{r}) &= -\frac{1}{\tau_2} [g_a (t, \mathbf{r}) - g_a^{eq} (t, \mathbf{r})] \quad (6)
\end{align*}
\]

where \( \mathbf{r} \) is the position vector, \( \tau_1 \) and \( \tau_2 \) are the relaxation times. After collision at a site \( \mathbf{r} \), the particles with \( \mathbf{e}_a \) move to its neighbor \( \mathbf{r} + \mathbf{e}_a \) during unit time period. The terms on the right hand sides of Eqs.(5) and (6), the so-called lattice BGK collision operators [2], represent the relaxation process toward the local equilibrium states \( f_a^{eq} \) and \( g_a^{eq} \). The macroscopic variables, \( n, \Delta n \), and \( n \mathbf{u} \), are conserved at each site in every collision step.

The thermodynamic behavior of binary fluid system is described by a simple free energy \( \Psi \) which accounts for the contribution of surface free energy due to a density gradient [6]:

\[
\Psi = \int d\mathbf{r} \left\{ \psi (T, n, \Delta n) + \frac{\kappa}{2} |\nabla \Delta n|^2 \right\}, \quad (7)
\]

\[
\psi = \frac{T_C}{2} \left( n - \frac{\Delta n^2}{n} \right) - n T + \frac{T}{2} \left[ (n + \Delta n) \ln \left( \frac{n + \Delta n}{2} \right) \right] + (n - \Delta n) \ln \left( \frac{n - \Delta n}{2} \right), \quad (8)
\]

where \( \kappa \) is the capillary coefficient to adjust the magnitudes of surface tension and interfacial thickness, and \( T_C \) is the critical temperature. When \( T < T_C \), a phase separation automatically takes place in binary fluids under an isothermal condition, i.e., the formation of a component-A-rich and a component-B-rich region results in the separation of two phases.

The function \( \Psi \) is related with the pressure tensor \( P_{\alpha\beta} \) and the chemical potential difference \( \Delta \mu \):

\[
P_{\alpha\beta} = P \delta_{\alpha\beta} + \kappa \frac{\partial \Delta n}{\partial x_\alpha} \frac{\partial \Delta n}{\partial x_\beta}, \quad (9)
\]

\[
\Delta \mu = \frac{\delta \Psi}{\delta \Delta n} = -T_C \frac{\Delta n}{n} \quad (10)
\]
where the Greek subscripts are Cartesian coordinate indices and $\delta_{\alpha\beta}$ is the Kronecker’s delta. These thermodynamic quantities are embedded into the equilibrium velocity distributions $f^e_{\alpha}$ and $g^e_{\alpha}$ as follows:

$$P_{\alpha\beta} = \sum_{\alpha} f^e_{\alpha} (e_{\alpha a} - u_{\alpha}) (e_{a\beta} - u_{\beta}),$$

(12)

$$\Gamma \Delta \mu \delta_{\alpha\beta} = \sum_{\alpha} g^e_{\alpha} (e_{\alpha a} - u_{\alpha}) (e_{a\beta} - u_{\beta}),$$

(13)

where $\Gamma$ is the parameter corresponding to mobility.

Applying the Chapman-Enskog’s multi-scale expansion [2] to Eqs. (5)-(13) yields a complete equation set of continuum fluid dynamics for two-phase fluids [6].

3 3D EQUILIBRIUM DISTRIBUTION OF PARTICLES

An isotropic velocity set including a rest particle component shown in Fig. 1 is adopted for $e_a$ [12]. In this section, the subscript $a$ is replaced with $l$ and $i$, where $l (=1$ or 2) is the index of two speeds $c(l+1)/l$ and $i$ is the index of velocity directions: $i=1$ to 6 for $l=1$, $i=1$ to 8 for $l=2$. The coefficient $c$ is set to be equal to 1.

Under a low Mach number condition, $f^e_{l,i}$ and $g^e_{l,i}$ are given by [13]

$$f^e_{li} = n \left[ A_l + \frac{B_l}{c^2} e_i \cdot u + \frac{C_l}{c^4} (e_i \cdot u)^2 + \frac{D_l}{c^2} u \cdot u \right]$$

$$+ G^{(l)}_{\alpha\beta} e_{\alpha a} e_{\beta i},$$

(14)

$$f^e_0 = n \left[ A_0 + \frac{D_0}{c^2} (u \cdot u) \right],$$

(15)

$$g^e_{li} = \frac{B_l \Gamma \Delta \mu}{c^2} + \Delta n \left[ \frac{B_l}{c^2} (e_i \cdot u) + \frac{C_l}{c^4} (e_i \cdot u)^2 + \frac{D_l}{c^2} (u \cdot u) \right],$$

(16)

$$g^e_0 = \Delta n - \frac{6B_1 + 8B_2}{c^2} \Gamma \Delta \mu + \frac{D_0}{c^2} \Delta n (u \cdot u),$$

(17)

where Eqs.(15) and (17) correspond to the distribution functions for rest particles. The parameters $A_l$, $B_l$, $C_l$, $D_l$ and $G^{(l)}_{\alpha\beta}$ have been determined so as to yield correct continuum fluid equations [13]. The $A_l$ ($l=1,2$), $A_0$ and $G^{(l)}_{\alpha\beta}$ ($l=1,2$) are given by

$$A_l = \frac{s_1}{8(s_1 + s_2) c^2} \left[ T - \frac{\Delta n}{n} \nabla^2 \Delta n \right],$$

(18)

$$A_0 = 1 - 6A_1 - 8A_2,$$

(19)

$$G^{(l)}_{\alpha\beta} = \frac{\kappa}{c^2} \left[ E_l \frac{\partial \Delta n}{\partial r_i} \frac{\partial \Delta n}{\partial r_j} + F_l |\nabla \Delta n|^2 \delta_{\alpha\beta} \right].$$

(20)

Here the fluid temperature $T$ is given by

$$T = 8(s_1 + s_2) c^2,$$

(21)

where $s_1$ and $s_2$ denote the probabilities of presence of particles with speed $2c$ and $\sqrt{3}c$, respectively, under a thermodynamic equilibrium condition.

The following set of parameters are used: $B_1 = 1/24$, $B_2 = 1/12$, $C_1 = 1/32$, $C_2 = 1/16$, $D_0 = -7/24$, $D_1 = -1/48$, $D_2 = -1/24$, $E_1 = 1/32$, $E_2 = -1/32$, $E_2 = 1/16$, and $F_2 = 0$.

4 IMPROVEMENT OF BINARY FLUID MODEL

The BF model is improved to simulate immiscible two phase flows with the function of easy adjustment of surface tension and interface thickness to desired values. First, $g_a$ in the convection term in Eq.(6) is replaced with $g^e_a$, by which significant reduction of $\Delta n$ diffusion inherent to the original BF model[6] is achieved:

$$\frac{\partial g_a(t, r)}{\partial t} + e_a \cdot \nabla g^e_a (t, r)$$
where $\Delta n_0$ is a positive value in the component-A-rich region. Equation (24) represents the fact that under a thermodynamic equilibrium condition there is no net variation in the number of particles in each phase. Figure 2 shows examples of $\Delta n$ across a flat interface calculated by using Eq.(24). As $\kappa_2$ decreases, the interface, the region where $\Delta n(x)$ changes steeply, becomes thinner and the gradient of $\Delta n$ increases. Table 1 shows the value of integral in the right-hand side of Eq. (23), which are evaluated by substituting the calculated $\Delta n(x)$ into the integral. The value of $\sigma/\kappa_1$ decreases with increasing $\kappa_2$. This tendency can be utilized to determine the value of $\kappa_2$ to be used in a simulation. The value of $\kappa_1$ for a simulation is easily determined by substituting the value of $\sigma$ and $\Delta n(x)$ into Eq.(23) and solving it for $\kappa_1$.

Table 1: Surface tension and gradient of $\Delta n$ for $\kappa_2$.

| $\kappa_2$ | $\sigma/\kappa_1$ | Max.$|\nabla \Delta n|$ |
|------------|--------------------|------------------|
| 0.01       | 0.310              | 0.550            |
| 0.02       | 0.219              | 0.389            |
| 0.03       | 0.179              | 0.317            |
| 0.06       | 0.125              | 0.222            |

To examine whether or not the above-mentioned procedure is applicable to a curved interface, the formation of a two-dimensional circular drop in stagnant liquid is simulated for several values of $\sigma$ and drop diameters. Figure 3 shows the predicted pressure jump $\Delta P$, i.e. the difference between the pressure inside the drop with radius $R$ and the pressure outside the drop, $P_0$. The lines in the figure are drawn by substituting the input value of $\sigma$ into the Laplace’s law $\Delta P = \sigma/R$. The predicted $\Delta P$ agrees well with the Laplace’s law, which verifies the validity of the proposed method of adjusting the input values of $\kappa_1$ and $\kappa_2$.

As a result of the introduction of $g^{eq}_0$ in the convection term of Eq. (22), it becomes impossible to use the conventional translation scheme of LBM, and thereby, a finite difference-based lattice Boltzmann method (FDLBM) [14] has to be adopted as a solution scheme for Eqs. (5) and (22). The adoption of FDLBM however leads to several advantages over the conventional translation scheme such as low numerical instability for high Reynolds number problems and the applicability to arbitrary grid configuration. In this study, a third-order upwind difference scheme and the second-order Runge-Kutta’s scheme are adopted for the convection term and time differencing, respectively. The kinematic viscosity $\nu$ in the 3D BF model [13] is given by
Numerical Simulation of Drops in a Shear Flow by a Lattice-Boltzmann Binary Fluid Model

5 NUMERICAL SIMULATION OF DROP MOTION

Numerical simulations of three-dimensional drops in a Couette flow are carried out with the proposed method. To verify the accuracy, deformation and breakup of a single drop predicted by the present method are compared with numerical predictions obtained by an advanced volume of fluid (VOF) method [10] and with an analytical solution based on a small deformation theory [11]. The initial and boundary conditions of 3D simulations are shown in Fig.4. A spherical neutrally-buoyant drop with diameter \( d_D = 16 \) is suspended in an immiscible liquid at the center of the computational domain. The top and bottom plates are moving at a constant speed \( U_W \) in the opposite directions. The density and viscosity of the drop are the same as those of the continuous fluid. Uniform cubic mesh, \( \Delta x = \Delta y = \Delta z = 1 \), is used to discretize the flow domain of plate separation \( H \) and spatial periodicities \( L_x \) and \( L_y \). The extrapolation boundary condition proposed by Chen et al. [15] for \( f_a \) and \( g_a \) is applied to simulate the moving plates.

Simulations are carried out for several Reynolds number \( Re \) and capillary number \( Ca \), which is the ratio of viscous force to surface tension force. These dimensionless numbers are defined by

\[
\nu = 8 B_2 \tau_1 c^2. \quad (26)
\]

\[
Re = \frac{\dot{\gamma}}{\nu} \left( \frac{d_D}{2} \right)^2, \quad (27)
\]

\[
\nu = \frac{8 B_2 \tau_1 c^2}{(27)}.
\]
Deformation of a drop in a time-dependent shear flow starting from a quiescent flow field is simulated under a low Reynolds number condition, $Re = 0.0625$. The dimensions are specified as $H = 128$, $L_x = 64$ and $L_y = 32$. For the quantitative comparison, two parameters are used to measure the magnitude of deformation. The one is the Taylor deformation parameter $D = (L - B)/(L + B)$, where $L$ and $B$ are the lengths of major and minor axes as shown in Fig.5. The other is the orientation angle $\theta$ of the major axis with respect to the axis of shear strain. The values of $D$ and $\theta$ in a steady state, which is achieved after transient deformation, are compared with the VOF predictions and theory. Results are shown in Figs. 6 and 7. The predicted $D$ agrees well with VOF predictions. In addition, it agrees with the small deformation theory when $D$ is small. As for the orientation angle, good agreements are obtained between the BF model and VOF method. However the theory does not agree with both simulations.

Then breakup of a 3D drop is simulated using $d_D = 16$, $H = L_x = 64$ and $L_y = 32$. Simulations are carried out by increasing $Re$ under a constant $Ca$ to find a critical value of $Re$ at which breakup takes place. Figure 8 is examples of predicted flow fields on the $x-z$ cross section at $y = 16$ for $Ca = 0.3$ and $Re = 0.01, 0.1, 0.5$ and 0.6. As $Re$ increases, the drop deformation becomes larger, but breakup still does not occur. As shown in Fig. 9, the breakup takes place at $Re = 0.75$, so that the critical $Re$ at $Ca = 0.3$ lies between 0.6 and 0.75. Figure 10 is the thus-obtained diagram of drop breakup in the ($Ca$, $Re$) plane. The critical Reynolds number predicted by VOF [10] is drawn with a solid curve. The present result again agrees well with the VOF prediction. Then interactions of two drops in a 3D shear flow at $Ca = 0.3$ and $Re = 1.0$ are simulated using the same $H$, $L_x$, $L_y$ and $d_D$ as those in the breakup simulation. Note that a single drop under this combination of $Re$ and $Ca$ would break up. Initial conditions and snapshots of predicted flow patterns are shown in Fig. 11. In Case (a), two drops initially locate at the middle height of the domain. In this case, drops reach the steady state without breakup. This result implies that the critical $Re$ depends on the number density of drops in a flow domain. To the contrary, when the initial heights of drops are apart from the middle elevation by $d_D$ (Case (b)), drops deform large enough to result in breakup, which indicates that the critical $Re$ depends not only on $Ca$ and the number density of drops but also on the initial spatial arrangement of drops.
6 CONCLUSIONS
A lattice-Boltzmann binary fluid model was improved to simulate immiscible two-phase flows with the function of easy adjustment of surface tension and interface thickness to desired values. The improvement was achieved by (a) the adoption of a particle number density function at a local equilibrium state, $g^{eq}$ for the convection term of the lattice Boltzmann equation describing the time-evolution of number density difference between the phases and (b) the introduction of two parameters in the definition of surface free energy. The proposed method was applied to neutrally-buoyant drops in simple shear flows to examine its validity and the effects of spatial arrangement of drops on breakup process. It was confirmed that (1) deformation and breakup of single drops predicted by the proposed method agreed well with those by an advanced volume-of-fluid method and a small deformation theory, and (2) the critical Reynolds number at which drop breakup takes place depends not only on the capillary number and the number density of drops but also on the initial spatial arrangement of drops.

REFERENCES