

Lattice-Boltzmann Binary Fluid Model No.7
National Institute of (LB-BFM) for Two-Phase Flow
AIST (for Equal-Density Two-phase Fluid, M.R.Swift et al, 1996)
Lattice-Boltzmann Equation (LBE) for Mass and Momentum Conservation:
$\frac{\partial f_a(t, \mathbf{x})}{\partial t} + \mathbf{e}_a \cdot \nabla f_a(t, \mathbf{x}) = -\frac{1}{\tau_1} \left[f_a(t, \mathbf{x}) - f_a^{eq}(t, \mathbf{x}) \right] \qquad n = n_A + n_B = \sum_a f_a \text{ for a number density of components } \mathbf{A} \otimes \mathbf{B}$
$\frac{\partial n}{\partial t} + \frac{\partial n u_{\alpha}}{\partial x_{\alpha}} = 0 \qquad \frac{\partial n u_{\alpha}}{\partial t} + \frac{\partial n u_{\alpha} u_{\beta}}{\partial x_{\beta}} = -\frac{\partial P_{\alpha\beta}}{\partial x_{\beta}} + \nu \nabla^{2} (n u_{\alpha}) + \frac{\partial}{\partial x_{\alpha}} \left(\lambda \frac{\partial n u_{\beta}}{\partial x_{\beta}} \right) \qquad n_{A} n_{B} \text{for low Mach number}$
$P_{a\beta} = \left[nT - \kappa \left(\phi \nabla^2 \phi + \frac{ \nabla \phi ^2}{2} \right) \right] \delta_{a\beta} + \kappa \frac{\partial \phi}{\partial r_a} \frac{\partial \phi}{\partial r_\beta} \qquad v = \frac{c^2 \Delta t}{4} \tau_2 \qquad \lambda = \Delta t \left(\frac{c^2}{2} - T \right) \tau_2$
LBE for Transport for Interface and Phase Volume:
$\frac{\partial g_a(t, \mathbf{x})}{\partial t} + \mathbf{e}_a \cdot \nabla g_a(t, \mathbf{x}) = -\frac{1}{\tau_2} \Big[g_a(t, \mathbf{x}) - g_a^{eq}(t, \mathbf{x}) \Big] \qquad \phi = n_A - n_B = \sum_a g_a $ Mumber density difference = Index Function
$\frac{\partial \phi}{\partial t} + \frac{\partial \phi u_{\alpha}}{\partial x_{\alpha}} = S \qquad S = 0 \\ \text{for a state of local} \\ \text{equilibrium} \qquad \text{A-rich : } \Delta n > 0 \\ \text{B-rich : } \Delta n < $
LBE Chapman-Enskog multi-scale expansion technique According to the Macroscopic
(C) Naoki TAKADA (AIST) All Rights Reserved Hokkaido Liniv, Sentember 5-9, 2004

巨視的現象の記述法	+	界面現象の記述方式 界面移流・再構成法	=	二相流数値計算手法	数値計算手法の
流れの基礎方程式	•	/表面張力計算法			具体例
plain Navier-		I/F-Tracking		Conventional	Front-Tracking Level-Set
Stokes(NS)	+	Scneme/	=	NS Method	Marker-and-Ce
Nethod		CSF model			Volume-of-Flui
				Inamuro, T., eta	
nlain I BM	+		=	Two-Phase	Seta,T., etal.
Profile Party		Phase-Field		Fluid LBM	Swift,M.R., eta
	· - · -	Modeling			Doi,M.,etal(1997
plain-NS		(<u>PFM</u>)		NS-PFM	Jacqmin,D. (199
plaintito	Method + =	_	Method	1	
plain LBM	+	<u>Phase-Field</u> <u>Modeling</u> (<u>PFM</u>)		Fluid LBM NS-PFM	Swift,M.R Doi,M.,etal Jacqmin,D.

National Ins Advanced Indust and Techn AIS	titute of trial Science	二相流界面追跡に ise-Field Model(関する従来計算法と PFM)計算法との比較	No.9
$ \wedge $		従来計算法(NS方程式)	PFM計算法	
	計算法 (細分類)	MAC VOF Level Set Front Tracking MPS	NS-PFM LBM LGCA	
	界面厚さ	数值的 (0 <i>or</i> ≈∆x)	<mark>物理的</mark> (>∆x, 数セル)	
表	表面張力	Continuum Surface Force (CSF) Model (界面厚さと関連なし)	界面自由エネルギー (界面厚さと関連あり)	
	界面移流・ 再構成	MAC PLIC MARS DA TVD CIP	化学ポテンシャル勾配	
	離歩を	Eulerian Semi/F	ully-Lagrangian ALE	
尚推育X1L		FDM FEM	BEM BFC	231
	PFI	Mは新しい二相流計算アル	レゴリズムを提供する.	建一
(C) Naoki T	AKADA (AIST),	All Rights Reserved.	F06-(3),2004/09/07,JSME M Hokkaido UnivSeptember 5	AECJ-04

National Institute of Advanced Industrial Science and Technology AIST	謝 話 (敬称	™. 下午 下午
研究協力	産業技術総合研究所 三澤雅樹(複雑現象工 高橋学(地殻物性チー 神戸大学 冨山明男,細川茂雄,朱	学研究G) ーム) 2明良
研究実施 制度	文部科学省 科学技術振興部 (若手育成型) 「閉鎖性水域の水質改善 生成機構の研究」,20	男整費・流動促進研究課題 話を目的としたマイクロバブル 00-2002年度(終了)
	文部科学省原子力試験研究 「 微視的数値解析手法に 予測の高度化に関する	1課題 こよる地層環境内の物質拡散現象 研究」, 2002-2004年度(継続中).
(C) Naoki TAKADA (AIST), All Rights Reserved.	F06-(3),2004/09/07,JSME MECJ- Hokkaido Univ.,September 5-9, 20

