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ABSTRACT 

The purpose of this study is to examine multi-physics 
computational fluid dynamics method, NS-PFM, which is a 
combination of Navier-Stokes (NS) equations with phase-field 
model (PFM) based on the free-energy theory, for interface-
capturing/tracking simulation of two-phase flows. First, a new 
NS-PFM which we have proposed was applied to immiscible, 
incompressible, isothermal two-phase flow problems with a 
high density ratio equivalent to that of an air-water system. In 
this method, a Cahn-Hilliard equation was used for prediction 
of diffusive interface configuration. The numerical simulations 
demonstrated that (1) predicted collapse of two-dimensional 
liquid column in a gas under gravity agreed well with available 
data at aspect ratios of column = 1 and 2, and (2) coalescence 
of free-fall drops into a liquid film was successfully simulated 
in three dimensions. Second, we took heat transfer into account 
in another NS-PFM which solves a full set of NS equations and 
the van-der-Waals equation of state. Through a numerical 
simulation of a non-ideal fluid flow in the vicinity of the critical 
point, it was confirmed that the NS-PFM is applicable to 
thermal liquid-vapor flow problems with phase change. 

INTRODUCTION 
In recent years, phase-field model (PFM) [1] has grown 

popular as one of useful tools for well understanding complex 
phenomena involving self organization of mesoscopic 
structures in multi-component systems, such as two-phase 
flows [1,2,3], solidification of binary alloys [4] and formation 
of polymer membranes [5]. Based on the van-der-Waals, Cahn-
Hilliard free-energy theory [6], PFM describes an interface as a 
volumetric transition zone with a finite width between pure 
components (phases), across which physical properties vary 
steeply but continuously. The coexistence of two phases with 
the diffusive interface is allowed by a free-energy functional 
which has a double-well potential of an order parameter (mass 
density or molar concentration) and depends on square of its 

local gradient, without imposing topological constraints on 
interface as phase boundary. In the theory, surface tension is 
defined as an excessive free energy per unit area caused by 
local gradient of the order parameter inside the interface zone, 
enabling calculation of the continuous body force without using 
interfacial curvature and normal vector. As a result, the PFM-
based method for two-phase flows does not necessarily require 
conventional elaborating algorithms for advection and 
reconstruction of interface [7,8] and continuum surface force 
modeling [9] in front-tracking, level-set and volume-of-fluid 
(VOF) methods [10-12]. This feature simplifies interface-
tracking calculation on a fixed spatial grid. The PFM method 
therefore has attractive advantages over the other methods, easy 
implementations of multi-dimensional advection of interface 
and associated heat and mass transfer across the interface [1-3]. 

PFM methods are categorized into two types; a direct 
numerical method using Navier-Stokes (NS) equations (NS-
PFM) [3,4], and a lattice Boltzmann method (LBM) [13,14] 
using mesoscopic kinetic equations for the velocity distribution 
of a number density of fictitious fluid particles [15-18]. Both 
types had been applied only to two-phase flows with a small 
density difference because of numerical instability. To 
overcome the difficulty, two kinds of two-phase LBM proposed 
by Chen et al. [19] and Inamuro et al. [20] adopted 
conventional finite difference scheme for problems with contact 
discontinuity and solution algorithm for Poisson equation of 
pressure, respectively. Based on the latter LBM [20], we have 
recently proposed a NS-PFM [21,22] applicable to two-phase 
flow problems at a high density ratio. One of advantages of NS-
PFM over two-phase LBM is to save computational memory, 
because the number of macroscopic variables in NS equations 
is generally less than that of mesoscopic variables (particle-
velocity distribution functions) in the LBM kinetic equations. 

The purpose of this study is to examine the basic interface-
capturing/tracking capability of two kinds of NS-PFM for 
numerical simulation of two-phase flows with a high density 
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ratio or with phase change. First, a NS-PFM we have proposed 
[21,22] is applied to immiscible, incompressible, isothermal 
two-phase flows with the same density ratio as that of an air-
water system. In order to verify the method, the numerical 
results are compared with available data in other experimental 
and numerical studies. Second, we took heat transfer into 
account in another NS-PFM [21] using a full set of NS 
equations and the van-der-Waals equation of state, for a direct 
numerical simulation of compressible thermal non-ideal fluid 
flow with phase change in the vicinity of the critical point. 

NOMENCLATURE 
A long-range interaction of van-der-Waals fluid particles 
a  width of liquid column 
B short-range interaction of van-der-Waals fluid particles 
c  specific heat 
g gravitational acceleration vector 
H height of liquid column or position of drop in z direction 
I second-rank isotropic tensor 
k thermal conductivity 
n2 aspect ratio of liquid column (=H/a) 
P  pressure tensor including surface-tension effect 
P' pressure including excess free energy of interface 
p pressure in homogeneous fluid 
T parameter of free-energy function (and/or temperature) 
t time 
u flow velocity vector 
x,y,z  position in Cartesian coordinate system 

Greek letters 
∆t  time step width 
Γ mobility of index function φ in Cahn-Hilliard equation 
φ  index function to indicate interface profile 
η chemical potential 
κS surface tension parameter 
κφ interface thickness parameter 
µ viscosity of fluid 
ρ  mass density of fluid 
σ  surface tension 
τ viscous stress tensor 

Subscript 
G gas phase 
L liquid phase 

Superscript 
* dimensionless parameter 

BASIS OF PHASE-FIELD METHOD (NS-PFM) 
Isothermal two-phase fluids with a high density ratio 

The numerical method NS-PFM proposed for immiscible, 
incompressible, isothermal two-phase flows [21,22] solves a set 
of a continuity equation, momentum conservation equations, 
and a Cahn-Hilliard advection-diffusion equation describing 
time evolution of the interface profile [1,2,6,20], 

0∇ ⋅ =u ,          (1) 

[ ]1D
Dt ρ

= −∇⋅ + ∇⋅
u P τ ,        (2) 

( ) [ ]
t
φ φ φ η∂

+ ∇⋅ = −∇⋅ − Γ ∇
∂

u .       (3) 

In Eq.(3), the continuous scalar variable φ is an index (so-called 
order parameter [1-6]) to describe interface profile [20] which 
is continuously distributed in the whole flow field. In this 
study, the chemical potential η is derived from a free-energy 
functional Ψ with the van-der-Waals bulk energy [15,18,20] 
and an excessive energy caused by gradient of φ [1] as follows, 

2ln 2
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δ φη φ κ
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∇ ,     (4) 

where κφ is a parameter to control interfacial thickness at T < 
8A/(27B). For simplicity, the mobility Γ is set to be constant. 

The density ρ is given as a continuous function of φ [20], 
( ) / 2
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2 2
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where φG and φL are arbitrary thresholds on φ to distinguish the 
gas and liquid phases. The pressure tensor P is expressed as [1],  

22

2
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where κS denotes the strength of surface tension σ, and p is the 
pressure in homogeneous field. Calculating P, the right-hand-
side first term of Eq.(6) is replaced with (P'-κS |∇ρ |2)I just for 
computational convenience [20-22]. The parameter κS constant 
in the whole flow field is determined from the definition of σ as 
an excessive free energy on a flat interface [1,3,15-20], 

2
S dxσ κ ρ

+∞

−∞
≡ ∇∫ ,              (7) 

where x is the axis along the normal direction of the interface. 
The viscous stress τ in Eq.(2) has a coefficient µ for Newtonian 
fluid, which is given by a linear interpolation on ρ [20]. 

( )L G
G G

L G

µ µµ µ ρ ρ
ρ ρ

−
= + −

−
        (8) 

In this NS-PFM, the following numerical techniques were 
adopted for solving the above equations [21,22]. Scalar and 
vector variables were located in staggered arrangement on a 
fixed regular grid with unit cells. The solenoidal velocity u and 
the effective pressure P'=P+κS |∇ρ |2 [20] were calculated using 
the projection algorithm [25]. The advection term in Eq.(2) was 
calculated with a 3rd-order upwind finite difference scheme 
[26], while that in Eq.(3) was calculated with a 4th-order 
central difference scheme (CDS). Gradients of scalar variables 
were calculated with a 4th-order CDS, while a 2nd-order CDS 
was applied to the viscous term. Time marching was based on 
the 2nd-order Runge-Kutta’s scheme with a constant ∆t. 

Thermal two-phase flow with phase change 
Another NS-PFM for simulating thermal two-phase flows 

with phase change adopts a full set of NS equations for a non-
ideal fluid and the van-der-Waals equation of state [1,3,18,21]. 
In this study, they are solved by using the MacCormack 
scheme. Time evolution of total energy E of the fluid is 
described in conservative form by the following equation [1,3], 

( ) ( ) ( )S
E E k T
t

κ ρ ρ∂
⎡ ⎤+ ∇⋅ = ∇⋅ − + ⋅ + ∇ − ∇⋅ ∇⎣ ⎦∂

u P τ u u ,(9) 

( ) 221
2 2

SE cT A κρ ρ ρ= + − + ∇u ρ ,      (10) 

where the pressure p of P is expressed as follows [15,18,19]. 
( ) 1 21p T B Aρ ρ −= − − ρ        (11) 
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NUMECAL RESULTS OF TWO-PHASE FLOW 
This section describes numerical results of three kinds of 

two-phase flow obtained with NS-PFM. All of the simulations 
were carried out on a fixed spatial grid with uniform mesh 
width ∆x=∆y=∆z=1.0 in Cartesian coordinate system. As for 
incompressible two-phase flow, density and viscosity ratios 
ρL/ρG and µL/µG were set at 801.7 and 73.76 respectively, 
which correspond to those of air-water system at 1 atm. and at 
room temperature. The other parameters were set as follows; 
A=B=1, T=0.293, κφ =0.1, and φG=0.3802, φL=0.2751, |g|= 
2×10-3, Γ=12, ρL = 1, ρG =1.247×10-3, and ∆t=0.0125. 

Collapse of 2D liquid column in a gas under gravity 
The NS-PFM [21,22] was applied to collapse of two-

dimensional liquid column in a gas under gravity g in a 
rectangular domain surrounded with non-slip solid walls 
(Fig.1), for examining the interface-capturing and -tracking 
capabilities in comparison with available data [12,23,24].  

First, the simulation was conducted at an aspect ratio of 
column n2= H/a=2. In both cases of spatial resolution, Case1 
and Case2 (Table1), initial column width a was assumed to be 
equivalent to 146mm in air-water system. The effect of gravity 
on the fluid was taken into account only in the regions at ρ >ρG. 
Shapes of the liquid column at dimensionless times t*= 
nt(|g|/a)0.5 =1.159, 2.318, and 3.477 in each of Case1 and Case2 
are shown in Fig.2 (a) and (b) respectively, where the solid 
lines inside gradation-colored diffusive interface zone are 
drawn at three contour values of density ρ=ρM=(ρG+ρL) and 
ρM±(ρL-ρG)/4. The dimensionless times correspond to 0.1, 0.2, 
and 0.3 seconds respectively, for water column with width 
a=146mm in air [24]. The interfacial shapes in both low and 
high resolutions, Case1 and Case2, agree well with each other 
at each time t*. From the density contour lines drawn with a 
certain distance at each t* in both the cases, it is confirmed that 
the interface retained its initial finite thickness sufficiently 
during collapse. In Fig.3, cross-sectional profile of ρ along x 

axis on the bottom wall surface at each time is drawn as solid 
line in each case of resolutions. As shown by the time series of 
the lines in each of the figures (a) and (b), while the interface 
moved on the wall surface from left side to right side, the initial 
profile also was retained sufficiently without numerical 
oscillation and diffusion until t*=2.90 in both Case1 and Case2. 
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Fig.3  Time series of profile of density ρ across gas-liquid 
interface on a bottom solid wall at time t*=nt(|g|/a)0.5 .

Fig.2 Snapshots of diffuse-interfacial profile in collapse of 
liquid column with initial width a and aspect ratio n2=2 
under gravity g at time t*=nt(|g|/a)0.5 (∆t= 0.0125). 

(a) Case1 (a=10.775,n2=1.937) (b) Case2 (a=18.773,n2=1.959)
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Fig.1  Schematic of 2D computational domain.

a

Liquid Gas

x
z

Solid walls

g

Leading 
edge

H
=n

2 a

( surface at ρ =(ρG+ρL)/2 )

X

Z

Interface
( stationary, no-slip, neutrally-wettable )

Table 1  Parameters in simulation of collapse of liquid column

PFM
(∆x =1)

air&water
(m) µ G (gas) µ L (liquid)

1 10∆x 7.11×10-5 1.43×10-7 1.06×10-5

2 18∆x 2.30×10-4 3.47×10-7 2.56×10-5

3 40∆x 5.72×10-2

4 80∆x 1.14×10-1

5 20∆x 2.86×10-2

6 40∆x 5.72×10-2

1
7.42×10-3

2
4.96×10-6 3.46×10-4

Viscosities

2 1.46×10-1

Case#
Aspect
ratio

n 2=H /a

Width of column a Surface
tension σ
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Hereafter, the numerical results are compared with 
experimental results in actual air-water system and other 
numerical solutions obtained with VOF and MPS methods 
[12,23,24]. Figure 4 show time series of dimensionless 
horizontal leading-edge position X*=X/a of the column on a 
surface of bottom solid wall. In measurement of X, the diffusive 
interface with a finite thickness was represented by a contour 

surface at ρ =ρM. In the figure, solid and broken lines denote 
the present results in low and high resolutions of Case1 and 
Case2 respectively, while symbols denote the experimental 
results [23,24] in air-water system and the numerical solutions 
given by VOF and MPS methods [12,24], respectively. The 
result of X* obtained with the NS-PFM at both resolutions 
agreed with the other predictions [12,23,24] until dimensionless 
time t*=3.0. As shown in Figs.2 and 3, the interface in the NS-
PFM has a finite thickness caused by the free-energy increase 
which is proportional to squared gradient of φ, κφ |∇φ |2/2 in 
Eq.(6) [1,6]. The leading edge of column therefore tends to 
become more rounded, compared with those in conventional 
numerical methods which describe an interface as phase 
boundary with no volume. That is the reason why the result of 
the leading-edge position in this study deviated gradually from 
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Fig.4  Time series of dimensionless leading-edge position 
X*=X/a of 2D liquid column with initial width a and 
aspect ratio n2=H/a=2. 

Fig.6 Time series of X*=X/a at aspect ratio n2 = 1 and 2.

Fig.7 Time series of Z*=Z/H at aspect ratio n2 = 1 and 2.
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Fig.5  Time series of dimensionless height Z*=Z/H of 2D 
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those obtained with VOF and MPS methods as the liquid 
column collapsed. To the contrary, dimensionless height of the 
column Z*=Z/H in each case of resolutions was predicted in 
better agreement with those obtained with VOF and MPS 
methods [12,24] as well as the experimental data [23,24] until 
dimensionless time t*=t(|g|/a)0.5=3.0, as shown in Fig.5. In other 
cases at aspect ratio n2=1 and 2, Case3-Case6 (Table1), there 
were also good agreements between the numerical predictions 
by the NS-PFM (denoted by symbols in Figs.6 and 7) and the 
experimental data (lines) [23] in terms of both X* and Z*. 
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Coalescence of 3D drops and liquid film under gravity 
As the second example, we simulated coalescence of 

three-dimensional drops falling through a stagnant gas into a 
liquid film sustained on a horizontal solid wall under gravity 
(Fig.8). The diameter of each drop dD=20∆x in the simulation 
was equivalent to 10mm in actual air-water system. As seen in 
Figs.8 and 9, pressure built up just at each contact of drops with 
liquid film ((a)-(e) in order of time, denoted by open circles in 
Fig.9), and then reached its local maximum values after the 
drops penetrated by half into the liquid film ((a')-(e'), closed 
circles). In each coalescence of drops with normalized initial 
height Z*=Z/H=0.389, 0.542, 0.695, 0.847, and 1.0, the 
maximum pressure increase was approximately equivalent to 
initial potential energy of the drop in the same way as Ref.[21]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Non-ideal fluid flow with phase change around body 
This subsection describes a direct numerical simulation of 

2D van-der-Waals fluid flow around a bluff body (Fig.10). The 
NS-PFM using Eqs.(9)-(11) was applied to a test case with a 
condition of A=B=1, c=1.5, κS=0.01, k=µ =0.2, g=0, ∆t=0.05, 
and uin=(0.05,0). The liquid with ρL=0.405 at temperature 
T=T0=0.293 in the domain with Lx=300∆x and Ly=50∆y was 
surrounded with mirror-symmetric boundaries on the top and 

Fig.9 Time series of maximum pressure in coalescence of 
liquid film and free-fall drops with diameter dD=20∆x 
and initial height Z under gravity g in a stagnant gas.
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Fig.10 Non-ideal fluid flow around a bluff body. (a)Comput-
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and pressure (right) fields at (b)t=1000∆t and (c)10000∆t.
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bottom sides, uniform inflow and free outflow at pressure p=p0 
=0.0354 on the other sides. A no-slip solid body with constant 
TW=T0, width a =20∆x and half height H=5∆y was located at the 
bottom. As shown in Fig.10 (b) and (c), a gas with ρG =0.265 
was generated from the liquid on the back of the body, where p 
decreased below the initial value p0 at an equilibrium state. 

CONCLUSIONS 
In this study, two versions of numerical method, NS-PFM, 

combining Navier-Stokes (NS) equations with the phase-field 
model (PFM) [1-3,15-20] based on the free-energy theory [6] 
were applied to several two-phase flow problems, for 
examining the basic interface-tracking capability. The first 
version of NS-PFM we proposed [21,22] computed immiscible, 
incompressible, isothermal two-phase flows at a high density 
ratio equivalent to that of air-water system. From the numerical 
results, it was confirmed that (1) the volume flux driven by a 
local chemical potential gradient in the Cahn-Hilliard equation 
[6] plays an important role in self-organizing reconstruction of 
gas-liquid interface with no numerical diffusion and oscillation, 
(2) collapse of two-dimensional liquid column in a gas under 
gravity was predicted in good agreement with well-known 
experimental and other numerical data [12,23,24], and (3) 
successive coalescences of liquid drops falling through a 
stagnant gas into a stagnant liquid film under gravity were 
simulated successfully in three dimensions. The second version 
of NS-PFM was used for a direct numerical simulation of two-
dimensional thermal non-ideal fluid flow around a bluff solid 
body in the vicinity of critical point. The DNS demonstrated 
that the NS-PFM is able to reproduce interface motions in 
liquid-vapor flows with phase change and heat transfer without 
using conventional interface-capturing/tracking techniques. 
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