複合現実型電子彫刻システムにおける
振動を用いた触感提示法の実現

巌 傳真1* 川越 真帆1* 大槻 麻衣1* 柴田 史久1* 木村 朝子1*
立命館大学 情報理工学部1* 同 大学院情報理工学研究科2*
筑波大学13

1. はじめに

我々は、複合現実感（Mixed Reality: MR）技術と彫刻刀を模したデバイスを用いて、MR 空間において仮想的な彫刻作業を行うシステムの開発を行っている[1]。ユーザは彫刻刀型デバイスを用い、実物にデバイスを押しつけ、つなげようとする加力操作を行うことで、実物体に形状描画した仮想の 3D モデル上に彫り込みを付けることができる（図 1）。このシステムでは、デバイス先端に装着した加力によって簡易的な反力提示を行っていたが、実際の彫刻作業時に得られるような触感感覚は表現できていなかった。そこで、本研究ではシステムの拡張として、振動を用いた仮想時の触感の表現手法を提案する。

関連研究として、Cho ら [2] の「RealPen」ではペンで紙に線を書いた際の振動音を録音・解析したものを、振動としてスタイラスペンに提示することで、デイスプレイ上で紙に近い筆記感覚を再現することに成功した。また、Romano ら [3] は、素材の異なるテクスチャをペンでなぞった際の凹凸を記録し、振動として提示することで、質感の違いを表現する方法を提案している。本研究では、これら手法を参考にしつつ、ユーザのデバイス操作に合わせた振動を提示することで、より実際に彫刻時に近い触感を提示可能なシステムを実現した。

2. 彫刻作業時の触感の分析

実際に彫刻作業を行い、触感に影響を与える要素を分析した。彫刻作業時の触感に影響を与える要素として、「反力」と「振動」の二つが考えられる。反力に関しては、先行研究 [1] でやや大き目のデバイスの先端に取り付けることで簡易的に表現されている。よって、本研究では彫刻作業時に発生する「振動」に着目し、従来のシステムにこれを付加することとした。

まず、加速度センサ（Sseed Studio 製 ADXL345）を彫刻刀に取り付け、実際に彫刻作業を行った際の振動を計測した。その結果、彫刻作業時には微弱な振動が常に発生しており、また、時折、比較的強い振動が発生している。この強い振動は「押しつけ量の変化」「彫刻刀の種類」「木目に対する凹りの方向」に応じた振動が顕著であった。以下に、その詳細を記す。

【押しつけ量の変化】実際の彫刻では、彫刻刀の押しつけ量に比例して、振動が強く感じられた。これは押しつけ量が大きい場合、一度に切り取る木目の本数が多くなるため、振動強度が大きく、逆に、押しつけ量が小さい場合は切り取る木目の本数が少なくなり、振動強度が小さくなっていると考えられる。

【彫刻刀の種類】丸刀は三角刀や平刀と比べて強い振動が顕著に発生する傾向が観察された。丸刀の形状が U 字型になっていることから、一度に切断する木目の本数が他の彫刻刀と比べて多くなり、振動が強いと考えられる。三角刀の場合、丸刀を V 字型になっているため、丸刀と比べて 1 倍に切断する木目の本数が少なくなり、結果として振動の発生頻度・強度も相対的に少なかったと考えられる。平刀の場合、丸刀の形状が平らなため、丸刀よりも低い振動の幅が広いが、彫りの深さは浅くなる。結果として木目の切断本数が丸刀よりも少なくなり、強度は、丸刀と同じかそれよりもも低くなる傾向が確認された。また、彫りの横幅、深さの変化が少ないことから、強い振動が発生する頻度も低くなる。

【木目に対する凹りの方向】木目の方向に対して垂直に彫刻した場合、木目を横断するため、木目に対して平行に彫刻した場合より強い振動の頻度が高くなる。この傾向は、丸刀の形をもつと同様であった。

以上の分析結果より、提案システムにおける触感表現の設計方針を図 1 のようにまとめた。彫刻刀の「丸刀の種類」および、ユーザのデバイスの操作（押しつけ量の変化、木目に対する凹りの方向）に応じた強度を提示することで仮想彫刻作業時の触感を表現する。

3. 彫刻刀型デバイス

電子彫刻システムのシステム構成図を図 2 に示す。MR 空間の提示には両眼立体視可能なビデオ・オーウォード型のヘッドマウントディスプレイ（Canon 製 MREAL HM-A1）を使用している。彫刻刀型デバイスや頭部（カメラ位置）、仮想物体の位置姿勢推定には磁気センサ（Polhemus 製 FASTRAK）を用いており、デバイスの

*Implementation of tactile feedback using vibration for mixed reality based virtual carving system.
4. 設計方針の妥当性の確認

設計方針の妥当性について体験を通して確認した。体験では、微弱な振動のみを提供する場合（図4）と微弱な振動に時折強い振動を発生させる場合（図5）を比較する。微弱な振動は、どの型材においても大きな差は見られなかったため、今回は三角フレームの形態から、強い振動が発生していない部分を使用した。強い振動を発生させる提供パターンは、微弱な振動を提供している間、ランダムなタイミングで強い振動を提示した。以下に体験結果を示す。

(1) 実際の丸の、三角の、平の3種類のッ材を用いて、押しつけ量の異なる場合と木目の方向を変更した場合を比較しました。

(2) デバイスを用いて2種類の感触提示（微弱な振動のみを提供する場合、微弱な振動に時折強い振動を発生させる場合）を比較しました。

(3) システムについて自由にコメントさせた。

微弱な振動のみを提示した場合、木目が引っかかる感触が少ないため、三角材での役割を押しつけ量が小さいときの感触を表現できた。一方で、一定の振動に慣れてしまい、役割としている感覚が顕えるという意見もあり、時折強い振動を提示した場合、強い振動によって木目が引っかかる感触を表現でき、丸、三角、平材を提示した場合や、押しつけ量が増加した場合、木目に対して正しく役割した場合の感触を表現できた。

以上の結果から、強い振動を付与することで、役割作業時の感触を表現できることが確認した。

5. 触感提示モデル

設計方針に基づき、振動の強度、発生頻度を決定するモデルを設計した。

先行研究1では、材を材面部に押す力のP、材を実体のすす角度をθ（材を仮想物の表面と平行な時にθ = 0、垂直な時にθ = π/2）とするとき、材りの横幅をd、材りの深さをwは以下の式で表される。

\[d = m \cdot d_{max} \cdot \frac{P}{P_{max}} \cdot \sin\theta \quad (0 \leq \theta \leq \frac{\pi}{2}) \]

\[w = w_{max} \cdot d \]

（2）

なお、P_{max}は材を押し力の先端にかかる力の最大、w_{max}、d_{max}は材りの形状の横幅と深さの最大値である。

このとき、一度に切削する木目の本数gは次式のよう

\[g = \frac{P_{max} \cdot w_{max} \cdot d_{max} \cdot \sin\theta}{C_{Type}} \]

ここで、\(C_{Type} \)は刃先の形状によって異なる係数（0 ≤ \(C_{Type} \) ≤ 1）、\(g_w, g_d \)は、横方向と深さ方向の単位長さ当

参考文献

