It is well known that there are several phases in the BiSrCaCuO system. The composition of each phase is expressed by a general formula of Bi$_{2n}$Sr$_{2n-1}$Ca$_n$Cu$_{2n+1}$O$_x$. Hereafter, we use the abbreviation 22$(n-1)n$. In the series of 22$(n-1)n$2223 is most attractive, because it has the highest superconducting transition temperature (T_c) of about 110 K. In spite of this potential of BiSrCaCuO, most applications are present, there are no diffraction lines from other phases such as 2201 and 2212, which have usually been observed in films prepared by postannealing. The BiSrCaCuO phases such as 2201 and 2212, which have usu-

In this letter, we report on the in situ thin film growth of 2223 by a single-target sputtering system. In the course of this study, we have observed that deviations from the sputtering conditions optimal for the 2223 growth induce phase intergrowth of 2212, 2223, and 2234, namely random stacking-fault structures of two phases having adjacent n. Deviations from the sputtering conditions for the 2223 growth induce the phase intergrowth of 2212, 2223, and 2234.

The phase intergrowth occurs in connection with film compositions.

Phase intergrowth in Bi$_2$Sr$_2$Ca$_2$Cu$_3$O$_x$ superconducting thin films prepared by single cylindrical-sputtering gun

M. Ohkubo, J. Geerk, G. Linker, and O. Meyer

Forschungszentrum Karlsruhe, Technik und Umwelt, Institut für Nukleare Festkörperphysik, Postfach 3640, D-76021 Karlsruhe, Germany

(Received 7 July 1995; accepted for publication 11 August 1995)

Bi$_2$Sr$_2$Ca$_{n-1}$Cu$_n$O thin films have been prepared in situ on MgO(100) by dc-sputtering employing a single cylindrical target. The thin films are of almost pure Bi$_2$Sr$_2$Ca$_2$Cu$_3$O$_y$ (2223) or intergrowth phases known as random stacking-fault structures of two phases having adjacent n. Deviations from the sputtering conditions for the 2223 growth induce the phase intergrowth of 2212, 2223, and 2234. The phase intergrowth occurs in connection with film compositions.

At a deposition rate of about 1.5 nm/min. The thicknesses of the films ranged between 80 and 110 nm. The MgO(100) substrates were fixed to the heater block by silver paste and set in front of the gun at a distance of about 4 cm. The substrate temperature was varied between 700 and 800 °C, and controlled by using a resistive heater and a thermocouple placed inside the heater block and just below the substrate. After deposition, the films were immediately cooled down to 600 °C within 3 min in the deposition atmosphere, and then kept for 10 min in 600-mbar O$_2$ at that temperature. Superconducting transitions were determined by four-probe resistive and inductive measurements. The films were analyzed by Rutherford backscattering spectroscopy (RBS) and x-ray diffraction (XRD) with Cu $K_{\alpha1}$ radiation.

First, we investigated the dependence of the 2223 growth on P_{total}, keeping the O$_2$/Ar mixture ratio constant at a value of one. The substrate temperatures were 10–20 °C lower than the melting point (T_m) of BiSrCaCuO, which depends on pressure. In this study, we determined T_m as the temperature at which nonuniform films are obtained on the substrate. Figure 1 shows the typical change of the XRD patterns. In Fig. 1, all strong diffraction lines are assigned to (00l) of the 2223 phase. Although a small amount of CuO impurity and an unknown phase having a peak at 2θ=37.3° are present, there are no diffraction lines from other BiSrCaCuO phases such as 2201 and 2212, which have usually been observed in films prepared by postannealing. In the films shown in Fig. 1, the proportions of 2223 (P_{2223}) which will be discussed later are over 90%. The c-axis lattice parameters of these almost pure 2223 films are between 3.696 and 3.706 nm. The 2223 proportion of well-crystallized films reaches 100%, only when the substrate temperature is close to T_m within a few degrees. Figure 2 shows the changes of the full width at half-maximum (FWHM) values of the (0010) diffraction lines and of rocking curves measured at the (0010) line. Both FWHM values decrease rapidly below 0.6 mbar and then gradually, as the P_{total} increases. Evidently, the crystallinity and epitaxy are improved by increasing P_{total}. The above observations can be explained by the following model:

4On leave from Electrotechnical Laboratory, Tsukuba, Ibaraki, 305, Japan. Electronic mail: ohkubo@infp.fkk.de
be understood by the following explanations. As the oxygen partial pressure increases, T_m of the 2223 films increases. The increase of T_m allows us to deposit the films at higher temperatures. The deposition at a higher oxygen pressure and a higher temperature brings complete oxidation and swift migration of the sputtered species on the substrate, which may induce good crystallinity and epitaxy. Additionally, in
dc-bias cylindrical sputtering of YBaCuO, it has been observed that Ar$^+$ ions accelerated by voltages above a threshold of 35 V create structural defects and degrade superconducting properties.12 This experiment suggests that Ar$^+$ ions scattered at the target surface may also show the same bombardment effects at low P_{total}. The bombardment effects can be reduced at high P_{total} because of a short mean-free-path.

It has been demonstrated by the above-mentioned results that almost pure 2223 films can be prepared in a wide range of the sputtering parameters, i.e., at P_{total} above 0.6 mbar and substrate temperatures between T_m and about T_m-20°C, if the mixture ratio of O$_2$/Ar is kept at about one. However, in order to obtain a narrow rocking curve of less than 0.2$^\circ$, as observed for high p_{2223} values, the substrate temperature is required to be very close to T_m within a few degrees. The narrowest rocking curve of 0.15$^\circ$ was recorded in a film prepared at 760 $^\circ$C, P_{total}=0.90 mbar, and O$_2$/Ar=0.8. That film showed partial melting at one edge of the sample. This is consistent with the established view that the heat treatment at a temperature as close as possible to T_m is indispensable to obtain well-oriented Bi$_2$Sr$_2$CaCu$_2$O$_x$ films.13 Second, sputtering was performed on a variety of conditions, which are far afield from the 2223 growth. Typical XRD patterns are shown in Fig. 3 for the films deposited (a) and P_{total}=0.80 mbar, O$_2$/Ar=1.0, and 730 $^\circ$C, (b) at $P_{\text{total}}=0.80$ mbar, O$_2$/Ar=1.0, and 760 $^\circ$C, (c) at $P_{\text{total}}=0.70$ mbar, O$_2$/Ar=1.3, and 760 $^\circ$C, and (d) at $P_{\text{total}}=0.20$ mbar, O$_2$/Ar=1.0, and 730 $^\circ$C. The XRD patterns display single sets of diffraction lines, which imply that the films are of single phase, but the Bragg peak positions show a continuous shift. In Figs. 3(b) and 3(d), the patterns are properly explained by 2223 and 2234 phase formation, respectively, although the diffraction lines from 2234 are weak and broad. On the other hand, the Bragg peak positions of the patterns (a) and (c) are inconsistent with any single phases of the Bi$_2$Sr$_2$Ca$_{n-1}$Cu$_n$O$_x$ system. This phenomenon can be explained by taking into account the phase intergrowth of 2212 and 2223 or of 2223 and 2234. It has been reported for 2212 films that the stacking fault proportion is
well approximated by a linear relation of

\[p = \frac{\theta - \theta_{2212}}{\theta_{2223} - \theta_{2212}} \]

where \(\theta \) is the Bragg angle and \(i \) is either 2201 or 2223.\(^8\) We apply this relation to the present films. In order to calculate the 2223 proportion \(p_{2223} \), the relative differences between the (0010) and (0012) diffraction lines for 2223 were used because of the variation of the c-axis lattice parameters, which causes an uncertainty in the calculation from the absolute position of (0010). The calculated \(p_{2223} \) values are indicated in Figs. 1 and 3.

It has been observed that the phase intergrowth is dependent on such sputtering parameters as the substrate temperature and the \(O_2/Ar \) ratio. Intergrowth phases of 2212 and 2223 are obtained by lowering the substrate temperature, as shown in Fig. 3 pattern (a), or by decreasing the \(O_2/Ar \) ratio from that optimal for the 2223 growth. On the other hand, the intergrowth of 2223 and 2234 in Fig. 3 pattern (c) occurs at the high \(O_2/Ar \) ratio. The observed intergrowth is consistent with the variation of the film compositions, as pointed out in Ref. 8. The compositions of the films were evaluated from the \(p_{2223} \) values and the RBS analyses. Figure 4 shows a comparison between these two sets of Cu/Bi ratios for all well-crystallized films. The data points exhibit an almost linear correlation between the XRD and RBS data. However, the slope of the data points deviates from the ideal line, which illustrates that excess Cu atoms probably forming CuO are present in the films. It can be noticed, therefore, that the excess Cu atoms are necessary for the phase intergrowth of 2223 and 2234.

In on-axis dc sputtering,\(^6\) it was pointed out that one of the causes of composition variation was resputtering due to negative oxygen ions. Contrarily, our cylindrical sputtering system is in principle off-axis, so that the resputtering can be neglected. In the present samples, it is plausible that thermally activated desorption is simply dominant for the composition variation. \(Bi_2O_3 \) is expected to evaporate faster than the oxides for Sr, Ca, and Cu that are stable at our temperatures and \(O_2 \) pressures. At low substrate temperatures, therefore, a small re-evaporation rate of Bi results in the Bi-rich films and thus the grown phase is between 2212 and 2223. The idea of thermally activated desorption is also supported by a preliminary experiment of the deposition-rate dependence, which shows that films with high Cu/Bi ratios, namely intergrowth phases of 2223 and 2234, are obtained at lower deposition rates. In addition to the sputtering at low substrate temperatures, the films prepared at \(O_2/Ar \) ratios below one also have high Cu/Bi ratios. The influence of the \(O_2 \) partial pressure may be explained by a change of the angular distribution of the sputtered species, which leads to the composition variation.

The superconducting properties of the almost pure 2223 films were poor. The films had \(T_c \) (onset) values in the resistive measurement of about 110 K, but zero resistance states were obtained at about 75 K. On the other hand, the extrapolations of \(R-T \) curves in the normal state nearly cross the horizontal axis at 0 K. Moreover, the films exhibited sharp transitions of about 2 K at about 75 K in the inductive measurement, which suggests that the films are spatially uniform. One of the causes of the broad transition may be a substitution between Ca and Sr, as reported for 2212 films prepared by MBE.\(^4\) In fact, the RBS data reveal a tendency of a lack of Sr and a surplus of Ca atoms, for example, \(Bi_{1.9}Sr_{1.7}Ca_{2.2}Cu_{3.0}O_x \) for a film having a \(T_c \) (zero) of 77 K. In addition, it has been pointed out that the superconducting transition is strongly influenced by the cooling process immediately after deposition,\(^5\) which means that the oxygen content must be optimized very carefully. This will be studied in future works.

In summary, we have prepared \textit{in situ} thin films with almost pure 2223 phase by dc sputtering employing a single 2234 cylindrical target. The 2223 films can be obtained in a wide range of sputtering parameters. Deviations from the sputtering conditions for the 2223 growth induce phase intergrowth of 2212, 2223, and 2234. It has been observed that the intergrowth depends on the film composition.

The authors express their thanks to the thin-film technology and INFP/IK van de Graaff teams for discussion and experimental assistance.
