Thermal properties of calorimeters with Ti/Au transition-edge sensors on silicon nitride membranes

M. Ukibea,*, K. Tanakab, M. Koyanagia, T. Morookab, H. Presslera, M. Ohkuboa, N. Kobayashia

aElectrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305-8568, Japan
bSeiko Instruments Inc., 563, Takatsuka-Shinden, Matsudo, Chiba 270-2222, Japan

Abstract

We are developing X-ray microcalorimeters employing superconducting-transition-edge sensors (TESs) for relatively high operation-temperatures of an \(^3\text{He} \) cryostat. The TESs are proximity bilayers of Ti and Au. An important thermal parameter, the thermal conductance \(G \), of the microcalorimeters on SiN\(_x\) membranes was evaluated by a simple method using \(R-T \) curves at different bias currents. It has been shown that the \(G \) value can be controlled by altering the membrane thickness and size. © 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Advanced X-ray detectors for energy dispersive spectroscopy should achieve a high-energy resolution and a fast response time. A promising X-ray detector is a microcalorimeter equipped with a superconducting-transition-edge sensor (TES) operated in a strong electrothermal feedback mode. The energy resolution of the TES microcalorimeter has recently reached 7.2 eV for 5.9 keV X-rays with a photon count rate of 150 cps [1]. The theoretical energy resolution (\(\Delta E \)) and response time (\(\tau \)) [2,3] of TES calorimeters are expressed by

\[
\Delta E_{\text{FWHM}} = 2.355 \sqrt{\frac{4k_B T^2 C n/2}{\alpha}}
\]

and

\[
\tau = \frac{C/G}{1 + \alpha \phi/n}
\]

where \(T \) is the operating temperature, \(C \) is the heat capacity, \(G \) is the thermal conductance, \(n \) is the power-law dependence of the thermal impedance between the heat bath and the electrons in the TES, \(\alpha \) is the logarithmic transition sensitivity, \(\Delta \)ln \(R/\Delta \)ln \(T \), and \(\phi \) is related to the temperature of the heat bath \(T_b \) by \(\phi = 1 - (T_b/T)^n \). A straightforward means of achieving a high-energy resolution is to operate the TES calorimeters at as low a temperature as possible. However, it is difficult to obtain a fast response time at low operating temperatures [3]. We are, therefore, developing TES microcalorimeters for operation at high temperatures of about 0.4 K, which can be continuously maintained by using an \(^3\text{He} \) cryostat. For this temperature, a proximity Ti/Au bilayer is a possible combination. Important parameters for obtaining...
Fig. 1. \(R-T \) curves at two bias currents for a TES-A sample on the 500 nm-thick membrane. The \(T_c \) value without the self-heating effects is 0.388 K.

2. Experiment

Our X-ray microcalorimeters consist of bilayer TESs of Ti(60 nm) and Au(40 nm), Au absorbers with a thickness of 300 nm, Nb leads, and polycrystalline silicon nitride (SiN\(_x \)) membranes. All layers were deposited by RF-sputtering. The size of the TESs and the absorbers were 1.0 x 0.5 mm\(^2\) and 0.3 x 0.3 mm\(^2\), respectively. The calorimeters were fabricated on two types of membranes with sizes of 1.5 x 1.5 mm\(^2\) (TES-A), and 1.5 x 1.0 mm\(^2\) (TES-B). The \(G \) values of TES-A and TES-B were evaluated at a membrane thicknesses of 500, 750, and 1000 nm.

Resistance versus temperature (\(R-T \)) curves of the TESs were measured in a \(^3 \)He cryostat by the lock-in technique, sweeping \(T \) at a rate of below 0.5 mK/S. The \(G \) values were obtained by the following procedure. \(T \) is governed by the differential equation of

\[
C \frac{dT}{dt} = RI^2 - K(T^n - T_b^n)
\]

(3)

where \(K \) is a material and geometry-dependent parameter [3]. When the \(T_b \) is close to the \(T \), Eq. (3) can be approximated by

\[
C \frac{dT}{dt} = RI^2 - G(T - T_b)
\]

(4)

where \(G \) is expressed by

\[
G = nKT \left(T_b \right)^{n-1}
\]

In our experiments, the \(C \) value is typically of the order of \(10^{-12} \), \(dT/dt \) is less than 0.5 mK/S, and \(n \) is 4 for SiN\(_x \) membranes in a surface-scattering dominant case [5]. Therefore, the left-hand side of Eq. (4) leads to a value in the order of between \(10^{-16} \) and \(10^{-15} \). This is negligibly small, so that the Joule-heating balances with the heat flow to the bath. As a result, Eq. (4) can be reduced to

\[
RI^2 = G(T - T_b).
\]

(5)

The TES becomes the superconducting state at different \(T_b \) values, depending on bias currents, because of Joule-heating effects. From the \(R-T \) curves at two bias currents, two different \(T_b \) values are obtained at the same \(R \) value just before the superconducting transition. By inserting these \(T_b \) values into Eq. (5), the \(G \) value can be calculated.

3. Results and discussion

A typical example of the Joule-heating effects on the \(R-T \) curves of a TES-A sample on the 500 nm-thick membrane is shown in Fig. 1.

It is seen that at 10 \(\mu \)A the TES becomes superconducting at the \(T_b \) lower than that at 900 nA because of the Joule-heating. By using Eq. (5), the \(G \) value of this calorimeter is calculated to be 9.7 n W/K. The \(G \) values of the other calorimeters on the membrane with different thickness were obtained by the same procedure.

Each TES has a slightly different \(G \) value between 0.38 and 0.47 K and the \(G \) depends on \(T \), so that the \(G \) values are not appropriate for representing the influence of the calorimeter geometry on the thermal properties. Therefore, the \(K \) values were hereafter used instead of the \(G \) values. Fig. 2 shows the dependences of \(K \) on the membrane thickness for TES-A and TES-B.

A general trend of \(K \) value to increase with increasing the membrane thickness is observed.
The thickness dependence of K is caused by the reduction of the membrane cross-section. It should be noted that the slope of K with respect to the thickness is greater for the case of TES-B than the case of TES-A. This difference may show the effects of the membrane shapes, but systematic experiments are necessary.

Next, we estimate the performance of our calorimeter. The smallest G and K values were 4 nW/K and 18 nW/K for the TES-B sample on the 500 nm-thick membrane. This TES has a normal resistance R_n of 0.7 Ω, a T_c value of 0.383 K, a C value of 10 pJ/K, and an α value of 500. According to Eq. (1) and (2), this microcalorimeter is expected to have an energy resolution of 7.0 eV and a response time of 65 μs for the 6-keV X-rays. The intrinsic X-ray detection efficiency is estimated to be more than 20%.

4. Conclusion

We made the TES calorimeters consisting of the Ti/Au bilayer TESs with a thickness of 100 nm, the Au absorbers with a thickness of 300 nm, the Nb leads, and the SiN$_x$ membranes. The G values of the microcalorimeters were evaluated by a simple method using R--T curves. The thermal properties of the TESs depend on the membrane thickness and size. However, since even the smallest G value is considerably larger than the value for the proper operation of the calorimeters, the G value should be made smaller. Therefore, we plan to fabricate thinner SiN$_x$ membranes or to create a bridge-like membrane structure to reduce the heat flow to the bath at a relatively high temperature of \sim 0.4 K.

Acknowledgements

The authors would like to thank Dr. J. Itoh, Dr. K. Ishii, Dr. A. Shoji, Dr. P. Fons and the members of the Advanced Metrology group for their support in the fabrication of the TESs.

References