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ABSTRACT
This paper describes a multi-task learning approach to joint ex-
traction (fundamental frequency (F0) estimation) and separation of
singing voices from music signals. While deep neural networks
have been used successfully for each task, both tasks have not been
dealt with simultaneously in the context of deep learning. Since
vocal extraction and separation are considered to have a mutually
beneficial relationship, we propose a unified network that consists
of a deep convolutional neural network for vocal F0 saliency esti-
mation and a U-Net with an encoder shared by two decoders spe-
cialized for separating vocal and accompaniment parts, respectively.
Between these two networks we introduce a differentiable layer
that converts an F0 saliency spectrogram into harmonic masks in-
dicating the locations of harmonic partials of a singing voice. The
physical meaning of harmonic structure is thus reflected in the net-
work architecture. The harmonic masks are then effectively used as
scaffolds for estimating fine-structured masks thanks to the excel-
lent capability of the U-Net for domain-preserving conversion (e.g.,
image-to-image conversion). The whole network can be trained
jointly by backpropagation. Experimental results showed that the
proposed unified network outperformed the conventional indepen-
dent networks for vocal extraction and separation.

Index Terms— Melody extraction, F0 estimation, singing voice
separation, deep learning, multi-task learning

1. INTRODUCTION

A singing voice is one of the most influential elements of music
[1]. Accordingly, the estimation of its fundamental frequency (F0)
(a.k.a. vocal extraction or melody extraction) [2] and singing voice
separation (a.k.a. vocal separation) [3] have been actively investi-
gated in the field of music information retrieval (MIR). The state-of-
the-art studies have successfully used deep neural networks (DNNs)
for vocal extraction [4–7] and separation [8–16]. Bittner et al. [5],
for example, proposed a multi-F0 estimation method based on a
deep convolutional neural network (CNN) that estimates an F0 saliency
spectrogram from a music spectrogram in the constant-Q transform
(CQT) domain, and they applied that method to vocal extraction.
Jansson et al. [12] used a deep CNN variant with skip connections
called a U-Net [17] for estimating a soft mask spectrogram used
for separating a vocal spectrogram from a music spectrogram in the
short-time Fourier transform (STFT) domain.

This work was supported in part by JST ACCEL Grant Number JPM-
JAC1602 and JSPS KAKENHI No. JP17K12721 and No. 19H04137.

Input OutputNetwork

freq. (2048)

freq. (2048)

freq. (360)

time (512)

freq. (360)

time (512)

time (512)

freq. (2048)

time (512)

time (512)

freq. (2048)

time (512)

Neural

harmonic

structure

renderer

Vocal

Accomp.

separation

network

F0 salience

estimation

network

HCQT

Harmonic structure

STFT

F0 saliency map

Vocal mask

Accompaniment mask

Figure 1: Our multi-task learning architecture consisting of a CNN
for vocal extraction and another CNN for vocal separation, between
which a neural harmonic structure renderer converts an estimated
F0 saliency spectrogram into a harmonic spectrogram in a differen-
tiable manner for guiding vocal separation.

The mutually beneficial relationship between vocal extraction
and separation has recently been leveraged for improving the per-
formances of both tasks. Cabañas-Molero et al. [18], for example,
proposed a three-step method that performs rough vocal separation
based on stereo information, autocorrelation-based vocal extraction,
and F0-based vocal separation. Hsu et al. [19] proposed a tan-
dem algorithm that iterates vocal extraction and separation based
on signal processing techniques. To mitigate the error propagation
problem of such a cascading approach, Durrieu et al. [20] took a
machine-learning approach to joint vocal extraction and separation
based on source-filter nonnegative matrix factorization (NMF). Mu-
tually beneficial integration of DNN-based vocal extraction and sep-
aration, however, has not been achieved yet.

In this paper we propose a unified DNN that effectively com-
bines the deep CNN [5] with the U-Net [12] for joint vocal extrac-
tion and separation (Fig. 1). A basic way of connecting these two
networks is to warp the frequency scale of an F0 saliency spectro-
gram estimated by the CNN, stack it on a mixture spectrogram, and
feed the two-channel spectrogram into the U-Net. This approach,
however, does not incorporate the physical meaning of an F0, i.e.,
the fundamental knowledge that an F0 indicates an interval between
equally spaced harmonic partials, into the unified DNN. An essen-
tial research question here is how to parameterize such knowledge
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Figure 2: A deep CNN architecture for F0 saliency estimation. The
input to each layer is batch normalized. The ReLUs are used as the
activation functions of all layers except for the final layer, which
uses a sigmoid function to limit the values of F0 saliency to [0, 1].

as a component of the DNN in such a way that the whole DNN can
be optimized with standard backpropagation based on the chain rule
of the partial derivatives with respect to individual layers.

In the field of speech processing and computer vision, the sta-
ble behavior of methods based on fundamental physics has been
re-evaluated recently and these methods have been implemented
as differentiable layers of DNNs for backpropagation-based super-
vised training. The neural beamformer [21–23], for example, is a
speech enhancement technique that can be combined with DNN-
based speech recognition in a jointly trainable manner. Since the
classical beamformer is based on linear filtering, it can be imple-
mented as a differentiable layer that converts a noisy speech spec-
trogram into a clean speech spectrogram by using the spatial infor-
mation of speech and noise accurately estimated by a DNN. The
neural renderer [24] is a rasterization technique that renders 2D im-
ages from a 3D polygon mesh in a differentiable manner and can be
used for DNN-based 3D reconstruction from 2D images.

Inspired by these studies, we propose a neural harmonic struc-
ture renderer that enriches the F0 information estimated by the deep
CNN [5] for effectively informing the U-Net [12]. Specifically, an
F0 saliency spectrogram is thresholded and converted into a purely
harmonic spectrogram indicating the locations of harmonic partials
through a differentiable layer that reflects the physical meaning of
harmonic structure. The harmonic spectrogram is then used as a
scaffold for estimating fine-structured vocal and accompaniment
spectrograms thanks to the excellent capability of the U-Net for
domain-preserving conversion (e.g., image-to-image conversion).
The two DNNs and the parameters of the neural renderer (a salience
threshold and weights of harmonic partials) can be optimized jointly
with backpropagation through the unified DNN.

The main contribution of this study is to propose a physically
founded layer for connecting DNN-based vocal extraction and sep-
aration in a differentiable manner. Our study is the first attempt to
jointly improve the performances of both tasks by leveraging their
mutually relationship in the context of deep learning. We experi-
mentally show that the proposed renderer is reasonably designed.

2. PROPOSED METHOD

We use a deep CNN [5] for F0 saliency estimation (Fig. 2) and use
a multi-task extension of the U-Net [12] for vocal and accompani-
ment separation (Fig. 3). These networks are connected by a neural
harmonic structure renderer (Fig. 4).

2.1. Problem specification
Let XSTFT ∈ RF×T

+ and XHCQT ∈ RC×T×M
+ respectively be the

STFT and harmonic CQT (HCQT) [5] magnitude spectrograms of
a music signal, where T , F , C, and M are the number of frames,
that of linear frequency bins, that of log-frequency bins, and that of
channels. In this paper, XSTFT and XHCQT are computed with the
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Figure 3: A U-Net architecture for vocal and accompaniment sepa-
ration. The input to each layer is batch normalized. Leaky ReLUs
with leakiness 0.2 are used in the encoder and standard ReLUs are
used in the decoder.

librosa library from each channel of a stereo music signal sampled
at 44.1 kHz. The STFT is calculated by using a Hann window of
4096 points with a shifting interval of 1024 points (F = 2048). The
HCQT is computed with 60 bins per octave (20 cents per bin) over
six octaves from the lowest frequency of 36.7 Hz (C = 360). The
M channels of XHCQT are obtained by shifting the original CQT of
the music signal by −0.5, 0, 1, 2, 3, and 4 octaves (M = 6). Both
spectrograms are normalized for each song so that the maximum
value is 1. For training, the STFT and HCQT spectrograms of a
whole musical piece are divided into overlapping segments with a
fixed length of T = 512 with a shifting interval of 256 samples.

Given XSTFT and XHCQT, our goal is to jointly estimate an F0
saliency map YF0 ∈ RC×T

+ in the log-frequency domain and vo-
cal and accompaniment magnitude spectrograms Yvoc and Yacc ∈
RF×T

+ in the linear frequency domain. For vocal extraction (F0 es-
timation and vocal activity detection (VAD)), we apply a manually
specified or automatically learned threshold to YF0. For singing
voice separation, Yvoc and Yacc are converted to the time-domain
signals, by reusing the phase information of XSTFT. For supervised
training, we assume that a ground-truth F0 saliency map ŶF0 ∈
RC×T

+ and ground-truth vocal and accompaniment spectrograms
Ŷvoc and Ŷacc ∈ RF×T

+ are available.

2.2. Vocal extraction and separation

The vocal extraction network takes XHCQT as input and outputs
YF0 through five convolutional layers (Fig. 2). Based on [5], the
first and second layers have 128 and 64 (5, 5) filters, respectively,
the following two layers each have 64 (3, 3) filters, and the final
layer has 8 (71, 3) filters. At each layer, the stride size is set to 1,
and the zero padding is used for keeping the shape of the input. The
input to each layer is batch normalized, and each output is passed
through a rectified linear unit (ReLU). The final layer uses a sigmoid
function to map output of each bin to the range [0, 1].

The vocal separation network takes XSTFT as input and outputs
vocal and accompaniment mask spectrograms Mvoc and Macc ∈
RF×T

+ by using harmonic structure information Z ∈ RF×T
+ (Sec-

tion 2.3) and calculate Yvoc and Yacc as follows:

Yvoc = Mvoc �XSTFT, Yacc = Macc �XSTFT, (1)

where � indicates the element-wise product, and the vocal and ac-
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Figure 4: The neural harmonic structure renderer. This network has as parameters p that emphasizes the F0 saliency map and ω and σ that
characterize W to convert the F0 saliency map to a map representing harmonic structure.

companiment masks, Mvoc and Macc, are soft and in [0, 1].
We extend the U-Net architecture for multi-task learning in which

the bottleneck is branched (Fig. 3). We preliminarily found that the
extension of adding the decoder for accompaniment separation was
effective. Unlike [12], the network takes as input a stack of XHCQT
and Z of (2048, 512, 2), which is passed through eight convolu-
tional layers to yield a latent representation of (8, 2, 512) while
halving the horizontal and vertical dimensions and doubling the
numbers of channels. The filter size, stride size, and zero-padded
size are set to 8, 2, and 3, respectively. The output of the encoder is
batch normalized and passed through Leaky ReLUs with 0.2 leaki-
ness. The vocal and accompaniment decoders use batch normaliza-
tion, strided deconvolution with ReLUs, and 50% dropout for each
of the first three layers, as in [12].

2.3. Neural harmonic structure renderer
The neural harmonic structure renderer with trainable parameters
converts an F0 saliency map YF0 ∈ RC×T

+ into a harmonic spec-
trogram Z ∈ RF×T

+ in a differentiable manner by using a dictio-
nary of harmonic spectra W ∈ RF×C

+ . This renderer can reflect
the physical meaning of an F0, i.e., what the harmonic structure is.

The rendering consists of two steps: thresholding and conver-
sion (Fig. 4). Time-frequency bins with low salience values are
ignored by a ReLU with a cut-off value p as follows:

ȲF0 = ReLU(YF0 − p1)� (1� (1− p1)), (2)

where � indicates the element-wise division, ȲF0 ∈ RC×T
+ is a

thresholded F0 saliency map, and 1 is the all-one matrix. Then ȲF0
is converted to Z as follows:

Z = WȲF0, (3)

where each column of W is represented as a weighted sum of Gaus-
sian functions placed on the integral multiples of an F0 as follows:

Wfc =

Kc∑
k=1

ωk exp
−(f − k · F0(c))2

2σ2
k

, (4)

where ωk and σ2
k are respectively the weight and variance of the

k-th Gaussian function, F0(c) is a function that converts an log-
frequency bin index c ∈ [1, C] (integer) into a linear-frequency bin

index (real value), and Kc is set to a maximum value for each c
such that KcF0(c) does not exceed the Nyquist frequency. p, ω =
{ωk}Kk=1, and σ = {σk}Kk=1 are the parameters of the renderer that
are learned from training data.

2.4. Joint supervised training

The cost function C of the whole network is the sum of two cost
functions Cext and Csep defined for the vocal extraction and separa-
tion networks, respectively, as follows:

C = Cext + Csep, (5)

where

Cext = CrossEntropy(ŶF0,YF0), (6)

Csep = |Ŷvoc −Yvoc|+ |Ŷacc −Yacc|. (7)

Note that ŶF0 is obtained as a Gaussian-blurred version of a pure
binary salience spectrogram as proposed in [5]. The integrated net-
work is trained with the Adam optimizer [25].

3. EVALUATION

This section reports experiments conducted for evaluating the per-
formances of vocal extraction and separation.

3.1. Experimental conditions

The proposed joint method was compared with the conventional in-
dependent methods, i.e., deep CNN (Fig. 2) [5] for vocal extraction
and the multi-task learning extension of the U-Net (Fig. 3) [12]
for vocal and accompaniment separation. The U-Net takes as input
only XHCQT of (2048, 512, 1), unlike Fig. 3.

To verify the effectiveness of the neural harmonic structure ren-
derer, three layers that connect the vocal extraction and separation
networks were tested.

(1). Fully connected layer (FC): The elements of W were treated
as independent parameters to be optimized instead of using
the explicit harmonic parameterization (4).

(2). F0 component renderer (F0): W was obtained as a dictio-
nary of F0 components by using (4) with Kc = 1.
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Table 1: Experimental results of joint vocal extraction and separation with different connections of the deep CNN [5] and the U-net [12] with
an F0 detection threshold pe = 0.1. The numbers in parentheses are results obtained with a threshold pe = p.

Method Connection Updating Vocal F0 estimation [%] Vocal activity detection [%] Separation [dB]
W p Overall Raw pitch Raw chroma F-measure Recall Precision Vocal Accomp.

Deep CNN [5] NA 80.6 79.6 81.4 86.6 92.1 82.7 — —
U-Net [12] — — — — — — 2.74 9.43
FC-W Fully connected

layer
X 80.0 80.9 81.9 86.9 93.2 83.0 3.91 9.90

FC-Wp X X 79.3 (77.9) 80.6 81.7 86.2 (85.7) 93.4 81.7 4.12 10.0
F0

F0
component

renderer

79.5 80.0 81.1 85.7 92.1 81.5 3.51 9.71
F0-W X 80.1 80.6 82.2 86.3 93.2 82.1 3.49 9.45
F0-p X 79.5 (55.8) 80.4 81.3 86.0 (75.1) 93.1 80.2 3.72 9.79
F0-Wp X X 79.8 (75.4) 80.2 81.9 86.2 (84.1) 92.8 82.8 3.66 9.63
HS

Harmonic
structure
renderer

80.4 80.5 81.9 86.8 93.1 83.0 3.98 9.98
HS-W X 78.8 80.6 82.3 85.9 93.6 80.0 3.98 10.1
HS-p X 80.9 (82.6) 79.7 81.1 86.8 (87.2) 92.2 83.7 3.94 9.91
HS-Wp (ours) X X 80.5 (82.8) 83.0 84.0 87.5 (89.2) 95.0 82.9 4.52 10.2

(3). Harmonic structure renderer (HS): W was obtained as a dic-
tionary of harmonic patterns by using (4).

The parameters of these layers were treated as follows:
(a). The conversion matrix W was randomly initialized or its pa-

rameters ω and σ were initialized with ωk = 1 and σk = 10
for every k and then optimized (indicated by “-W”). Other-
wise, ω = 1, σ = 10, and p = 0.5 were used.

(b). The threshold p was initialized with p = 0.5 and updated
(indicated by “-p”). Otherwise, p = 0.5 was used.

For evaluation, the MedleyDB dataset [26] and the RWC Music
Database [27] were used. The data consisted of 157 songs, 100 from
the RWC dataset and 57 from the MedleyDB dataset. We chose the
57 songs that contain vocals with a melody role and for which F0
annotations exist. To evaluate performance by 5-fold cross valida-
tion, the 157 songs were randomly divided into three groups of 31
songs and two groups of 32 songs. mir eval [28] was used for com-
puting the source-distortion-ratio (SDR) for vocal separation and
several evaluation metrics for vocal extraction. These scores were
calculated on each channel for each song, and the average scores
over all pieces were then calculated. In vocal F0 estimation, the
error tolerance was set to a half semitone (50 cents). To evaluate
the performance of VAD, the recall and precision rates and the F-
measures were also calculated.

3.2. Experimental results
Table 1 shows the median values of the SDR and the F0 evalua-
tion metrics for the 157 songs. The SDR was computed for both
vocal separation and accompaniment separation. To evaluate F0s,
we first estimated F0s from an F0 saliency map. At each frame of
an F0 saliency map, a frequency that exceeded a threshold pe and
took the maximum value was selected as an F0. In this paper, pe
was set to 0.1. Additionally, for more detailed evaluation, we cal-
culated two representative metrics (“Overall” for F0 estimation and
“F-measure” for VAD) with the threshold pe = p. The ground truth
F0s were also obtained from the ground truth F0 saliency maps in
the same way with pe = 0.1.

With the exception of the “Overall” for F0 estimation and the
“Precision” for VAD, results of the proposed method were better
than those of all the previous and comparative methods. This sug-
gests that a vocal extraction network and a vocal separation network
could be conjoined effectively.

In cross validation the mean optimized p was 0.087 for FC-
Wp, 0.019 for F0-p, 0.037 for F0-Wp, 0.233 for HS-p, and 0.176

W (FC-Wp) W (HS-Wp)

30050
1

1

200

200 1 200

30050

Figure 5: The left figure shows a W of FC-Wp, which is randomly
initialized and updated. The right figure shows a W of HS-Wp,
updating Gaussian parameters ω and σ.

for HS-Wp. By using the optimized p for the thresholding, better
performance could be obtained under the HS-p and the HS-Wp, but
there were also cases where the performance decreased (HS-Wp,
F0-p, and F0-Wp). These results imply that we could improve our
method by designing p optimization to minimize the loss of F0 es-
timation.

Examples of the optimized conversion matrix Ws for FC-Wp
and HS-Wp are shown in Figure 5. The FC-Wp acquired a conver-
sion to harmonic structure automatically, but much noise remains.
The harmonic structure is obtained only in the range where the vocal
F0 is frequently observed and in the lower harmonic components.
In contrast, W in HS-Wp represents clean harmonic structures,
which may have contributed to the performance improvement.

4. CONCLUSION

In this paper we propose a neural network architecture that jointly
performs vocal extraction and separation for polyphonic music sig-
nals. We confirmed its effectiveness experimentally. All parameters
of the proposed network connected by a differentiable renderer can
be optimized simultaneously by backpropagation.

While the ground-truth F0s and singing and accompaniment
signals were used for completely supervised training in our exper-
iment, semi-supervised training would in theory be feasible when
some ground-truth data are missing. We also plan to deal with un-
voiced utterances and make effective use of phase information to
reduce the distortion of a separated singing voice.
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“Singing voice separation from stereo recordings using spatial
clues and robust F0 estimation,” in AEC Conference, 2011.

[19] C. L. Hsu, D. Wang, J. R. Jang, and K. Hu, “A tandem algo-
rithm for singing pitch extraction and voice separation from
music accompaniment,” IEEE Trans. Audio, Speech, Lang.
Process, vol. 20, no. 5, pp. 1482–1491, 2012.

[20] J. Durrieu, B. David, and G. Richard, “A musically motivated
mid-level representation for pitch estimation and musical au-
dio source separation,” IEEE J. Sel. Topics Signal Process.,
vol. 5, no. 6, pp. 1180–1191, 2011.

[21] T. N. Sainath, A. Narayanan, R. J. Weiss, E. Variani, K. W.
Wilson, M. Bacchiani, and I. Shafran, “Reducing the compu-
tational complexity of multimicrophone acoustic models with
integrated feature extraction,” in Interspeech, 2016, pp. 1971–
1975.

[22] B. Li, T. N. Sainath, R. J. Weiss, and K. W. Wilson, “Neu-
ral network adaptive beamforming for robust multichannel
speech recognition,” in Interspeech, 2016, pp. 1976–1980.

[23] T. Ochiai, S. Watanabe, T. Hori, J. R. Hershey, and X. Xiao,
“Unified architecture for multichannel end-to-end speech
recognition with neural beamforming,” IEEE Journal of Se-
lected Topics in Signal Processing, vol. 11, no. 8, pp. 1274–
1288, 2017.

[24] H. Kato, Y. Ushiku, and T. Harada, “Neural 3D mesh ren-
derer,” in CVPR, 2018, pp. 3907–3916.

[25] D. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in ICLR, 2015, pp. 1–15.

[26] R. M. Bittner, J. Salamon, M. Tierney, M. Mauch, C. Can-
nam, and J. P. Bello, “MedleyDB: A multitrack dataset for
annotation-intensive MIR research,” in Proc. Int. Soc. Music
Inf. Retrieval Conf., 2014, pp. 155–160.

[27] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC
music database: Popular, classical, and jazz music databases,”
in Proc. Int. Soc. Music Inf. Retrieval Conf., 2002, pp. 287–
288.

[28] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon, O. Nieto,
D. Liang, , and D. P. W. Ellis, “mir eval: A transparent im-
plementation of common mir metrics,” in ISMIR, 2014, pp.
367–372.

159


