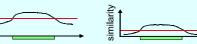

A Chorus-Section Detecting Method for Musical Audio Signals

Introduction

• time

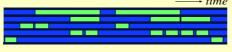

Previous Work

[Bartsch and Wakefield, 2001][Cooper and Foote, 2002][Logan and Chu, 2000] Only extract a single segment from several chorus sections Detect a repeated section of a given length as the most representative of a song Did not address the problem of detecting all the chorus sections in a song identifying both ends of the chorus sections Not able to deal with modulated repetition Previous music-summarization methods [Peeters, Burthe, and Rodet, 2002][Dannenberg and Hu, 2002] Did not identify both ends of chorus sections Not able to deal with modulated repetition

□ It is rare for repeated sections

to be exactly the same change of change of accompaniments modulation

- Problem 1: acoustical features and similarity
 - Typical power spectrum and MFCC features are liable to change considerably
- Problem 2: repetition-judgment criterion
 - · Appropriate criterion of the similarity for judging the repetition depends on the song



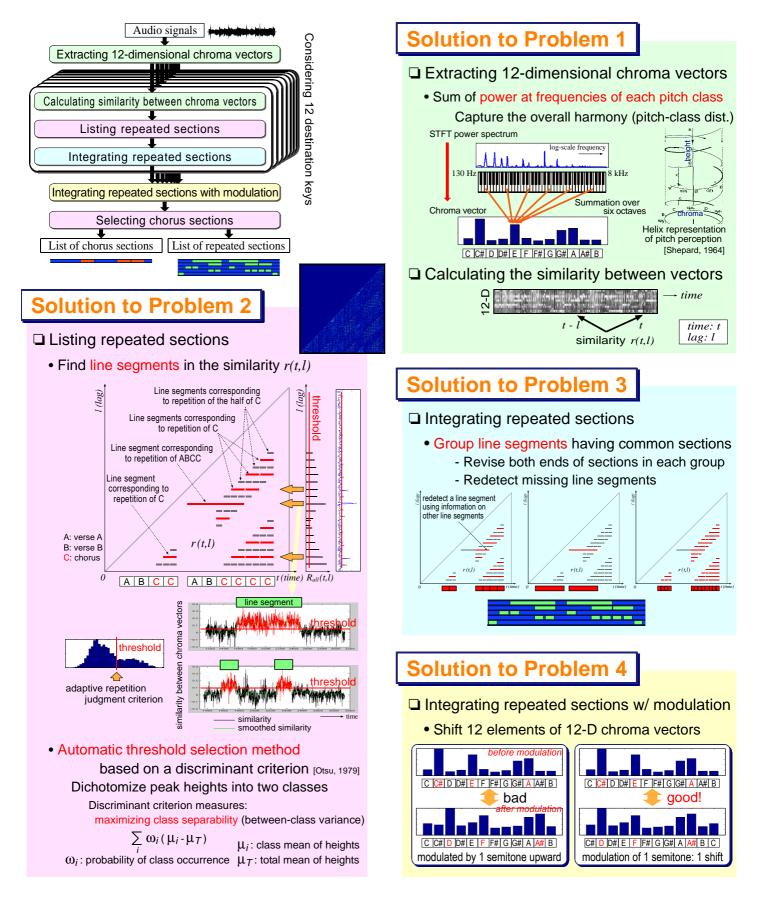
- Problem 3: integrating repeated sections
 - Identify both ends by examining mutual

relationships among various repeated sections

- Problem 4: detecting modulated repetition
 - Acoustic features generally undergo a significant change after modulation (key change)

Basic idea

2. Output the chorus-like group appearing frequently


Real-time output

- List of chorus sections
- Intermediate-result list of repeated sections Usually reflect the music structure of the song ex) repetition of "verse A → verse B → chorus"

Masataka Goto 1,2

¹"Information and Human Activity," PRESTO, JST ²National Institute of Advanced Industrial Sci. and Tech. (AIST)

Overview of RefraiD

Selecting Chorus Sections

Evaluate chorus possibility for each group

of sections is many reliability of section is high

- length of section is long

 \sum (reliability of section) $\log \frac{(\text{length of section})}{(\text{constant})}$

- Three assumptions
 - 1. Chorus has an appropriate length
- (7.7- 40 sec)
- 2. When there is a long repeated section, the end of it is likely to be the chorus section
- 3. When a section has half-length repeated sub-sections, it is likely to be the chorus section

Experimental Results

Conditions

Results

- Tested on 100 songs from "RWC Music Database: Popular Music" RWC-MDB-P-2001 No. 1 - 100 [Goto et al., 2002]
- Correct chorus sections were labeled manually Develop a music-structure labeling editor
- F-measure: harmonic mean of recall & precision rates Judged to be correct if F-measure > 0.75

F-measure = $\frac{2RP}{R+P}$ Recall (R) = $\frac{\text{total length of correctly detected chorus sections}}{\text{total length of correct chorus sections}}$

Precision (P) = total length of correctly detected chorus sections total length of detected chorus sections

• 80 songs out of 100 were correct (F-measure mean: 0.938)

Modulation detection	0	X	0	X
Use of assumptions 2 & 3	0	0	Х	Х
# of songs (out of 100)	80	74	72	68

Summary

- Propose the RefraiD method
 - Regard the most repeated sections
 as the chorus sections in popular music
 - Detect all the chorus sections
 - with their start and end points
 - Detect modulated chorus sections, which previous methods could not detect
 - Robust enough to deal with
 real-world audio signals in real time

2003/10/20 WASPAA 2003 poster