
DeployGround:
A Framework for Streamlined Programming

from API Playgrounds to Application Deployment
Jun Kato, Masataka Goto

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan, {jun.kato, m.goto}@aist.go.jp

var app = require('express').express();
app.set('view engine', 'pug');
app.get('/time', function (req, res) {
 var SW = require('songle-widget');
 var p = new SW.Player(options);
 res.render('index', { "t": p.position });
});

Songle Player
Current time:
10443 [ms]

In this tutorial, you will learn how to write a Node.js-based web server that hosts a “master”
client and returns the HTML code that renders a video player serving as a “slave” client.

Code editor

Execution results

Songle Player
Current time:
10443 [ms]

Deployed applications

Learn Develop Deploy

Conventional tutorials

DeployGround

Programming environments

Save and deploy (or download)
2) adaptive boilerplate

Import
3) reversible software engineering

Live Programming
1) pseudo-runtime environment

User
A

User
B

Fig. 1. The DeployGround framework features 1) a pseudo-runtime envi-
ronment, 2) an adaptive boilerplate, and 3) a reversible software engineering
feature for interactive coding tutorials, which altogether streamlines learning
APIs on playgrounds and developing and deploying applications.

Abstract—Interactive web pages for learning programming
languages and application programming interfaces (APIs), called
“playgrounds,” allow programmers to run and edit example codes
in place. Despite the benefits of this live programming experience,
programmers need to leave the playground at some point and re-
start the development from scratch in their own programming
environments. This paper proposes “DeployGround,” a frame-
work for creating web-based tutorials that streamlines learning
APIs on playgrounds and developing and deploying applications.
As a case study, we created a web-based tutorial for browser-
based and Node.js-based JavaScript APIs. A preliminary user
study found appreciation of the streamlined and social workflow
of the DeployGround framework.

Index Terms—Coding tutorials; online learning; API play-
ground; live programming; programming experience

I. INTRODUCTION

It is not easy for programmers to learn new programming
languages and application programming interfaces (APIs).
Prior research has extensively investigated how to design
learnable languages [1] and APIs [2], but only recently has
the research community started to discuss the effectiveness of
the online learning resources for coding [3], such as inter-
active tutorials, web references, massive open online courses

Author copy distributed at the author’s website.

(MOOCs), educational games, and creative platforms. Web
references and MOOCs courses such as API documentations
and step-by-step introductions are often provided in read-only
formats, in that they consist of text and optional multimedia
content, such as images of input and output data and screen
recordings of programming environments. To try out the tuto-
rial content, learners need to switch back and forth between
the tutorial and their programming environments.

Recent web-based tutorials avoid this frequent context
switching by incorporating code editors into web pages, allow-
ing the learners to practice live programming with the language
or API without installing anything on their computers. A set
of such features is often called a “playground,” because it
constitutes a sandboxed environment in which the learners
can play with the target language or libraries (e.g., Khan
Academy [4], TypeScript [5], and Vimeo API [6]).

Although the playground approach has significant advan-
tages over the conventional read-only tutorial, programmers
developing applications need to leave the web-based play-
grounds and restart the development in their own programming
environments. This tedious transition is usually handled by
the learners and is not supported by the tutorials. This paper
proposes DeployGround, a framework for creating web-based
tutorials that streamlines learning APIs on playgrounds and
developing and deploying applications (Figure 1).

II. RELATED WORK

This section introduces prior work on web-based coding
tutorials. More thorough reviews of the related work including
research on executable documents [7], [8] and live program-
ming [9]–[13] can be found on the web1.

While there is much work on creating tutorials for various
purposes [14]–[17], there is only a handful of work specialized
in creating interactive coding tutorials. Harms et al. explored
automatic generation of interactive step-by-step tutorials by
transforming each sentence of example codes into a step [18].
Tutoron [19] allows one to write micro-explanations of code
and allows learners to read them automatically inserted next to
example code on the web. Codepourri [20] allows annotation
of the history of program executions through which learners
can navigate to learn the program behavior. Our work does
not provide tools for creating a new kind of tutorials as these

1DeployGround website. https://junkato.jp/deployground

https://junkato.jp/deployground

do but instead presents a framework that addresses limitations
of existing web-based coding tutorials for learning APIs.

As discussed in the introduction, many online tutorials
present read-only content that programmers can read, watch,
and sometimes discuss with other learners but cannot interac-
tively run and edit. However, there is an increasing number
of interactive coding tutorials that provide code editors with
which programmers can run and edit example code. In terms
of the implementation, they can be roughly divided into three
categories (Figure 2).

The first category (Figure 2 (1)) is for learning client-side
web technologies such as HTML/JavaScript/CSS and utilizes
the JavaScript eval() function and/or HTML5 sandboxed
inline frames (Iframe). For instance, W3Schools [21] pro-
vide a JavaScript code editor next to the preview pane, in
which the code gets executed in the Iframe. The eval()
and Iframe implementations are very simple and provide
quick response to the user edits, but both are vulnerable to
malicious code that can crash the browser (such as infinite
loops). Furthermore, this category cannot handle programming
languages the browser cannot interpret.

The second category (Figure 2 (2)) is for learning how to
use the character-based user interface (CUI) and how to build
CUI programs. It provides each user access to a lightweight
virtual machine (VM) on the server, such as a Docker con-
tainer. For instance, the C programming course in Tutorials
Point [22] provides access to the GCC compiler and allows
the user to compile and run the program. Codecademy [23]
provides access to a console of a Linux-based VM and allows
programmers to test CUI commands. npm [24], the package
repository for Node.js libraries, allows the user to test libraries
within the browser. Although this approach is flexible and can
safely run any code, it is usually slow because of its high
computational cost and the latency between the server and
client. To make matters worse, all visitors to the web pages
need to share the computing resources, which are usually
limited owing to the running cost, resulting in even slower
responses.

Our work and many live programming environments on
the web fall in the third category (Figure 2 (3)), in which
the user code gets executed in an interpreter. The interpreter
is implemented in JavaScript and runs on a web browser.
This approach is slightly slower than the Iframe method
because of the interpreter overhead but significantly faster

Virtual
Machine
on the
server

2

Iframe element

1

Interpreter
on the
web
browser

3

Fig. 2. Three implementation-based categories of interactive coding tutorials.

than the VM-based method because everything runs on the
client computer without network or VM overhead. Because
the user code is always executed under the supervision of the
host interpreter, malicious code can be detected in a practical
manner, and it is much safer than the eval() and Iframe
methods. The execution is often more controllable than that
in the VM method because there is no black box in the code
execution process. Our work implements a pseudo-runtime
environment that emulates the behavior of a server machine
or a microcontroller with a thin interpreter layer and wrapped
APIs of a fixed set of libraries.

III. BRIEF REVIEW OF EXISTING TUTORIALS

In this section, we use a JavaScript API called “Songle Sync
API [25]” as a representative example of modern APIs and
briefly introduce the previous version of its web-based tutorial.
Then, based on the review and additional analysis of other
popular tutorials, we identify four limitations of the existing
interactive coding tutorials, each of which contributed to the
design of the DeployGround framework.

A. Representative Example API: Songle Sync API

The Songle Sync API allows hundreds of devices to play
visual and physical computing performance synchronized with
music playback (Figure 3). We chose it as a representative
example of modern APIs for the following reasons.

• It is provided for JavaScript, which according to the
annual report from the social coding platform GitHub was
the most popular programming language in 2017 [26].

• Its has been actively developed since its initial release in
August 2017.

• It supports both web browsers and physical devices such
as the Raspberry Pi [27], reflecting the diverse application
domain of modern APIs.

• It involves multiple (sometimes >100) clients over the
Internet with real-time communication and handles com-
plex data, making its behavior a non-trivial example of
API behavior.

• It provides a large number of methods and properties (73
as of April 2018).

B. Songle Sync API Tutorial

The previous version of the Songle Sync API tutorial
links to the API documentation and provides step-by-step
explanations of the concepts used in the API. In the later
steps, programmers can not only read but also modify the

Fig. 3. Example applications made with Songle Sync API [25]—a web
browser-based one (left) and Node.js-based ones (right; actuator modules
controlled by Raspberry Pi devices).

example code and try calling the API within the web page that
executes code in an Iframe element. This is a typical tutorial
implementation in the second category (Figure 2 (1)), which
can be used to prototype a single HTML page containing
HTML/JavaScript/CSS code.

C. Limitations of Existing Tutorials

1) Ephemeral Code: Example code can be modified, but
the modified code is ephemeral. Once the programmer leaves
the tutorial, it is gone. The transience of the code prevents
learners from continuously growing their codebases and gain-
ing ownership of the code they edit.

Existing tutorials, such as W3Schools, allow one to down-
load the code, but the downloaded code cannot be imported
again. DS.js [10] allows the code to be stored in the query
parameter of the URL but limits the size of the stored code.
Codecademy tutorials and other tutorials that provide a VM
instance to each user can keep the session between tutorial
steps, but the session cannot be exported to nor imported from
a local machine.

2) Toy Sandbox or Expensive Sandbox: Existing web-
based tutorials tend to suffer from the issues related to the
sandbox on which the user code runs. For instance, consider
providing a tutorial for building Node.js-based applications.
Tutorials simply utilizing IFrame or eval() do not allow
the programmer to edit and test the JavaScript code for the
Node.js environment.

Tutorials that use virtual machines, in contrast, can theoret-
ically host the Node.js-based applications. But, running VM
instances is computationally (and thus financially) expensive,
so many tutorial creators would be unable to provide sufficient
computational resources for fluid programming experience.
In addition, it is difficult to gain meaningful debugging in-
formation when using a virtual machine. Furthermore, there
is no way to emulate physical computing devices such as a
Raspberry Pi device with a blinking LED.

3) No Support for Deployment nor Social Interaction: With
many existing web-based tutorials, the learner can download
the edited code as a single HTML file. Although the down-
loaded file can be loaded into a web browser, recent web
browsers prohibit executing JavaScript in local files to prevent
security risks. There are usually no instructions on how to
deploy the code to the HTTP server. Deploying server-side
code such as a Node.js-based project is more complex, but
typical API tutorials only show text-based instructions or point
to external resources that explain how to set up servers.

In addition, the learner needs to learn the content alone. The
authors of the tutorial provide example code and nothing more.
There is no platform support to collect all of the variations
created by previous learners, which could potentially serve as
new tutorial content for new learners. Nor is there any way
to connect with other learners, who could help the learner
with respect to the tutorial content. Social interactions in
online learning have been extensively studied in the context
of MOOCs as in [28] and [29], but there is not much prior
research on how to augment API tutorials with social features.

IV. DEPLOYGROUND FRAMEWORK

We propose the DeployGround framework (Figure 1),
which addresses the limitations discussed above by revising
the interaction design of the existing tutorials. This section
provides an overview of the revised Songle Sync API tutorial
and explains the key features of the tutorial’s framework.

The revised tutorial website (Figure 4) allows the learners to
play with APIs, those for prototyping HTML/JavaScript/CSS
applications as well as Node.js applications, save project files
in GitHub, and deploy the files to public web servers—all
without leaving the tutorial website. Additionally, its social
features help the user learn from concrete examples.

A. Framework that Covers All Tutorial Steps

The framework provides a unified workspace throughout all
of the tutorial steps—each code editor in the steps corresponds
to a different file in the workspace, and each file can load
other files with the require function, whose implementation
is provided by the pseudo-runtime environment. We borrow
the concept of the workspace from integrated development
environments (IDEs), and in terms of implementation, the
tutorials in the DeployGround framework are built on top of
the web-based IDE.

With this support for a continuous session throughout the
tutorial, we expect the ephemeral code to become perma-
nent, written incrementally by programmers confident of their
progress. Unlike the previous version that provided each step
almost independently, the revised version makes all steps
relevant to each other. For instance, the previous version forced
the learner to input string tokens for the API calls in each step,
but the revised version makes it possible to create a JavaScript
file that is shared among all steps.

B. Pseudo-Runtime Environment

The framework implements a pseudo-runtime environment
that enables quick execution and debugging of the code written
for the deployment target—in the case of the Songle Sync
API, a Node.js environment. It is written in a client-side
native language (JavaScript for web browsers) and interprets
the target language (JavaScript for the Node.js runtime) with

(Static files)(Node.js projects)

Heroku
http://....herokuapp.com/...

RawGit
http://cdn.rawgit.com/...

GitHub GitHub GistOnline storage

Tutorial content
(Static HTML/CSS/JavaScript files)

Deployment target

Tutorial developers

Tutorial users

DeployGround (tutorial system)

var app = require('express').express();
app.set('view engine', 'pug');
app.get('/time', function (req, res) {
 var SW = require('songle-widget');
 var p = new SW.Player(options);
 res.render('index', { "t": p.position });
});

Songle Player
Current time:
10443 [ms]

In this tutorial, you will learn how to write a Node.js-based web server that hosts a “master”
client and returns the HTML code that renders a video player serving as a “slave” client.

Code editor

Execution results

Fig. 4. Overview of the tutorial system implementation, on which tutorial
content such as the Songle Sync API tutorial [25] is built.

partial support for the APIs of the default libraries (Node.js
libraries such as fs for loading local files and require for
loading npm packages).

In the revised tutorial, an emulated web browser or a figure
of the Raspberry Pi device is shown next to the editor, both
of which render the responses produced by the user code.
When the programmer interacts with the emulated browser, the
pseudo-runtime environment handles requests to the browser
by emulating the execution of the Node.js code. Although the
emulation is not perfect, it returns responses almost instantly
because there is no network latency and the emulation layer
is drastically thinner than that of a VM-based method. We
expect the emulation to satisfy the needs of learners quickly
experimenting with example code. When unsupported APIs
are called, the tutorial shows error messages and a link to the
supported APIs. It also shows typical errors such as execution
timeout without freezing the browser.

C. Adaptive Boilerplate

When the programmer wants to leave the tutorial and
continue the application development, the user code in the
tutorial cannot be naively executed in the programmer’s en-
vironment. Because the framework is in charge of emulating
the deployment target, it is aware of the transformation that
wraps the user code with some boilerplate. For instance,
package.json is needed for a Node.js project.

With this support for the adaptive boilerplate, the revised
tutorial provides next to every code editor a download button
that allows the user to download an archive file containing the
transformed user code, boilerplate files, and a text file with
instructions on how to install an IDE and the Node.js binary
and how to run a command (npm install) that installs
dependent Node.js libraries.

Furthermore, next to the download button is a deploy
button that deploys the relevant files to the target server.
Currently, static files such as HTML/JavaScript/CSS files are
saved on a GitHub Gist [30] server and served through its
unofficial content delivery service called RawGit [31], and
Node.js project files are saved as a GitHub repository and
deployed to a PaaS provider called Heroku [32]. After the
deployment, the programmer can use a web-based IDE such
as Cloud9 [33] to continue the application development.

D. Reversible Software Engineering

The framework facilitates social interactions between learn-
ers who visit the tutorials. It utilizes a social coding platform,
GitHub, to store the user code. Although it is usually difficult
to reverse-engineer deployed web applications, applications
developed within the framework can be made reversible by
design. We call this reversible software engineering.

The adaptive boilerplate feature in the revised tutorial not
only adds the ordinary boilerplate code but also hyperlinks to
the tutorial page. By following the hyperlinks, the programmer
can start the tutorial from scratch. Additionally, the program-
mer can optionally import the corresponding GitHub Gist or
GitHub repository data into the tutorial. During the loading

process, the project importer strips the boilerplate added by
the exporter. The deployed applications thus become a new
set of examples from which future learners can benefit.

V. PRELIMINARY USER FEEDBACK

As a preliminary study to gain initial qualitative user
feedback, we asked three professional software engineers,
two computer science researchers, and twenty-four university
students to use the revised Songle Sync API tutorial. We asked
the professional engineers and researchers to compare their
experience in this use with their prior experience using web-
based tutorials, and we asked the students to spend two days
using the tutorial and developing applications.

All the participants appreciated the streamlined experience
from the playground to deployment. While ordinary web-based
tutorials are targeted to a single developer, we observed the
university students instantly sharing and boasting about their
developed applications, supporting the social aspect of our
framework. Other representative insights relevant to future
work are discussed below.

1) Potential Applications: While the DeployGround frame-
work has been tested for sandboxing only a web server and
Internet of Things devices, there were enthusiastic expecta-
tions regarding its potential applications. For instance, the
participants requested interactive tutorials for development
frameworks for iOS and Android devices and for APIs for
machine learning applications.

These expectations stemmed from the high initial cost of
trying out the frameworks and APIs. In particular, installing
and uninstalling a framework, preparing not only a server but
also datasets for testing APIs, and looking for a variety of
example codes are tedious.

2) Demands for Architectural Visualizations: A recurring
request from the participants was for more explicit visu-
alization of the workflow supported by the DeployGround
framework. While the automated project export and import
processes were considered extremely helpful, the participants
wanted to know more about what is happening behind the
scene. In particular, those who did not know the concept of
PaaS wanted to see a figure like Figure 4, which shows the
relationships between the tutorial, GitHub, and Heroku.

3) Limitation and Potential Extension: Given that our ap-
proach emulates the target rather than hosting it, there is an
inherent limitation that was observed during the user study.
For instance, there were complaints about convenient but
unsupported APIs. We are aware of such APIs and clearly state
in the tutorial that further developments should be done on a
web-based integrated development environment, the transition
to which should be very smooth thanks to the project exporter
feature. Future work should also be done on instantly notifying
the users of unsupported APIs—e.g., showing errors when
unsupported APIs are typed in the code editor.

ACKNOWLEDGMENT

This work was supported in part by JST ACCEL Grant
Number JPMJAC1602, Japan.

REFERENCES

[1] A. Stefik, S. Hanenberg, M. McKenney, A. Andrews, S. K. Yellanki,
and S. Siebert, “What is the Foundation of Evidence of Human
Factors Decisions in Language Design? An Empirical Study on
Programming Language Workshops,” in Proceedings of the 22nd
International Conference on Program Comprehension, ser. ICPC ’14.
New York, NY, USA: ACM, 2014, pp. 223–231. [Online]. Available:
http://doi.acm.org/10.1145/2597008.2597154

[2] M. P. Robillard, “What Makes APIs Hard to Learn? Answers from
Developers,” IEEE Softw., vol. 26, no. 6, pp. 27–34, Nov. 2009.
[Online]. Available: http://dx.doi.org/10.1109/MS.2009.193

[3] A. S. Kim and A. J. Ko, “A Pedagogical Analysis of Online
Coding Tutorials,” in Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education, ser. SIGCSE ’17. New
York, NY, USA: ACM, 2017, pp. 321–326. [Online]. Available:
http://doi.acm.org/10.1145/3017680.3017728

[4] “Computer Programming — Computing — Khan Academy,” accessed
April 1, 2018. [Online]. Available: https://www.khanacademy.org/
computing/computer-programming

[5] “TypeScript Playground,” accessed April 1, 2018. [Online]. Available:
https://www.typescriptlang.org/play

[6] “Vimeo API Playground,” accessed April 1, 2018. [Online]. Available:
https://developer.vimeo.com/api/playground

[7] F. Perez and B. E. Granger, “IPython: A System for Interactive
Scientific Computing,” Computing in Science and Engg., vol. 9, no. 3,
pp. 21–29, May 2007. [Online]. Available: http://dx.doi.org/10.1109/
MCSE.2007.53

[8] C. N. Klokmose, J. R. Eagan, S. Baader, W. Mackay, and M. Beaudouin-
Lafon, “Webstrates: Shareable Dynamic Media,” in Proceedings of
the 28th Annual ACM Symposium on User Interface Software and
Technology, ser. UIST ’15. New York, NY, USA: ACM, 2015, pp. 280–
290. [Online]. Available: http://doi.acm.org/10.1145/2807442.2807446

[9] J. Kato, T. Igarashi, and M. Goto, “Programming with Examples to
Develop Data-Intensive User Interfaces,” Computer, vol. 49, no. 7, pp.
34–42, July 2016.

[10] X. Zhang and P. J. Guo, “DS.js: Turn Any Webpage into an Example-
Centric Live Programming Environment for Learning Data Science,”
in Proceedings of the 28th Annual ACM Symposium on User Interface
Software and Technology, ser. UIST ’17. New York, NY, USA: ACM,
2017.

[11] J. Kato and M. Goto, “f3.js: A Parametric Design Tool for Physical
Computing Devices for Both Interaction Designers and End-users,” in
Proceedings of the 2017 Conference on Designing Interactive Systems,
ser. DIS ’17. New York, NY, USA: ACM, 2017, pp. 1099–1110.
[Online]. Available: http://doi.acm.org/10.1145/3064663.3064681

[12] J. Kato, T. Nakano, and M. Goto, “TextAlive: Integrated Design
Environment for Kinetic Typography,” in Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems,
ser. CHI ’15. New York, NY, USA: ACM, 2015, pp. 3403–3412.
[Online]. Available: http://doi.acm.org/10.1145/2702123.2702140

[13] C. Roberts, M. Wright, J. Kuchera-Morin, and T. H”ollerer, “Gibber:
Abstractions for Creative Multimedia Programming,” in Proceedings of
the 22nd ACM International Conference on Multimedia, ser. MM ’14.
New York, NY, USA: ACM, 2014, pp. 67–76. [Online]. Available:
http://doi.acm.org/10.1145/2647868.2654949

[16] J. Kim, P. T. Nguyen, S. Weir, P. J. Guo, R. C. Miller, and K. Z.
Gajos, “Crowdsourcing Step-by-step Information Extraction to Enhance
Existing How-to Videos,” in Proceedings of the 32nd Annual ACM
Conference on Human Factors in Computing Systems, ser. CHI ’14.
New York, NY, USA: ACM, 2014, pp. 4017–4026. [Online]. Available:
http://doi.acm.org/10.1145/2556288.2556986

[14] P.-Y. Chi, S. Ahn, A. Ren, M. Dontcheva, W. Li, and B. Hartmann,
“MixT: Automatic Generation of Step-by-step Mixed Media Tutorials,”
in Proceedings of the 25th Annual ACM Symposium on User
Interface Software and Technology, ser. UIST ’12. New York,
NY, USA: ACM, 2012, pp. 93–102. [Online]. Available: http:
//doi.acm.org/10.1145/2380116.2380130

[15] P.-Y. Chi, J. Liu, J. Linder, M. Dontcheva, W. Li, and B. Hartmann,
“DemoCut: Generating Concise Instructional Videos for Physical
Demonstrations,” in Proceedings of the 26th Annual ACM Symposium
on User Interface Software and Technology, ser. UIST ’13. New
York, NY, USA: ACM, 2013, pp. 141–150. [Online]. Available:
http://doi.acm.org/10.1145/2501988.2502052

[17] B. Lafreniere, T. Grossman, and G. Fitzmaurice, “Community Enhanced
Tutorials: Improving Tutorials with Multiple Demonstrations,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’13. New York, NY, USA: ACM, 2013, pp. 1779–
1788. [Online]. Available: http://doi.acm.org/10.1145/2470654.2466235

[18] K. J. Harms, D. Cosgrove, S. Gray, and C. Kelleher, “Automatically
Generating Tutorials to Enable Middle School Children to Learn
Programming Independently,” in Proceedings of the 12th International
Conference on Interaction Design and Children, ser. IDC ’13.
New York, NY, USA: ACM, 2013, pp. 11–19. [Online]. Available:
http://doi.acm.org/10.1145/2485760.2485764

[19] A. Head, C. Appachu, M. A. Hearst, and B. Hartmann, “Tutorons: Gen-
erating context-relevant, on-demand explanations and demonstrations
of online code,” in 2015 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), Oct 2015, pp. 3–12.

[20] M. Gordon and P. J. Guo, “Codepourri: Creating Visual Coding Tutorials
Using a Volunteer Crowd of Learners,” in 2015 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), Oct 2015,
pp. 13–21.

[21] “W3Schools Online Web Tutorials,” accessed April 1, 2018. [Online].
Available: https://www.w3schools.com

[22] “Tutorials Point,” accessed April 1, 2018. [Online]. Available:
https://www.tutorialspoint.com

[23] “Codecademy,” accessed April 1, 2018. [Online]. Available: https:
//www.codecademy.com

[24] “npm,” accessed April 1, 2018. [Online]. Available: https://www.npmjs.
com/

[25] “Songle Sync Tutorial,” accessed April 1, 2018. [Online]. Available:
http://tutorial.songle.jp/sync

[26] “GitHub Octoverse 2017,” accessed April 1, 2018. [Online]. Available:
https://octoverse.github.com/

[27] “Raspberry Pi,” accessed April 1, 2018. [Online]. Available: https:
//www.raspberrypi.org/

[28] J. Kay, P. Reimann, E. Diebold, and B. Kummerfeld, “MOOCs: So Many
Learners, So Much Potential ...” IEEE Intelligent Systems, vol. 28, no. 3,
pp. 70–77, May 2013.

[29] C. G. Brinton, M. Chiang, S. Jain, H. Lam, Z. Liu, and F. M. F. Wong,
“Learning about Social Learning in MOOCs: From Statistical Analysis
to Generative Model,” IEEE Transactions on Learning Technologies,
vol. 7, no. 4, pp. 346–359, Oct 2014.

[30] “GitHub Gist,” accessed April 1, 2018. [Online]. Available: https:
//gist.github.com

[31] “RawGit,” accessed April 1, 2018. [Online]. Available: https:
//rawgit.com

[32] “Heroku,” accessed April 1, 2018. [Online]. Available: https:
//www.heroku.com

[33] “Cloud9,” accessed April 1, 2018. [Online]. Available: https://ide.c9.io

http://doi.acm.org/10.1145/2597008.2597154
http://dx.doi.org/10.1109/MS.2009.193
http://doi.acm.org/10.1145/3017680.3017728
https://www.khanacademy.org/computing/computer-programming
https://www.khanacademy.org/computing/computer-programming
https://www.typescriptlang.org/play
https://developer.vimeo.com/api/playground
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2007.53
http://doi.acm.org/10.1145/2807442.2807446
http://doi.acm.org/10.1145/3064663.3064681
http://doi.acm.org/10.1145/2702123.2702140
http://doi.acm.org/10.1145/2647868.2654949
http://doi.acm.org/10.1145/2556288.2556986
http://doi.acm.org/10.1145/2380116.2380130
http://doi.acm.org/10.1145/2380116.2380130
http://doi.acm.org/10.1145/2501988.2502052
http://doi.acm.org/10.1145/2470654.2466235
http://doi.acm.org/10.1145/2485760.2485764
https://www.w3schools.com
https://www.tutorialspoint.com
https://www.codecademy.com
https://www.codecademy.com
https://www.npmjs.com/
https://www.npmjs.com/
http://tutorial.songle.jp/sync
https://octoverse.github.com/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://gist.github.com
https://gist.github.com
https://rawgit.com
https://rawgit.com
https://www.heroku.com
https://www.heroku.com
https://ide.c9.io

	Introduction
	Related Work
	Brief Review of Existing Tutorials
	Representative Example API: Songle Sync API
	Songle Sync API Tutorial
	Limitations of Existing Tutorials
	Ephemeral Code
	Toy Sandbox or Expensive Sandbox
	No Support for Deployment nor Social Interaction

	DeployGround Framework
	Framework that Covers All Tutorial Steps
	Pseudo-Runtime Environment
	Adaptive Boilerplate
	Reversible Software Engineering

	Preliminary User Feedback
	Potential Applications
	Demands for Architectural Visualizations
	Limitation and Potential Extension

	References

