DeployGround:
A Framework for Streamlined Programming
from API Playgrounds to Application Deployment

Jun Kato, Masataka Goto
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan, {jun.kato, m.goto} @aist.go.jp

Learn

Conventional tutorials

Develop Deploy

Programming environments

DeployGround

Live Programming
1) pseud

Save and deploy (or download)
2) adaptive boilerplate

Songle Player

Current time:
10443 [ms]

ongle Pl
View engine s <
app.g ', functio

y; (" song
.\ SEVSIC I Execution results Deployed applications
Import
Uls‘er 3) reversible software engineering l ‘
I I
Fig. 1. The DeployGround framework features 1) a pseudo-runtime envi-

ronment, 2) an adaptive boilerplate, and 3) a reversible software engineering
feature for interactive coding tutorials, which altogether streamlines learning
APIs on playgrounds and developing and deploying applications.

Abstract—Interactive web pages for learning programming
languages and application programming interfaces (APIs), called
“playgrounds,” allow programmers to run and edit example codes
in place. Despite the benefits of this live programming experience,
programmers need to leave the playground at some point and re-
start the development from scratch in their own programming
environments. This paper proposes “DeployGround,” a frame-
work for creating web-based tutorials that streamlines learning
APIs on playgrounds and developing and deploying applications.
As a case study, we created a web-based tutorial for browser-
based and Node.js-based JavaScript APIs. A preliminary user
study found appreciation of the streamlined and social workflow
of the DeployGround framework.

Index Terms—Coding tutorials; online learning; API play-
ground; live programming; programming experience

I. INTRODUCTION

It is not easy for programmers to learn new programming
languages and application programming interfaces (APIs).
Prior research has extensively investigated how to design
learnable languages [[1]] and APIs [2], but only recently has
the research community started to discuss the effectiveness of
the online learning resources for coding [3]], such as inter-
active tutorials, web references, massive open online courses

Author copy distributed at the author’s website.

(MOOQCs), educational games, and creative platforms. Web
references and MOOCs courses such as API documentations
and step-by-step introductions are often provided in read-only
formats, in that they consist of text and optional multimedia
content, such as images of input and output data and screen
recordings of programming environments. To try out the tuto-
rial content, learners need to switch back and forth between
the tutorial and their programming environments.

Recent web-based tutorials avoid this frequent context
switching by incorporating code editors into web pages, allow-
ing the learners to practice live programming with the language
or API without installing anything on their computers. A set
of such features is often called a “playground,” because it
constitutes a sandboxed environment in which the learners
can play with the target language or libraries (e.g., Khan
Academy [4]], TypeScript [5], and Vimeo API [6]).

Although the playground approach has significant advan-
tages over the conventional read-only tutorial, programmers
developing applications need to leave the web-based play-
grounds and restart the development in their own programming
environments. This tedious transition is usually handled by
the learners and is not supported by the tutorials. This paper
proposes DeployGround, a framework for creating web-based
tutorials that streamlines learning APIs on playgrounds and

developing and deploying applications (Figure T).
II. RELATED WORK

This section introduces prior work on web-based coding
tutorials. More thorough reviews of the related work including
research on executable documents [7], [8] and live program-
ming [9]-[13] can be found on the welﬂ

While there is much work on creating tutorials for various
purposes [[14]]-[17]], there is only a handful of work specialized
in creating interactive coding tutorials. Harms et al. explored
automatic generation of interactive step-by-step tutorials by
transforming each sentence of example codes into a step [18]].
Tutoron [[19] allows one to write micro-explanations of code
and allows learners to read them automatically inserted next to
example code on the web. Codepourri [20]] allows annotation
of the history of program executions through which learners
can navigate to learn the program behavior. Our work does
not provide tools for creating a new kind of tutorials as these

IDeployGround website. https://junkato.jp/deployground


https://junkato.jp/deployground

do but instead presents a framework that addresses limitations
of existing web-based coding tutorials for learning APIs.

As discussed in the introduction, many online tutorials
present read-only content that programmers can read, watch,
and sometimes discuss with other learners but cannot interac-
tively run and edit. However, there is an increasing number
of interactive coding tutorials that provide code editors with
which programmers can run and edit example code. In terms
of the implementation, they can be roughly divided into three
categories (Figure 2).

The first category (1)) is for learning client-side
web technologies such as HTML/JavaScript/CSS and utilizes
the JavaScript eval () function and/or HTML5 sandboxed
inline frames (Iframe). For instance, W3Schools [21] pro-
vide a JavaScript code editor next to the preview pane, in
which the code gets executed in the 1frame. The eval ()
and Iframe implementations are very simple and provide
quick response to the user edits, but both are vulnerable to
malicious code that can crash the browser (such as infinite
loops). Furthermore, this category cannot handle programming
languages the browser cannot interpret.

The second category (2)) is for learning how to
use the character-based user interface (CUI) and how to build
CUI programs. It provides each user access to a lightweight
virtual machine (VM) on the server, such as a Docker con-
tainer. For instance, the C programming course in Tutorials
Point [22] provides access to the GCC compiler and allows
the user to compile and run the program. Codecademy [23]]
provides access to a console of a Linux-based VM and allows
programmers to test CUI commands. npm [24], the package
repository for Node.js libraries, allows the user to test libraries
within the browser. Although this approach is flexible and can
safely run any code, it is usually slow because of its high
computational cost and the latency between the server and
client. To make matters worse, all visitors to the web pages
need to share the computing resources, which are usually
limited owing to the running cost, resulting in even slower
responses.

Our work and many live programming environments on
the web fall in the third category (3)), in which
the user code gets executed in an interpreter. The interpreter
is implemented in JavaScript and runs on a web browser.
This approach is slightly slower than the Iframe method
because of the interpreter overhead but significantly faster

1
’ | Iframe element

®

,,,,, — Virtual
Interpreter Machine
= onthe on the
owser B o servr_|
browser

Fig. 2. Three implementation-based categories of interactive coding tutorials.

than the VM-based method because everything runs on the
client computer without network or VM overhead. Because
the user code is always executed under the supervision of the
host interpreter, malicious code can be detected in a practical
manner, and it is much safer than the eval () and Iframe
methods. The execution is often more controllable than that
in the VM method because there is no black box in the code
execution process. Our work implements a pseudo-runtime
environment that emulates the behavior of a server machine
or a microcontroller with a thin interpreter layer and wrapped
APIs of a fixed set of libraries.

III. BRIEF REVIEW OF EXISTING TUTORIALS

In this section, we use a JavaScript API called “Songle Sync
API [25]” as a representative example of modern APIs and
briefly introduce the previous version of its web-based tutorial.
Then, based on the review and additional analysis of other
popular tutorials, we identify four limitations of the existing
interactive coding tutorials, each of which contributed to the
design of the DeployGround framework.

A. Representative Example API: Songle Sync API

The Songle Sync API allows hundreds of devices to play
visual and physical computing performance synchronized with

music playback (Figure 3). We chose it as a representative
example of modern APIs for the following reasons.

It is provided for JavaScript, which according to the
annual report from the social coding platform GitHub was
the most popular programming language in 2017 [26].
Its has been actively developed since its initial release in
August 2017.

It supports both web browsers and physical devices such
as the Raspberry Pi [27], reflecting the diverse application
domain of modern APIs.

It involves multiple (sometimes =>100) clients over the
Internet with real-time communication and handles com-
plex data, making its behavior a non-trivial example of
API behavior.

It provides a large number of methods and properties (73
as of April 2018).

B. Songle Sync API Tutorial

The previous version of the Songle Sync API tutorial
links to the API documentation and provides step-by-step
explanations of the concepts used in the APIL. In the later
steps, programmers can not only read but also modify the

Fig. 3. Example applications made with Songle Sync API [25]—a web
browser-based one (left) and Node.js-based ones (right; actuator modules
controlled by Raspberry Pi devices).



	Introduction
	Related Work
	Brief Review of Existing Tutorials
	Representative Example API: Songle Sync API
	Songle Sync API Tutorial
	Limitations of Existing Tutorials
	Ephemeral Code
	Toy Sandbox or Expensive Sandbox
	No Support for Deployment nor Social Interaction


	DeployGround Framework
	Framework that Covers All Tutorial Steps
	Pseudo-Runtime Environment
	Adaptive Boilerplate
	Reversible Software Engineering

	Preliminary User Feedback
	Potential Applications
	Demands for Architectural Visualizations
	Limitation and Potential Extension


	References

