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Abstract
We present a novel concept audio–visual object removal in 360-degree videos, in which a target object in a 360-degree video
is removed in both the visual and auditory domains synchronously. Previous methods have solely focused on the visual aspect
of object removal using video inpainting techniques, resulting in videos with unreasonable remaining sounds corresponding
to the removed objects. We propose a solution which incorporates direction acquired during the video inpainting process into
the audio removal process. More specifically, our method identifies the sound corresponding to the visually tracked target
object and then synthesizes a three-dimensional sound field by subtracting the identified sound from the input 360-degree
video. We conducted a user study showing that our multi-modal object removal supporting both visual and auditory domains
could significantly improve the virtual reality experience, and our method could generate sufficiently synchronous, natural
and satisfactory 360-degree videos.

Keywords Audio–visual object removal · 360-degree video · Human perception · Signal processing · Virtual reality

1 Introduction

360-degree videos, or spherical panoramic videos, have
become popular among end-users thanks to consumer-level
360-degree cameras [9,19] aswell as video-sharingplatforms
that support 360-degree videos [4,7]. With the increas-
ing popularity of 360-degree videos, a new problem has
appeared: unlike traditional cameras with framing capabil-
ities, it is challenging for 360-degree cameras to capture
only focused subjects, and thus, the captured videos often
include unwanted objects such as passing cars. We thus con-
sider that the demand for removing unintentionally included
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objects from original videos, namely, object removal from
360-degree videos, has been increasing.

Removing specific targets from an image is a well stud-
ied topic within the field of computer vision and computer
graphics. Image inpainting can be used to remove a specified
target object visually from an original image and replace it
with the appearance of something else that fits the image (e.g.,
background) [1,2,11,23,28]. Recently, several methods have
been proposed that are capable of handling video clips rather
than just still images [25,26]. Nevertheless, to our knowl-
edge, only few papers [17,23] have discussed 360-degree
videos, and, more importantly, none of these methods take
auditory information into consideration. It is crucial that the
visual and auditory information remain well-synchronized
even after the object removal process; otherwise, a dispar-
ity between the visual and auditory domains could provide
unnatural experiences.

We propose a novel concept of audio–visual object
removal in 360-degree videos, in which a user-specified
object in the target 360-degree video is removed in both the
visual and auditory domains synchronously (see Fig. 1). The
key idea is to effectively incorporate information acquired
from the video inpainting process into the audio removal
process. This multi-modal approach can reduce mismatches
between visual and auditory domains, and we expect that
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Fig. 1 Concept of audio–visual object removal in 360-degree videos.
a For a 360-degree video with sounds in the standard 4-channel for-
mat, the user specifies a target object, that will be removed, in the initial
frame. In this case, a skateboardingmanwas chosen. bThe target object

is visually tracked across all frames, so that the sound generated by the
object is identified. c The target object is removed in both, the visual
and audio domains

it provides better viewer experiences of the resultant edited
videos compared with when the object is removed only in
the visual domain.

To achieve this concept, we present a method consisting
of two sequential subprocesses: the visual cue removal and
the auditory cue removal. During the visual cue removal pro-
cess, our method tracks the location of the target object in the
input video, crops a small area containing the tracked object,
and then removes the object by applying an existing video
inpainting technique [10] while taking care to keep temporal
consistency. During the audio removal process, our method
estimates directions of the sound sources in the spatial audio
data of the target video using a technique called Directional
Audio Coding (DirAC) [18], identifies the sounds generated
by the target object, and then synthesizes a spatial audio data
by subtracting the identified sounds. This target sound identi-
fication is enabledby thedirectional hint acquired in thevideo
cue removal process. Finally, our method combines the pro-
cessed visual and auditory information to produce a resulting
360-degree video, where a synchronized audio–visual object
removal is achieved.

To validate this concept, we captured multiple test scenes
in varied conditions and then conducted a user study using
these test scenes and our implementation. The result showed
that the proposed multi-modal audio–visual removal method
could offer satisfactory 360-degree videos for the test scenes.
It also indicated that the multi-modal approach could offer
better experiences than single-modal (i.e., visual- and audio-
only) ones.

To summarize, our contribution is two-fold:

– We propose a novel concept of audio–visual object
removal in 360-degree videos and amethod to implement
this concept. This is useful for users to remove uninten-
tionally included objects with sounds from 360-degree
videos.

– We validated our concept through a user study that
our audio–visual removal method is superior to single-

domain removal methods in terms of perceived synchro-
nization, naturalness and satisfaction.

2 Related work

2.1 360-Degree videos

As 360-degree cameras capture their surroundings omni-
directionally, someprojections are required to store the visual
information in traditional 2-dimensional video formats. The
equirectangular projection is the most used; however, there
are two difficulties when one applies typical image/video
processing techniques to the equirectangular format. First, it
inevitably results in severe distortion [23,27]. Second, step-
ping over the boundaries of an equirectangular projection
may lead to unexpected output [29]. Our method is designed
to handle these issues properly.

Special care must be taken with the audio as well as the
visual data. Many 360-degree cameras (e.g., [19]) capture
and store the surrounding soundscape as spatial audio for
immersive experiences. In practice, this is implemented using
the Ambisonics framework [6], in which the audio is stored
as a 4-channel audio data format, called B-format, and then
decoded for each speaker setting in play time. Our method
works with this format and thus is compatible with standard
360-degree cameras.

2.2 Image and video inpainting

Image inpainting is a technique for filling a “hole” on a target
image with a plausible and natural appearance, and it can be
used for object removal for images.Manymethods have been
proposed, including recent learning-based [1,11,23,28], par-
tial differential equation (PDE)-based [3], exemplar-based
[13], andwavelet transform-based [2]methods. However, the
distortion caused by equirectangular projection is prone to
poor results when directly applying these methods proposed
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for flat images. To copewith this issue for 360-degree images,
Upenik et al. [23] presented the approach of first undistort-
ing the area of interest, applying inpainting techniques, and
then projecting it back to the equirectangular representation.
However, their method requires manually specifying pixel-
perfect masks of the target object and also does not consider
frame consistency when applied to videos, which may pro-
duceflickering artifacts.We take a similar approach, for video
inpainting by incorporating SiamMask [25], which is an opti-
cal flow-based tracking algorithm. Kim et al. [10] proposed a
learning-based video inpainting method that maintains both
long-term and short-term consistency; however, theirmethod
only works with traditional 2-dimensional videos. We com-
bined Upenik et al. ’s method and Kim et al. ’s method
to remove a specified target object visually in 360-degree
videos.

2.3 Sound localization and separation

There are several approaches to separate sounds originat-
ing from different sources, including beamforming-based
[22], learning-based [5,8,14,15,20], and parametric-spatial-
sound-processing-based [12] approaches.

By taking the beamforming-based approach, Ruochen et
al. [21] realized an application called audio zoomingwith B-
format data. With multiple mono-microphone arrays, Nair
et al. [16] extended this idea to an audio–visual zooming
application that enhances the sound of a target object. The
idea of using both visual and auditory information is similar
to ours, but the purpose and necessary techniques are totally
different; they focused on enhancing the sound from a single
narrow area, not removing the specified sound completely.

Learning-based methods [5,8,14,15,20] have recently
been successful even for challenging scenes such as two
lecturers talking at similar frequencies. Morgado et al. [14]
proposed a method that separates individual sound sources
and localizes them in a 360-degree video. Yet, their applica-
bility is greatly restricted by the expensive cost of acquiring
a large amount of training data, and they cannot work well
when the training data do not contain scenes sufficiently sim-
ilar to the target scene.

DirAC [18,24] is one of the parametric-spatial-sound-
processing-based methods. This method separates the target
B-format data into several frequency bins with Short-Time
Fourier Transform (STFT) and a mel filter bank, and then
estimates parameters of the sound direction and sound dif-
fuseness for every frequency bin. Thus, this parametric
representation has the potential to be used for removing
specific auditory information if relevant parameters can be
appropriately identified.

Our audio removal process is built on the DirAC method
and utilizes the directional hints acquired from the video
inpainting process to identify the frequency bins that match

the target object direction and then remove the relevant audi-
tory information.

3 Method

This section describes the proposed method for an audio–
visual object removal in 360-degree videos. The input
consists of a 360-degree video with 4-channel audio (i.e.,
B-format) and a bounding box selection of the target object
in the initial frame. As shown in Fig. 2, our method con-
sists of two subprocesses: 360-degree video inpainting and
direction-based audio removal. To achieve a satisfying video
inpainting quality for equirectangular videos, our method
elaborately avoids distortions and inconsistencies across
video boundaries.With the help of the extracted accurate and
robust visual cues, it then identifies and removes the audio
of the target object from the original video.

3.1 360-Degree video inpainting

Directly applying existing video inpainting techniques to
equirectangular videos causes two specific problems. First,
compared to traditional 2-dimensional images, severe dis-
tortions caused by equirectangular projections will lead to
poor quality when directly applying 2-dimensional inpaint-
ing techniques. Second, naively splitting 360-degree images
into 2-dimensional images will lead to unconnected bound-
aries (see Fig. 3), which brings a wrong result in the object
tracking task. To solve the distortion problem in image
inpainting, our method crops an area of interest that con-
tains the target object, projects the cropped patch back to the
traditional 2-dimensional image, applies existing inpainting
techniques, and then restores the patch back to the area of
interest. Even though a similar idea is shared in [23], our
method achieves an automatic distorting process through all
frames instead of manually creating a distorting mask. To
automatically create such masks, our solution for boundary
inconsistency is essential, which is described as follows.

At first, once the target to be removed is specified as a
bounding box in the initial frame (t = 0), a mask of the target
at the initial frame is generated by SiamMask [25]. Then, our
method horizontally “rotates” the equirectangular panoramic
image at the next frame (t = 1), so that the center of mass
of the mask at t = 0 is located at the center of the rotated
image at t = 1. The rotated image is then used to generate
the mask of that frame (t = 1), and the generated mask is
then used to rotate the image at the next frame (t = 2).
Similarly, our method rotates every following frame in an
accumulative way to generate masks, by which our method
prevents the target object from moving across boundaries
and thus robustly tracks the target object. This process is
formally described as follows. The equirectangular image at
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Fig. 2 Workflowof ourmethod. In video processing,we begin by track-
ing the center of mass (CoM) of the target using SiamMask [25]. Then,
the area around the target is cropped. For this cropped video,DeepVideo
Inpainting [10] is then performed to remove the object. The inpainted
video is then returned to the original place. In audio processing, the 4-
channel audio data are first separated into several frequency bins. With
DirAC [18,24], the direction of the sound pressure of each frequency

bin is estimated. By using the direction obtained during the video pro-
cessing, the frequency bins that should be removed are identified, and
then an audio removal mask is created. Then, this mask is smoothed to
avoid noisy outputs. Finally, with this audio removal mask, an object-
removed 4-channel audio data are synthesized, and the audio data are
transformed back into time domains by inverse STFT (ISTFT)

Fig. 3 An example where special care is necessary in the perspective
of boundaries. The removed target (circled by a red line) steps over the
boundary of an equirectangular image (orange lines). In this case, visual
tracking does not work well

the t-th frame, It , is horizontally rotated to synthesize an
equirectangular image, I rott ,

I rott = Rotate

(
It ,

H

2
− ct−1

)
, (t = 1, 2, . . .), (1)

where H is the width of the equirectangular image, ct−1 ∈
[0, H − 1] is the horizontal position of the center of mass
of the mask at the (t − 1)-th (before-rotated) image, and
Rotate(I ,Δ) is an operator that synthesizes an image by
rotating the input image I by Δ (where Δ = H means a
360-degree horizontal rotation). Our method then generates
the mask at the t-th frame using I rott , instead of It .

Using the automatically generated masks across all
frames, our method then performs video inpainting while
considering the distortion issue to achieve a high-quality

Fig. 4 Video inpainting flow. a An area surrounding the target is
cropped and undistorted through all frames, and then a cropped video is
created. b The cropped video is inpainted by a video inpainting method.
c A mask area in a specific frame. d The result of the inpainting of the
cropped video. e The inpainted cropped video is substituted back to its
original place

output (see Fig. 4). To handle the distortion caused by
equirectangular projections, by tracking the center of the
masks through all frames, an area of interest based on the
maximumwidths andheights of themasks is cropped (Fig. 5).
hFOV (the field of view on the horizontal axis) and vFOV
(the field of view on the vertical axis) of the cropped patch
are calculated by

hFOV = h

H
× 360◦, (2)

vFOV = v

V
× 180◦, (3)
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Fig. 5 The cropping area is decided using the center ofmass and the size
of the mask. With the center of mass, the center point of the cropping
area is decided. With this size, the hFOV (field of view (FOV) on the
horizontal axis) and vFOV (FOV on the vertical axis), which is used for
undistorting the cropping area (see Fig. 4) are determined

respectively, where h and v are the maximum width and
height of the masks in all frames, and V denotes the height
of the equirectangular image. The center of the mask rep-
resents the directional information with two parameters:
θ (elevation-degree), φ (azimuth-degree). Using the track-
ing information, we calculated undistorted images for the
cropped area around the target mask to be able to apply the
2-dimensional video inpainting method. After the inpaint-
ing process, the processed patch is then placed back to the
original location in the equirectangular images.

It is worthmentioning that although visual artifacts caused
by inpainting techniques may not be as noticeable in tradi-
tional 2D formats, 360-degree videowith its nature of sharing
a limited resolution over all directions, aremore prone to such
a problem. Although it is beyond the scope of this work, we
believe the quality of our method can be greatly improved
with a better image inpainting algorithm.

3.2 Direction-based sound removal

To identify and separate the target audio source is a chal-
lenging task. In the case of audio input only, it is difficult
to identify the sound emitted by the target object. The pro-
posed method solves this problem by using the visual cues
in combination with 4-channel microphone data.

In the Ambisonics framework [6], 4-channel microphone
data (called A-format) are converted into four directional
components based on spherical harmonics (called B-format).
B-format data are represented as a tuple of four signals,
(w, x, y, z), where w is the omni-directional sound pres-
sure, and (x, y, z) are the left-right, front-back, and up-down
sound pressure gradients, respectively. Given a B-format
data, our method first performs the DirAC method [18]
to obtain a parametric representation of the spatial audio.

Specifically, DirAC separates a B-format audio data into sev-
eral frequency bins using STFT and mel filter bank, and then
estimates the primary sound direction of each bin by referring
to the instantaneous intensity vector Ik,n ∈ R

3 as follows.

Ik,n = 1

2
Re

(
Pk,nU∗

k,n

)
, (4)

Pk,n = wk,n, (5)

Uk,n = 1√
2Z0

(
xk,nex + yk,ney + zk,nez

)
, (6)

where k is the index of the frequency bins, n is the index
of the time steps, and Z0 is the acoustic impedance. The
complex values wk,n , xk,n , yk,n , and zk,n denote the results
of applying STFT to the signals w, x , y, and z in the B-
format, respectively. Moreover, ei ∈ R

3 represents the unit
vector in Cartesian coordinates, Re(·) is the real part of the
complex value, and (·)∗ is its complex conjugate. Refer to
[18] for details.

For an accurate estimation of the target direction, the
tracking result in the video inpainting process is available.
Comparing the directions which are based on the center of
mass from the video processing and the ones estimated by
DirAC, an audio-removal mask A is calculated via the fol-
lowing steps:

Ak,n =
{
0, if cos−1

(
r(θn ,φn)·Ik,n

‖Ik,n‖
)

< ψ,

1, otherwise,
(7)

where ψ is the threshold of the interior angle between the
visual and audio directions. θn and φn are the elevation and
azimuth, which indicate the estimated direction from the
video processing at time step n and r(θn, φn) is a directional
unit vector in the direction indicated by θn and φn . To obvi-
ate the artifact caused by instant changes between {0, 1}, the
smoothed mask Asmooth

k,n further smooths the acquired binary
masks with an average filter on the time axis as follows:

Asmooth
k,n = 1

s

� s
2 �∑

m=−� s
2 �

Ak,n+m, (8)

where s is the size of the window (here we assume s is an
odd number). After multiplying the frequency bins with the
smoothed mask, the B-format audio data, which were syn-
thesized, are finally transformed back into time domains by
ISTFT.

4 Experiments

In this section, we describe subjective studies conducted
for validating the concept of audio–visual object removal in
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Table 1 Scenes for the experiment

Scene Audio sources Removed target Movement Frequency Field Ambience

1 Speaker/skateboarder Skateboarder Dynamic Almost static Outdoor On (mainly birdsong)

2 Piano/maracas/violin Piano Static Dynamic Indoor Off

3 Speaker/speaker Speaker Dynamic Almost static Outdoor On (mainly birdsong)

Fig. 6 Video processing results of a certain frame of scenes in the main study. Left: scene 1, Middle: scene 2, Right: scene 3. Up: original input,
Down: visual removal output

360-degree videos. More specifically, our goal is to evaluate
the experience of object-removed 360-degree videos edited
in the visual and auditory domains synchronously by our
method compared to those edited in either the visual or audi-
tory domain only.

4.1 Apparatus and scenarios

We captured multiple scenes under varied conditions with a
360-degree camera equipped with a 4-channel microphone.
Specifically, we prepared three scenes to validate the con-
cept in different conditions: (1) a person plays a skateboard
around a speaker; (2) people play different musical instru-
ments; and (3) a man interrupts another one’s talk with his
voice. Details of each scene are described in Table 1. We
chose a variety of scenes in the perspectives of the change
of the target’s position, the change of the target’s frequency,
and the domain of audio sources. The original input scenes
and audio–visual removal output scenes are demonstrated in
Figs. 6 and 7. As highlighted in Table 1, the choice of each
experimental condition was motivated by the following rea-
sons: scene 1 investigates the effectiveness of the proposed
method against dynamically moving objects, scene 2 inves-
tigates the capability of removing audio sources with a wide
range of frequencies, such as musical instruments, and scene
3 investigates the performance of removing sounds from the
same auditory domain. Each video clip lasts approximately
15 s.

For capturing these video clips, we used RICOH THETA
V (30 frames-per-second in Full HD) as the 360-degree cam-
era and RICOH TA-1 (4 channels with a 48 kHz sampling
rate) as the microphone. In the experiments, we used a desk-
top computer with Intel i9-9900K and NVIDIA GeForce
RTX 2080Ti and HTC Vive Pro (refresh rate: 90 Hz; FOV:
110◦; resolution: 1440 × 1600) with its controller.

4.2 Pilot study

Before the main study, we conducted a pilot study. The pur-
pose of this pilot study was to empirically select appropriate
parameters in the audio removal processing. The parameters
to be determined were the number of frequency bins, the
threshold of the interior angle between the visual and audi-
tory directions of a target object, and the size of a smoothing
window. In this study, the combination of parameters was
empirically selected: {50, 100} for the number of frequency
bins, {20◦, 40◦, 60◦} for the threshold of the interior angle,
and {1, 3} for the smoothing window size. We recruited 7
participants, ages 22–51 (Mean = 27.7) without visual and
aural disorders in the pilot study. We asked each participant
to rate the top three audio clips in terms of their naturalness
out of 2 × 3 × 2 = 12 candidates generated using different
combinations of parameters for each scene. Based on these
votes, we selected the parameter combinations to be used in
the main study (see Table 2).
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Fig. 7 Audio processing results of omni-directional channel data w

as a representative of B-format in each scene in the main study. Left:
scene 1, Middle: scene 2, Right: scene 3. Up: original input, Middle:
audio removal mask, Down: audio removal output. The viridis color bar

expresses the STFTmagnitude. The gray color bar stands for the binary
value of the smoothed audio removalmask (0: identified frequency bins,
1: non-target’s frequency bins)

4.3 Main study

4.3.1 Goal

The specific goal of the main study is to evaluate whether
the audio–visual object removal in a 360-degree video is
preferable to single-domain (i.e., either auditory or visual)
removals through subjective user evaluation. Our hypothesis
is that audio–visual removal is the superior editing method
compared with one-domain removal from the perspectives
of synchronization, naturalness, and satisfaction.

4.3.2 Experimental design

We recruited 17 new participants, ages 21–28 (Mean = 23.2)
in the main user study. All of them have no visual and aural
disorders. Twelve of them had experienced virtual reality
technology before this experiment. Before the experiment
started, we briefly explained the tasks to the participants and

Table 2 The results of the pilot study

Scene Frequency
bins

Directiony
threshold

Smoothing
size

1 100 20◦ 3

2 50 40◦ 3

3 100 60◦ 3

These are the best sets of parameters for each scene

also how to use the controller. We allowed the participants to
take a break whenever they wanted to do so.

We compared three approaches that remove a target (a)
visually, (b) aurally, and (c) both of them synchronously from
360-degree videos. The order of the trials (a)–(c) and the
order of the scenes was randomized to cancel bias in the
results. Note that we showed the participants the original
video clips without any editing before showing the edited
videos, to simulate the real usage of editing the target object
out. For each trial, the participants were allowed to replay the
video as often as they wished to do so. After completing all
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Fig. 8 Results of the questionnaires in the main study. For each scene, the participants answered five questionnaires (Q1–Q5) three times with
different conditions (visual removal, audio removal, and removal of both)

Table 3 The average value (mean) and standard deviation (SD) for each scene and questionnaire

Scene Type Q1 Q2 Q3 Q4 Q5

Mean SD Mean SD Mean SD Mean SD Mean SD

1 Audio–visual removal 4.2 0.75 3.8 1.3 3.8 1.2 3.4 1.2 3.8 0.97

Visual removal 4.2 0.75 1.5 0.80 1.9 1.1 2.6 1.2 2.9 1.2

Audio removal 1.0 0.0 3.9 1.2 2.4 1.3 2.8 1.4 1.9 1.1

2 Audio–visual removal 4.1 0.70 3.8 0.97 3.2 1.1 3.1 0.97 3.1 0.92

Visual removal 3.9 1.0 1.2 0.75 1.2 0.53 1.7 0.92 1.8 0.66

Audio removal 1.1 0.24 3.5 1.2 1.7 0.99 2.4 1.4 1.7 0.99

3 Audio–visual removal 4.3 0.77 4.0 0.71 4.1 0.83 3.4 0.94 3.6 1.0

Visual removal 4.2 0.75 1.2 0.75 1.3 0.77 1.8 0.83 1.9 1.1

Audio removal 1.0 0.0 3.3 1.2 3.2 1.4 3.1 1.4 1.9 1.2

trials for each scene, we asked the participants to fill in the
following questionnaires with a 5-point Likert-scale (from 1:
Strongly disagree to 5: Strongly agree):

Q1: “The target was removed visually.”
Q2: “The target was removed aurally.”
Q3: “The view was synchronized with the sound.”
Q4: “This edited video looks and sounds natural.”
Q5: “I am satisfied with the result of this edited video.”

After all trials were completed, an additional semi-structured
interview was conducted for each participant.

4.3.3 Results of questionnaires

Figure 8 reports the results of the questionnaires in the main
study. The means and standard deviations (SD) of each scene
and question are summarized in Table 3. To evaluate whether
there are statistical differences in the scores between the con-

ditions (a) and (c), and between the conditions (b) and (c), we
performed the Wilcoxon signed-rank test since the data are
paired; the p values of the test are shown in Table 4. For Q1
(visual removal), the conditions of the visual removal (a) and
audio–visual removal (c) received high scores for all scenes.
For Q2 (audio removal), the conditions of audio removal
(b) and audio–visual removal (c) received high scores for
all scenes. For Q3 (synchronization), Q4 (naturalness), and
Q5 (satisfaction), the condition of audio–visual removal (c)
received higher scores than the other two conditions (a) and
(b).

In addition to the results reported in Table 4, we also
found significant differences in other data pairs as follows.
Between visual removal and audio removal, there are signifi-
cant differences in several cases. At scene2 and scene3, there
is a significant difference too between visual removal and
audio removal (scene 2: p = 0.040, scene 3: p = 0.0035).
There are significant differences among scenes too. In scene
1, visual removal received relatively high scores compared
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Table 4 The p value of each scene and questionnaire

Scene Value Q1 Q2 Q3 Q4 Q5

1 Against visual removal 1.0 < 0.001 0.0014 0.0021 0.0025

Against audio removal < 0.001 0.67 0.062 0.18 < 0.001

2 Against visual removal 1.0 < 0.001 < 0.001 0.0022 < 0.001

Against audio removal <0.001 0.28 0.0059 0.053 < 0.001

3 Against visual removal 1.0 < 0.001 <0.001 < 0.001 < 0.001

Against audio removal < 0.001 0.066 0.013 0.35 < 0.001

All values are compared with those of audio–visual removal (p values are shown in bold when they are smaller than 0.05)

with the other two scenes (between scene 1 and scene 2 at Q4:
p = 0.017, between scene 1 and scene 3 at Q4: p = 0.018,
between scene 1 and scene 2 at Q5: p = 0.0037, between
scene 1 and scene 3 atQ5: p = 0.0081). Between the outdoor
scenes (scene 1, and scene 3) and the indoor scene (scene
2), there is a tendency that users are more satisfied with
audio–visual removal outputs for outdoor scenes compared
with indoor scenes. For Q5, there are significant differences
(between scene 1 and scene 2: p = 0.047, between scene 2
and scene 3: p = 0.025).

The results of the Likert-scale questionnaires showed that
our multi-modal method could successfully provide bet-
ter experiences than the baselines. Although the number of
scenes was not large and their complexity was only moder-
ate, we believe that this reasonably confirms our hypothesis
that synchronized audio–visual removal is superior to single-
domain removal in terms of user experience.

4.3.4 Discussions

In Q3 (synchronization), Q4 (naturalness), and Q5 (satis-
faction), the condition of audio–visual removal surpassed
the visual removal for all scenes. According to the feed-
back given in the interview, confusing sounds coming from
nowhere are most commonly perceived for visual removal
(e.g., “When the target was removed only visually, I was
confused by a sound coming from a place where there was
nothing.”).However, as the participants had no idea of the tar-
get object’s original loudness (e.g., “Sometimes it is natural,
even if the target is removed only aurally because it is possi-
ble that the target did not generate any sounds.”), there were
no significant differences between the audio–visual removal
and the audio-only removal for all the scenes in the perspec-
tive of naturalness (Q4). In addition, differences in scene
properties seemed to lead to notable differences; as verified
by Q5, the scores of the audio–visual removal from the out-
door scenes (scene 1 and scene 3) were higher than those
from the indoor scene (scene 2). One possible reason is that
the outdoor scenes had more sound sources and also stronger
ambient sound (e.g., “Comparedwith indoor scenes, I did not
care about the quality of the audio removal output because

there is an ambient soundscape present outdoors.”). Besides,
as the target object’s sound was originally weak in scene 1,
the visual-only removal satisfied some of the participants,
and so the visual-only removal condition for scene 1 gained
significantly higher scores in Q4 and Q5 than those for the
other two scenes.

5 Limitations and future work

Our current implementation has several limitations. While
our method was successful for the scenes used in the exper-
iment, it does not work well for some more challenging
scenes. For example, for a scene containing an audio source
whose frequency is closer to that of the target object, our
method would fail in separating these sounds because our
method is based on STFT separation. Another challenging
case is to track the target visually and to remove only the
sound generated by the target, when the target and another
audio source pass each other. This is because our method
is based on optical-flow-based visual tracking, and there-
fore occlusion causes tracking errors and this direction-based
method used to identify the target sound results in not only
removing target sounds but also other audio sources close to
the target.

We used a 360-degree video and a 4-channel microphone
data this time. In video inpainting process, the limitation of
input video’s resolution with existing video inpainting meth-
ods amplifies the problem of visual artifacts in outputs. We
believe the quality can be easily improved with a better video
inpainting algorithm. In audio removal process, we plan to
improve the quality by using more channels or referring to
upcoming higher-quality audio separation and localization
methods. In this paper, the result of the estimation of audio
direction is not used in the process of estimating the direction
with visual cue. In the future, the feasibility of using audio-
directional information for visual tracking in difficult scenes
(e.g., the removed target is occluded) is worth investigating.
In addition, wewill consider trying audio inpainting (i.e., fill-
ing the edited soundscapewith plausible synthesized sounds)
instead of audio removal. Another future study would be to
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implement an end-user-friendly interface for audio–visual
removal. We validated the concept through the user study
with several test scenes. However, there are still rooms to
improve our method for more conditions considering daily
scenes. Therefore, we plan to add new scenes which include
challenging scenes and conduct comprehensive studies with
various complicated scenes taken by end users.

6 Conclusion

In this paper, we introduced a novel concept, the audio–
visual removal of unwanted objects in 360-degree videos.
We realized this concept using a two-stage approach. Instead
of solely removing visual cues, our method incorporated
visual information acquired in the video inpainting process
to eliminate corresponding auditory cues synchronously. Our
user study with several test scenes indicated that our multi-
modal approach could offer more synchronous, natural, and
satisfactory user experience. We envision conducting next
experiments against more challenging scenes to validate the
concept more extensively. In addition, we plan to propose a
higher quality method for broad range of potential applica-
tions in 360-degree video editing.
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