
The Visual Computer (2019) 35:1131–1142
https://doi.org/10.1007/s00371-019-01693-8

ORIG INAL ART ICLE

Precomputed optimal one-hopmotion transition for responsive
character animation

Yuki Koyama1 ·Masataka Goto1

Published online: 9 May 2019
© The Author(s) 2019

Abstract
Characters in interactive 3D applications are often animated by creating transitions from one motion clip to another in
response to user input. It is not trivial, however, to achieve quick, natural-looking transitions between two arbitrarymotion clips,
especially when the twomotions are dissimilar. To tackle this problem, we present a simple framework called optimal one-hop
motion transition, which creates quick, natural-looking transitions on the fly without requiring careful manual specifications.
The key ideas are (1) to insert a short intermediate motion clip, called a hop, between the source and destination motion
clips, and (2) to select such a hop motion clip and its temporal alignment in an optimal way by solving a search problem. In
the search problem, our framework tries to balance the naturalness of the resulting transitions and the responsiveness to user
input. This search can be precomputed and the results can be stored in a lookup table, making the runtime cost to play an
optimal transition negligible. We demonstrate that our framework is easily integrated into a widely used game engine, and
that it greatly improves the quality of transitions in practical scenarios.

Keywords Motion transition · Character animation · Motion graphs

1 Introduction

Interactive applications that control 3D characters in real
time have become increasingly popular in the contexts of
computer games, virtual environments, and even stage per-
formances by virtual singers. For such applications, a popular
current practice is to organize a character animation by using
a state machine [7,36], in which each state is typically asso-
ciated with a certain motion clip that should be played when
the character is in that state. When a state change occurs at
runtime (usually triggered by user input), amotion transition
(i.e., crossfading from one motion clip to another, often in
two seconds or less) is applied to the character. For this, a

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00371-019-01693-8) contains
supplementary material, which is available to authorized users.

B Yuki Koyama
koyama.y@aist.go.jp

Masataka Goto
m.goto@aist.go.jp

1 National Institute of Advanced Industrial Science and
Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba,
Ibaraki 305-8568, Japan

simple pose-space linear blending technique is typically used
because of its runtime efficiency. This approach only works
well, however, when the source and destination motion clips
are sufficiently similar; otherwise, it produces severe visual
artifacts, such as footskate from “standing with legs open” to
“standing with legs closed” and sudden, unexpected change
of momentum.

To avoid such unnatural transitions, current game engines
allow game designers to manually specify several parame-
ters, such as the blending duration (i.e., how many frames
to use for a transition) and the transition point (i.e., which
frame to use for the beginning of a transition), for every pos-
sible transition in the state machine [35]. There are several
problems, however, in this approach:

– When two motion clips are dissimilar, adjusting these
parameters is not very helpful; it is necessary tomanually
insert a state between the two states to play a short motion
clip (e.g., a leg-closingmotion). This greatly complicates
management of the state machine.

– As the frame at which the transition is triggered is not
predictable, it is not sufficient to define a single fixed
transition point for each motion clip. Ideally, the tran-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-019-01693-8&domain=pdf
https://doi.org/10.1007/s00371-019-01693-8


1132 Y. Koyama, M. Goto

Fig. 1 Example of our optimal one-hop motion transition (Top). Our
framework creates natural-looking, responsive motion transitions by
inserting an intermediate motion called a hop (yellow) between the
source (cyan) and destination (magenta) motions. It can produce a
natural-looking motion transition even for a case in which a naïve direct
transition exhibits severe visual artifacts (Bottom)

Fig. 2 Our one-hop motion transition design. Rather than directly vis-
iting the destination, our framework first visits a hop and then visits the
destination. Between the source and destination motion clips, it auto-
matically inserts an optimal hop selected by solving a search problem
in precomputation

sition point should be adaptively set for every possible
triggered frame.

To tackle these problems, we present a practical frame-
work called optimal one-hop motion transition. This frame-
work greatly improves the quality of transitions even when
the source and destination motions are dissimilar, as seen in
Fig. 1. It also optimizes the responsiveness for every possible
triggered frame and still maintains the simplicity of the state
machine management. Figure 2 illustrates our framework.
The key idea is twofold:

Fig. 3 Conceptual explanation of our one-hop approach. A naïve direct
motion transition often produces unacceptable motions during the tran-
sition. In contrast, our approach visits a hop,which is chosen so that both
the source-to-hop and hop-to-destination transitions are as acceptable
as possible

1. First, our framework automatically inserts a short, inter-
mediatemotion clip (called ahop) between the source and
destination motion clips. That is, it converts a transition
into two individual transitions (i.e., source to hop and hop
to destination). This one-hop approach has great poten-
tial to improve the acceptability of the resulting motion
transition as compared to the direct approach. Figure 3
provides an intuition of the reason for this: if we can
arrange a hop such that the two individual transitions are
both sufficiently natural, then the “path” of the overall
transition is likely to be within a manifold of “acceptable
motion”.1

2. Second, our framework selects the hopmotion clip and its
temporal alignment offset in an optimal way by solving
a search problem. In the search, the framework considers
both the naturalness (i.e., how natural the individual tran-
sitions look) and the responsiveness (i.e., how quickly the
overall transition finishes) of the resulting transitions and
balances the trade-off between these two objectives.

Our framework has several desirable features. First, the
search is precomputable; in precomputation, the system
searches for optimal transitions for every possible combi-
nation of a pair of motion clips and a triggered frame. At
runtime, the system dynamically retrieves an optimal tran-
sition for a triggered frame. As this requires only negligible
computation cost, it is feasible to use the framework in com-
putational resource-restricted applications. The framework
is also easily integrated into widely used game engines; we
demonstrate this by using Unity. In addition, the framework
does not assume either any special annotations to motion
clips or any special skeletal structures (e.g., a humanoid).

Our contributions are summarized as follows.

– Design of a framework for optimal one-hop motion tran-
sition, which improves the naturalness of transitions

1 Note that we use these quoted terms in this sentence informally.

123



Precomputed optimal one-hop motion transition for responsive character animation 1133

while maintaining the ease of control and necessary
responsiveness.

– Demonstrationof the framework’s practicality: the search
is precomputable, efficient at runtime, and easy to inte-
grate into a popular game engine.

2 Related work

Motion transition is a primitive problem in interactive char-
acter animation, and researchers have worked on this and
related topics for decades (e.g., [1,6,9,13,16,23,29,33,37]).
Our proposed framework can be seen as a variant of the
motion-graph-based approach [1,16,23], in that we consider
graphs with a specific structure (i.e., one-hop graphs) and use
techniques developed in that context. This section reviews
previous approaches from various points of view and clari-
fies the position of this work.

Motion graphs Motion-graph-based methods have been
intensively studied for years [1,9,16,23,34]. One common
problem of this approach is that it does not ensure sufficient
responsiveness: a sufficiently short path from the source state
to the destination state might not exist, and thus, the duration
for a transitionmight be unacceptably long (this problemwas
clearly described in [13]). In addition, it is difficult to explic-
itly specify the temporal alignment between the source and
destination motion clips. These problems make it difficult to
use motion graphs for interactive, precise character control.
Our framework, on the other hand, uses a designer-defined
state machine for intuitive control logic, and it incorporates
responsiveness into the search objective.

High-level motion synthesis Many offline motion synthe-
sizers or online motion controllers have been proposed to
animate characters by using high-level constraint specifica-
tions (such as semantic tasks to engage, directions or paths to
follow, and goal positions to reach) [10,16,20,21,24,27,34].
Even though many such methods have been proposed so far,
the state machine approach is still highly popular in inter-
active application development [7,36], probably because of
its simplicity and ease of control. We focus here on a prim-
itive problem in state-machine-based control: the transition
between two motion clips.

Motion matching In the game industry, a method called
motion matching has recently been developed [5,38]. That
method is similar to ours in that it searches for an optimal
motion clip and its time alignment in every necessary frame
to achieve high responsiveness. It is not designed, however,
for creating transitions between two motion clips.

Statistical models Learning a statistical motion model from
a captured dataset has been a recent trend [3,10,11,25,28].
While this approach is quite promising, it is not feasible

for individual game designers to construct a good statistical
model, understand its capability correctly, design game logic
based on it, write a script to control it at runtime, and fine tune
it if necessary. Thus, the state-machine-based approach still
seems more popular in practice than the statistical approach,
indicating a large demand for our framework.

Motion blending Motion blending is a technique to create
an interpolated motion from multiple motion clips and asso-
ciated blending weights. In the case of motion transition,
motion blending involves two motion clips (i.e., source and
destination) and a time-varying weight. Pose-space linear
blending has been widely used because of its simplicity and
runtime efficiency. To achieve higher quality, researchers
have investigated more sophisticated methods [15,30]. Our
focus is on how to choose motion clips to blend and align
them, and thus, arbitrary motion blending methods can be
used.

Motion naturalness Physical criteria are often applied to
enforce naturalness on motions, as in space-time optimiza-
tion [33] and in keyframe motion editing [18]. Another
popular approach is to use statistical models (e.g., [3]). In our
framework, we need to evaluate the naturalness of a blended
motion during a transition. As with previous motion-graph-
based methods (e.g., [9,16,37]), we assume that a transition
becomes smoother and thus more natural if its source and
destination motions are more similar.

Interactive motion transitions Several previous methods
specifically focused on interactive motion transitions (e.g.,
[2,6,13,29]). Among them, the method by Ikemoto et al. [13]
is probably the most similar to ours. Their method searches
for one- or multi-hop transitions to ensure the naturalness of
the resulting motions. One of the most notable differences
is in the handling of the duration of the overall transition;
while the method of Ikemoto et al. uses a fixed duration for
the overall transition (i.e., it always takes the same duration to
finish a transition, regardless of whether it is an “easy” tran-
sition or not), ours automatically adapts the duration of the
overall transition according to its “difficulty”. That is, our
framework considers not only naturalness but also respon-
siveness, unlike the previous one. In addition, the framework
incorporates the stay duration (i.e., the duration for which a
motion clip is played alone before beginning an individual
transition) into search variables, which enables it to find even
better (i.e., lower-cost) transitions. The way of storing pre-
computed results also differs between our method and that of
Ikemoto et al.; we store per-frame optimal solutions, which
is necessary for playing transitions with optimal responsive-
ness for every possible triggered frame. Note that their work
also presented some additional techniques such as cluster-
ing of motion segments for performance, time warping of
motions, and learning-based evaluation of motion natural-

123



1134 Y. Koyama, M. Goto

ness. We emphasize here that, although our framework is
extensible and able to incorporate most of their additional
techniques, for now we have not adopted those techniques
to keep our framework lightweight, easy to implement, and
intuitive for game developers and designers.

3 Optimal one-hopmotion transition

3.1 Problem setting and search variables

Our goal is to create a natural-looking transition from a
source motion Msrc to a destination motion Mdst. This tran-
sition should be responsive: the user triggers it at an arbitrary
frame ttrigger (e.g., via a gamepad), and the destinationmotion
should then be played as quickly as possible while main-
taining naturalness. We assume that a set of n motion clips
M = {M1, . . . ,Mn} (including Msrc and Mdst) is in mem-
ory at runtime, so that the clips are available as candidates
for hop motion clips.

We consider the case in which the temporal alignment
between the source and destination motion clips is hard-
constrained and cannot be alteredby the transition calculation
process. Note that satisfying this constraint is necessary for
many practical scenarios. For example, in a fighting action
game, a character might need to start playing a jump motion
clip in response to player input to avoid an opponent’s kick;
it is not acceptable in a typical game design if the tempo-
ral alignment offset of the jump motion clip relative to the
triggered frame is altered by the transition algorithm every
time. Another example is the case in which a character’s
movement has to be synchronized with a certain factor (e.g.,
background music for a dance character) in both the source
and destination states.

In precomputation, we search for optimal one-hop tran-
sitions for all possible triggered frames. Figure 4 illustrates
the problem setting of the search for a certain triggered frame
ttrigger, which involves the following unknowns:

– The index of the hop motion clip, i ∈ {1, . . . , n}.
– The temporal alignment offset of the hop motion clip
relative to the source motion clip, os→h ∈ Z.

– The first stay duration (i.e., the number of frames to wait
for before starting the transition from the source motion
clip to the hop motion clip), ss ∈ Z≥0.

– The second stay duration (i.e., the number of frames to
wait for before starting the transition from the hopmotion
clip to the destination motion clip), sh ∈ Z≥0.

– The blend duration for the first transition from the source
motion clip to the hop motion clip, bs→h ∈ Z>0.

– The blend duration for the second transition from the hop
motion clip to the destination motion clip, bh→d ∈ Z>0.

Fig. 4 Illustration of our problem setting for each search task. The
frame of receiving the user input, ttrigger, and the temporal alignment
offset between the source and destination motion clips, os→d, are given.
In addition to the hop motion clip chosen from a candidate set, the
stay durations, ss and sh, the blend durations, bs→h and bh→d, and the
temporal alignment offset between the source and hop motion clips,
os→h, are nontrivial variables

Among these variables, for simplicity we assume that the
blend durations bs→h and bh→d are given; we thus omit them
from the search variables. This is because optimizing them
is a nontrivial problem. Some advanced techniques can find
optimal blend durations (e.g., [37]), but for now we assign
them a fixed value of 30 frames (0.5 sec in our implementa-
tion, which was selected following [31,33]), for simplicity.

As a result, the search variables in our framework are
expressed as follows. Let Tt be a set of all the possible one-
hop transitions for a triggered frame t . We represent a one-
hop transition, Tt ∈ Tt , by a four-element tuple:

Tt = (i, os→h, ss, sh) . (1)

Given a target triggered frame t , our framework seeks to
find an optimal transition T ∗

t ∈ Tt (i.e., the best possible
combination of i , os→h, ss, and sh) that minimizes the dura-
tion necessary for the overall transition while maximizing
the overall naturalness; this constitutes a trade-off.

3.2 Search for optimal one-hopmotion transition

Search objectiveWesolve the following discrete search prob-
lem for each possible triggered frame t :

T ∗
t = arg min

Tt∈Tt
{S(Tt ) + wR(Tt )}, (2)

where S : T → R≥0 is a smoothness cost function, R : T →
R≥0 is a responsiveness cost function, and w ∈ R>0 is a
weight parameter for the user to control the trade-off between
the transition smoothness and responsiveness, depending on
the usage scenario. The smoothness cost function is defined
as

S(Tt ) = Ds→h(Tt ) + Dh→d(Tt ), (3)

123



Precomputed optimal one-hop motion transition for responsive character animation 1135

Fig. 5 Colormap visualization of distance function values between a
pair of motion clips (say, A and B). A lower value means that the two
motions are less distant (i.e., more similar) at the indicated frames, and
thus, a transition created under that condition is expected to become
smoother. The details of the distance function are described in [16].
To evaluate the smoothness of a one-hop transition, our framework
calculates distance values for both (1) the pair of source and hopmotion
clips and (2) the pair of hop and destination motion clips, and then it
evaluates the overall smoothness of the one-hop transition (Eq. 3)

where Ds→h and Dh→d are distance (or dissimilarity) func-
tions that measure the distances between the source and hop
motion clips and the hop anddestinationmotion clips, respec-
tively, during individual transitions. The responsiveness cost
function should be a monotonically increasing function with
respect to the duration of the overall transition. Our current
implementation simply defines it as the sum of the stay dura-
tions:

R(Tt ) = ss + sh. (4)

Choice of distance functionOur current implementation uses
a distance function proposed by Kovar et al. [16] which has
been used in many follow-up works [6,15,17]. It spatially
aligns the two motion fragments to be blended by finding an
optimal 2D rigid transformation (i.e., horizontal translation
and the yaw rotation) in the least-squares sense, and then
it calculates the sum of the distances between correspond-
ing points on the character’s body for every pair of frames.
This metric is coordinate invariant and implicitly incorpo-
rates derivative information by considering multiple frames
rather than a single frame.We do not repeat the specific equa-
tions here; refer to the original paper for the details. Figure 5
shows an example of computed distance function values for
a pair of motion clips. We emphasize that the choice of the
distance function is not our focus, and that our framework
is orthogonal to that choice. It can use any other distance
function, such as those considering joint orientations and
velocities [23,37], joint accelerations [1], and so on.

Search strategyWe solve the search problem by using a sim-
ple exhaustive strategy with pruning. If at least one of three
values, Ds→h(Tt ), Dh→d(Tt ), and wR(Tt ), is larger than the
objective value of the “best current” solution, then that Tt

cannot be the optimal solution (because these three values
are all nonnegative), and thus, we can prune that condition
without calculating the other values. We calculate wR(Tt )
first and then the other two, as wR(Tt ) can be more effi-
ciently calculated than the others can. Also, we visit smaller
ss and sh first and then increment these values; because R is
a monotonically increasing function with respect to both ss
and sh, doing so is likely to find lower-cost solutions at earlier
stages of the search, which is helpful for effective pruning.

Storage and use of precomputed resultsPrecomputed optimal
transitions can be stored in a lookup table in which triggered
frames are the keys for retrieval. By using a random-access
array to implement the lookup table, the runtime cost of
retrieval has only constant time complexity O(1) and is suf-
ficiently fast for computational-resource-restricted scenarios
such as video games. Furthermore, as a one-hop transition
can be represented by using four integers (Eq. 1), the runtime
module is not memory intensive. For example, when the state
machine has 50 possible state transitions and every motion
clip has 1k frames, the runtime module uses 800 kB (=
50 [state transitions]×1k [frames]×4 [integers]×4 [bytes]),
which is sufficiently small compared to the memory used by
typical assets such as textures.

Discussion By selecting the destination motion clip as the
hop motion clip and setting os→h = os→d and ss = sh = 0,
which is included in the search space, our one-hop transition
can express the same transition as by the direct approach.
Therefore, our framework is always guaranteed to find a tran-
sition that is equal to or better than that by the direct approach
in terms of the search objective.

3.3 Default weight

Though it is important to let users adjust the weight param-
eter w in Eq. 2, it is helpful to provide a “default” value. We
present a simple algorithm to find such a value as follows.
First, from the set of targetmotion clips, we randomly sample
N transition conditions, each consisting of source and desti-
nation motion clips, their temporal alignment, and a trigger
frame. Then, we search for optimal transitions for these con-
ditions without using stay durations (i.e., we set ss = sh = 0)
and record the average smoothness cost value S̄0. Next, we
perform the search again but incorporate the stay durations as
search variables, with an upper bound smax ∈ Z>0 and with
w = 0, and we record the average smoothness cost value
S̄smax . Finally, we obtain a default weight as

wdefault = S̄0 − S̄smax

2smax
. (5)

Intuitively, this algorithm measures how much the smooth-
ness cost decreases when using stay durations as compared

123



1136 Y. Koyama, M. Goto

to when not using them, and then it normalizes the value
to find a reasonable relative scale between the smoothness
and responsiveness costs. We use 2smax as the denominator,
because it is the upper bound of the responsiveness cost when
not using stay durations. Another option is to use the aver-
age of the responsiveness costs. Either way is valid, because
the smoothness and responsiveness costs become compara-
ble through multiplication by the weight. Unless otherwise
stated, the results presented in this paper were generated with
this default weight automatically set (N = 100, smax = 60).

4 Results

4.1 Implementation details

To demonstrate that our framework is compatible with a pop-
ular game engine, we implemented the runtime component
in Unity. In particular, we used the Playables API in Unity to
blend motion clips. The precomputation module was imple-
mented as an independent executable, which can be run via
either a command line or the Unity Editor.

As a baseline for comparison, we also implemented the
direct approach, which begins a transition immediately from
the triggered frame and uses 30 frames to make the transi-
tion directly to the destination motion clip. This mimics the
common practice.

We tested our framework by using a dance motion dataset
that we created using a motion capture system. The dataset
consists of various motions from three dance genres: hip-
hop, jazz, and pop. Each genre has around 20 motion clips,
and each clip lasts around 20 seconds. The frame rate was
reduced to 60 frames per second in postprocessing. Unless
otherwise stated, each result was generated using around 20
motion clips from this dataset.

Note that we did not apply any postprocessing techniques
to clean up footskate artifacts (e.g., [12]) for demonstration
purposes. Thus, small footskate artifacts that appear in our
results can be fixed to improve the naturalness.

4.2 Use case: interactive choreography

Assumed scenario As a use case for our framework, we
considered a scenario of “interactive character dancing,” in
which the choreography of a virtual dancer is assembled in
real time by an operator who improvises the selection of a
prerecorded motion clip to play in the next moment. Fig-
ure 6 shows a conceptual example state machine for this
application. It requires making the played dance sequence
as natural-looking as possible, and at the same time, as
responsive to the requests to change the choreography as
possible.

Fig. 6 Conceptual example of a state machine configuration for an
interactive dance application. The choreography is assumed to be cre-
ated in an improvised manner

Visual comparison Refer to the accompanying video, in
which we show many transition results produced by our
framework and also the baseline approach. Here, we include
some of the representative results. Figure 7 shows two cases
in which the framework greatly improved the visual quality
by choosing appropriate hop motions. Figures 1 and 8 show
cases in which the framework successfully cleaned up the
footskate artifacts that appeared in the direct transitions.

Robustness test To check whether our framework can
robustly generatemore plausible transitions than the baseline
approach can for various inputs, we procedurally generated
an extra set of 15 transition results by an objective rule (i.e.,
sequentially selecting triggered frames with a fixed interval,
rather than applying subjective selection). The accompany-
ing video includes these 15 transitions. According to our
observation, the transitions produced by the framework are
better than or at least equivalent to the baseline transitions in
most cases.

Mostly unchanged casesWhen the direct transition is already
very smooth (i.e., the smoothness cost of the original direct
transition is sufficiently small that there is only a little room
for improvement), the search module often selects the des-
tination motion clip as the hop and sets a similar temporal
alignment. Figure 9 shows such an example, in which only a
slight difference in os→h and os→d is introduced, thus giving
mostly the same results. For another example, see Result
07 of the robustness test in the accompanying video. Note
that, in this situation, the resulting transition looks extremely
responsive as if it were a direct (zero-hop) transition, but it
can appear more natural than a transition by the naïve direct
approach because our framework selects ss and os→h in an
optimal way.

Cost values To better understand the behavior of our frame-
work from a quantitative perspective, we calculated the cost
values of both our optimal one-hop transitions (i.e., the sum-
mation of Ds→h, Dh→d, and wR) and the corresponding

123



Precomputed optimal one-hop motion transition for responsive character animation 1137

Fig. 7 Results of direct motion transitions and our optimal one-hop
motion transitions for two challenging scenarios. (Top) The transition
is triggeredwhen the sourcemotion involves crouching. The direct tran-
sition exhibits a severe visual artifact of sudden momentum change. In
contrast, our transition inserts a standing-up motion after some stay
duration, which makes the overall transition look much more natural.

(Bottom) The source and destination motions are dances that involve
standing and sitting, respectively. The direct transition creates a sud-
den sitting-down motion. In contrast, our transition lets the character sit
down while dancing by inserting a dance segment with a sitting-down
motion, which is much more natural in terms of choreography

Fig. 8 Example of resolving a footskate problem. (Top)Adirectmotion
transition causes a severe footskate artifact that is so large that it is dif-
ficult for inverse-kinematics-based postprocessing techniques to fix it.

(Bottom) Our optimal one-hop motion transition inserts an appropriate
hop motion of closing the legs, and the resulting footskate artifact is
almost negligible

123



1138 Y. Koyama, M. Goto

Fig. 9 Example of a case in which the direct (Top) and optimal one-hop
(Bottom) approaches produce similar results. In this case, the destina-
tion motion clip was selected as the optimal hop motion. This is likely
to happen when the direct motion transition is already very smooth

Fig. 10 Cost value comparison of our optimal one-hop motion transi-
tions and the corresponding naïve direct transitions

direct transitions (i.e., the distance between the source and
destination motion clips during a direct transition, in other
words, Ds→d). Figure 10 displays the results in a side-by-side
manner. The transitions generated for the robustness testwere
used here; see the accompanying video for the correspond-
ing rendered motions. The figure shows that our framework
could always find lower-cost transitions than those produced
by the direct approach, and that our results have various pro-
portions of individual cost values to total cost values.

4.3 Effect of changing weight

To demonstrate the effect of the weight parameter w, we
generated transition results by using different weights: 0.1 ·
wdefault, wdefault, and 10 · wdefault. Figure 11 shows time-
lapse visualizations of these results. Although the source
and destination motion clips, their temporal alignment, and
the triggered frame were identical, different optimal one-hop
transitions were obtained depending on the weights. This
demonstrates that the weight controls a trade-off between
smoothness and responsiveness: our transition becomesmore
responsive when using a larger weight, while it becomes
smoother when using a smaller weight. Note that even when
the largest weight (i.e., 10 · wdefault) was used, it provided a
much smaller smoothness cost (0.0467) than the direct tran-
sition did (0.0984), owing to the insertion of a hop motion.

4.4 Extensibility

One of the advantages of our framework is its simplicity,
which makes it easy to investigate various extensions. To
demonstrate its extensibility, we created a beat-aware ver-
sion of the one-hop transition search module for interactive
dancing applications. In this extension, hop dance motions
are selected and aligned by taking their beats into consider-
ation. This is easily achieved by restricting the search space
of the temporal alignment offset os→h to only beat frames.
Figure 12 shows a result generated by this extension. As the
source, hop, and destination motions share the same beats in
this case, the resulting motions appear well synchronized to
the underlying music.

5 Discussion

Multiple hops The number of inserted hops is always one in
our framework. We adopted this design because it is a mini-
mal insertion but greatly improves the quality. Beingminimal
is important to provide better transparency for designers as
well as better responsiveness of transitions. Nevertheless, it
will be an important future work to investigate the approach
of inserting multiple motion clips (e.g., [13]) to obtain even
smoother transitions. Note that it is possible to search multi-
ple hops in our framework with a straightforward extension,
but this prohibitively increases the computational cost of
the search; therefore, we did not include that approach as
a baseline in the evaluation, and some techniques need to be
developed to make it tractable.

Higher responsiveness As shown in Fig. 9, when the desti-
nation motion clip is selected as the hop motion clip and the
temporal alignments os→h and os→d are similar, the result-
ing transition can look very responsive. For users who desire

123



Precomputed optimal one-hop motion transition for responsive character animation 1139

Fig. 11 Visualizations of a direct motion transition (first row) and our
optimal one-hop motion transitions with various weights (the other
rows) under the same conditions. The weight controls a trade-off

between smoothness and responsiveness: our transition becomes more
responsivewhen using a largerweight, while it becomes smootherwhen
using a smaller weight

Fig. 12 Result of a beat-aware optimal one-hop dance motion transition. Our extended framework inserted a hop motion so that it shared the same
beats as the source and destination dance motion clips. Thus, the resulting transition was well synchronized to the underlying music

very quick transitions, it would be useful to provide an option
to enforce (or favor) this condition in the search.

Blending duration We used a fixed blending duration to
maintain the simplicity of our framework, but making this
variable adaptive [37] would be beneficial to improving both
the naturalness and the responsiveness. Thus,we suggest that
developers of motion control systems pursue that direction
if they require increased quality.

Separate handling of body parts It would be an interesting
future work to investigate how to apply one-hop transitions
in a situation with some body parts (e.g., the upper and lower
bodies) separately controlled. It is straightforward to inde-
pendently precompute optimal one-hop transitions for each
body part and play them at runtime; however, it is not trivial
to determine how that approach would affect the naturalness
of transitions.

123



1140 Y. Koyama, M. Goto

Efficient search strategy Our current implementation uses
a simple exhaustive search to obtain optimal solutions in
precomputation. Our (unoptimized) code typically takes a
36-core server about one hour to perform the search for
around 1000 possible triggered frames (depending on the
total length of themotion clips to be used). If necessary, using
a heuristic search algorithmsuch as beamsearch could reduce
the precomputation cost. It would also be interesting to seek
efficient algorithms that use the found solution for a triggered
frame to obtain the solution of the next frame, because opti-
mal solutions are often similar to those of their neighboring
frames. This idea could also be used for compressing the
lookup table to reduce the runtime memory usage.

Positional and orientational constraintsWe do not yet incor-
porate positional or orientational constraints in the search
(i.e., searching for an optimal one-hop transition that results
in a certain amount of translation and rotation), which are
necessary for certain use cases. This would require some
extensions to the objective of the search, as well as a way of
managing the lookup table.

Interpolated motions We assumed a scenario in which every
state is associated with a single motion clip to play. It is also
a common practice, however, to associate some states with
parametric motions defined as continuous interpolations of
multiple motion clips. This approach is used for dynamically
generatingmotion variations; for example, interpolating run-
ning and walking motion clips generates intermediate-speed
walkingmotions. Also, timewarping techniques can be com-
bined to create further variations.We have not yet considered
this scenario. It would thus be a good future work to fur-
ther improve the practicality of our framework by handling
dynamically interpolated motions.

Creation of dedicated motion datasets To demonstrate our
framework, we used an existing dataset of dance motions
for hop motion candidates. It would be an interesting future
work to create motion datasets dedicated to such use for
hop motions. An ideal dataset could improve our framework
in providing more natural transitions (even for transitions
between totally dissimilar motions such as from sleeping to
running), providing quicker transitions, and reducing the run-
time memory usage.

Connection of nonoverlapping motions Our framework can
also be used for connecting two nonoverlapping motion clips
(i.e., connecting the last frame of one clip and the first frame
of another). This situation often arises (e.g., [1,32]), and is
typically solved by smoothing the naïvely connected motion
with a certain window duration. Rather than smoothing,
our framework connects the two nonoverlapping motions by
inserting an appropriate hop motion.

Reason for precomputing every frame Motion-graph-based
methods (e.g., [1,16,23]) first create a graph structure only
once and then search “paths” in the graph by considering
user-specified constraints to synthesize motions. In contrast,
we compute optimal one-hop transitions (one-hopgraphs) for
every possible triggered frame. This is necessary because the
strategy of being as responsive as possible means that every
frame can produce a different optimal one-hop transition.

More sophisticatedmetrics formotion transition Our current
implementation uses the distance metric used by Kovar et al.
[16] to measure and ensure the smoothness of transitions.
This metric, however, only considers the pose-space geomet-
ric distances betweenmotion segments and does not consider
either the semantics or styles of motions. Thus, it may poten-
tially cause insertion of a perceptually awkward hop motion.
Measurement of such motion compatibility related to visual
perception could be enabled by a data-driven (or machine-
learning) approach with crowdsourced data generation, as
researchers have recently demonstrated the effectiveness of
that approach in various domains [4,8,19,22,26].

Ease of extension Our framework is simple enough to eas-
ily be extended according to specific usage scenarios. We
demonstrated an extension of our framework in the previous
section (see Fig. 12), in which we could make the search
module aware of musical beats by simply modifying the
search space. Similarly, we could offer another extension
of the search module as follows. As our dataset has annota-
tions of dance genres (i.e., hip-hop, jazz, and pop), we could
create a genre-aware version of the search module for inter-
active dancing applications. This could be achieved by, for
example, adding a genre cost term to the search objective in
Eq. 2:

G(i) =
{
0, ifMi is from the target genre
c, otherwise

, (6)

where c ∈ R>0 is a constant value to control the genre term’s
strength. In this way, the search module could favor hop
motions from a target genre (e.g., the genre of the source and
destination motions), but it could also choose a hop motion
from different genres when necessary to ensure sufficient
smoothness. Hence, we can extend the search to favor solu-
tions that are more context appropriate.

Applications to other domains We believe that the design
of our optimal one-hop transition framework is applicable
not only to character motion but also to other domains. For
example, “interactive music” [14] is a technique to make the
transitions of background music in games naturally respon-
sive to game contexts. Inserting an optimal hop (or fill) would
potentially create quicker, more natural transitions for that
technique.

123



Precomputed optimal one-hop motion transition for responsive character animation 1141

Funding This work was supported in part by JST ACCEL Grant Num-
ber JPMJAC1602, Japan.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Arikan, O., Forsyth, D.A.: Interactive motion generation from
examples. ACM Trans. Graph. 21(3), 483–490 (2002). https://doi.
org/10.1145/566654.566606

2. Arikan, O., Forsyth, D.A., O’Brien, J.F.: Pushing people around.
In: Proceedings of the SCA ’05, pp. 59–66 (2005). https://doi.org/
10.1145/1073368.1073376

3. Chai, J., Hodgins, J.K.: Constraint-based motion optimization
using a statistical dynamic model. ACM Trans. Graph. (2007).
https://doi.org/10.1145/1276377.1276387

4. Chaudhuri, S., Kalogerakis, E., Giguere, S., Funkhouser, T.:
Attribit: content creation with semantic attributes. In: Proceed-
ings of the UIST ’13, pp. 193–202 (2013). https://doi.org/10.1145/
2501988.2502008

5. Clavet, S.:Motionmatching: road to next-gen animation. Presented
at GDC ’16 (2016)

6. Egbert, C., Egbert, P.K., Morse, B.S.: Real-time motion transition
by example. In: Articulated Motion and Deformable Objects, pp.
138–147 (2010)

7. Epic Games, Inc.: State machines. https://docs.unrealengine.com/
en-US/Engine/Animation/StateMachines (2019). Retrieved 31 Jan
2019

8. Garces, E., Agarwala, A., Gutierrez, D., Hertzmann, A.: A sim-
ilarity measure for illustration style. ACM Trans. Graph. 33(4),
93:1–93:9 (2014). https://doi.org/10.1145/2601097.2601131

9. Gleicher, M., Shin, H.J., Kovar, L., Jepsen, A.: Snap-together
motion: assembling run-time animations. In: Proceedings of the
I3D ’03, pp. 181–188 (2003). https://doi.org/10.1145/641480.
641515

10. Holden, D., Komura, T., Saito, J.: Phase-functioned neural net-
works for character control. ACMTrans. Graph. 36(4), 42:1–42:13
(2017). https://doi.org/10.1145/3072959.3073663

11. Holden, D., Saito, J., Komura, T.: A deep learning framework for
character motion synthesis and editing. ACM Trans. Graph. 35(4),
138:1–138:11 (2016). https://doi.org/10.1145/2897824.2925975

12. Ikemoto, L., Arikan, O., Forsyth, D.: Knowing when to put your
foot down. In: Proceedings of the I3D ’06, pp. 49–53 (2006). https://
doi.org/10.1145/1111411.1111420

13. Ikemoto, L., Arikan, O., Forsyth, D.: Quick transitions with cached
multi-way blends. In: Proceedings of the I3D ’07, pp. 145–151
(2007). https://doi.org/10.1145/1230100.1230125

14. Iwamoto, S.: Epic and interactive music in ‘final fantasy xv’. Pre-
sented at GDC ’17 (2017)

15. Kovar, L., Gleicher, M.: Flexible automatic motion blending with
registration curves. In: Proceedings of the SCA ’03, pp. 214–224
(2003)

16. Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. ACM Trans.
Graph. 21(3), 473–482 (2002). https://doi.org/10.1145/566654.
566605

17. Kovar, L., Schreiner, J., Gleicher,M.: Footskate cleanup formotion
capture editing. In: Proceedings of the SCA ’02, pp. 97–104 (2002).
https://doi.org/10.1145/545261.545277

18. Koyama, Y., Goto, M.: Optimo: Optimization-guided motion edit-
ing for keyframe character animation. In: Proceedings of the CHI
’18, pp. 161:1–161:12 (2018). https://doi.org/10.1145/3173574.
3173735

19. Koyama,Y., Sakamoto, D., Igarashi, T.: Crowd-powered parameter
analysis for visual design exploration. In: Proceedings of the UIST
’14, pp. 65–74 (2014). https://doi.org/10.1145/2642918.2647386

20. Lau, M., Kuffner, J.J.: Behavior planning for character animation.
In: Proceedings of the SCA ’05, pp. 271–280 (2005). https://doi.
org/10.1145/1073368.1073408

21. Lau,M.,Kuffner, J.J.: Precomputed search trees: Planning for inter-
active goal-driven animation. In: Proceedings of the SCA ’06, pp.
299–308 (2006)

22. Laursen, L.F., Koyama, Y., Chen, H.T., Garces, E., Gutierrez, D.,
Harper, R., Igarashi, T.: Icon set selection via human computation.
In: Proceedings of the Pacific Graphics ’16 – Short Papers, pp. 1–6
(2016). https://doi.org/10.2312/pg.20161326

23. Lee, J., Chai, J., Reitsma, P.S.A., Hodgins, J.K., Pollard, N.S.:
Interactive control of avatars animated with human motion data.
ACM Trans. Graph. 21(3), 491–500 (2002). https://doi.org/10.
1145/566654.566607

24. Lee, Y., Wampler, K., Bernstein, G., Popović, J., Popović,
Z.: Motion fields for interactive character locomotion. ACM
Trans. Graph. 29(6), 138:1–138:8 (2010). https://doi.org/10.1145/
1882261.1866160

25. Levine, S., Wang, J.M., Haraux, A., Popović, Z., Koltun, V.: Con-
tinuous character control with low-dimensional embeddings. ACM
Trans. Graph. 31(4), 28:1–28:10 (2012). https://doi.org/10.1145/
2185520.2185524

26. Liu, T., Hertzmann, A., Li, W., Funkhouser, T.: Style compatibil-
ity for 3d furniture models. ACM Trans. Graph. 34(4), 85:1–85:9
(2015). https://doi.org/10.1145/2766898

27. Min, J., Chai, J.: Motion graphs++: a compact generativemodel for
semantic motion analysis and synthesis. ACMTrans. Graph. 31(6),
153:1–153:12 (2012). https://doi.org/10.1145/2366145.2366172

28. Min, J., Chen, Y.L., Chai, J.: Interactive generation of human ani-
mationwith deformablemotionmodels. ACMTrans. Graph. 29(1),
9:1–9:12 (2009). https://doi.org/10.1145/1640443.1640452

29. Mizuguchi, M., Bochanan, J., Calvert, T.: Data driven motion
transitions for interactive games. In: Eurographics 2001—Short
Presentations (2001). https://doi.org/10.2312/egs.20011039

30. Mukai, T., Kuriyama, S.: Geostatistical motion interpolation. ACM
Trans. Graph. 24(3), 1062–1070 (2005). https://doi.org/10.1145/
1073204.1073313

31. Pullen, K., Bregler, C.: Motion capture assisted animation: tex-
turing and synthesis. ACM Trans. Graph. 21(3), 501–508 (2002).
https://doi.org/10.1145/566654.566608

32. Reitsma, P.S.A., Pollard, N.S.: Evaluating motion graphs for char-
acter animation. ACM Trans. Graph. 26(4), 18:1–18:24 (2007).
https://doi.org/10.1145/1289603.1289609

33. Rose, C., Guenter, B., Bodenheimer, B., Cohen, M.F.: Efficient
generation of motion transitions using spacetime constraints. In:
Proceedings of the SIGGRAPH ’96, pp. 147–154 (1996). https://
doi.org/10.1145/237170.237229

34. Safonova, A., Hodgins, J.K.: Construction and optimal search of
interpolated motion graphs. ACM Trans. Graph. 26(3), 106:1–
106:11 (2007). https://doi.org/10.1145/1276377.1276510

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/566654.566606
https://doi.org/10.1145/566654.566606
https://doi.org/10.1145/1073368.1073376
https://doi.org/10.1145/1073368.1073376
https://doi.org/10.1145/1276377.1276387
https://doi.org/10.1145/2501988.2502008
https://doi.org/10.1145/2501988.2502008
https://docs.unrealengine.com/en-US/Engine/Animation/StateMachines
https://docs.unrealengine.com/en-US/Engine/Animation/StateMachines
https://doi.org/10.1145/2601097.2601131
https://doi.org/10.1145/641480.641515
https://doi.org/10.1145/641480.641515
https://doi.org/10.1145/3072959.3073663
https://doi.org/10.1145/2897824.2925975
https://doi.org/10.1145/1111411.1111420
https://doi.org/10.1145/1111411.1111420
https://doi.org/10.1145/1230100.1230125
https://doi.org/10.1145/566654.566605
https://doi.org/10.1145/566654.566605
https://doi.org/10.1145/545261.545277
https://doi.org/10.1145/3173574.3173735
https://doi.org/10.1145/3173574.3173735
https://doi.org/10.1145/2642918.2647386
https://doi.org/10.1145/1073368.1073408
https://doi.org/10.1145/1073368.1073408
https://doi.org/10.2312/pg.20161326
https://doi.org/10.1145/566654.566607
https://doi.org/10.1145/566654.566607
https://doi.org/10.1145/1882261.1866160
https://doi.org/10.1145/1882261.1866160
https://doi.org/10.1145/2185520.2185524
https://doi.org/10.1145/2185520.2185524
https://doi.org/10.1145/2766898
https://doi.org/10.1145/2366145.2366172
https://doi.org/10.1145/1640443.1640452
https://doi.org/10.2312/egs.20011039
https://doi.org/10.1145/1073204.1073313
https://doi.org/10.1145/1073204.1073313
https://doi.org/10.1145/566654.566608
https://doi.org/10.1145/1289603.1289609
https://doi.org/10.1145/237170.237229
https://doi.org/10.1145/237170.237229
https://doi.org/10.1145/1276377.1276510


1142 Y. Koyama, M. Goto

35. Unity Technologies: Unity—manual: Animation transitions.
https://docs.unity3d.com/Manual/class-Transition.html (2018).
Publication: 2018.3-002N. Built: 2018-12-04

36. Unity Technologies: Unity—manual: Statemachine basics. https://
docs.unity3d.com/Manual/StateMachineBasics.html (2018). Pub-
lication: 2018.3-002P. Built: 2019-01-17

37. Wang, J., Bodenheimer, B.: Synthesis and evaluation of linear
motion transitions. ACM Trans. Graph. 27(1), 1:1–1:15 (2008).
https://doi.org/10.1145/1330511.1330512

38. Zadziuk,K.:Motionmatching:The future of gameplay animation...
today. Presented at GDC ’16 (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Yuki Koyama is a Researcher at
the National Institute of Advan-
ced Industrial Science and Tech-
nology (AIST), Japan. He received
his Ph.D. from the University of
Tokyo in 2017. His research inter-
ests include computer graphics and
human-computer interaction. In
particular, he is interested in devel-
oping computational techniques
for enabling new interactions, pro-
ducing creative artifacts, and
enhancing design processes.

Masataka Goto received the Doc-
tor of Engineering degree from
Waseda University in 1998. He is
currently a Prime Senior Resear-
cher at the National Institute of
Advanced Industrial Science and
Technology (AIST), Japan. Over
the past 27 years he has published
more than 250 papers in refereed
journals and international confer-
ences and has received 47 awards,
including several best paper awar-
ds, best presentation awards, the
Tenth Japan Academy Medal, and
the Tenth JSPS PRIZE. He has

served as a committee member of over 110 scientific societies and
conferences, including the General Chair of ISMIR 2009 and 2014.

123

https://docs.unity3d.com/Manual/class-Transition.html
https://docs.unity3d.com/Manual/StateMachineBasics.html
https://docs.unity3d.com/Manual/StateMachineBasics.html
https://doi.org/10.1145/1330511.1330512

	Precomputed optimal one-hop motion transition for responsive character animation
	Abstract
	1 Introduction
	2 Related work
	3 Optimal one-hop motion transition
	3.1 Problem setting and search variables
	3.2 Search for optimal one-hop motion transition
	3.3 Default weight

	4 Results
	4.1 Implementation details
	4.2 Use case: interactive choreography
	4.3 Effect of changing weight
	4.4 Extensibility

	5 Discussion
	References




