
BO as Assistant: Using Bayesian Optimization for
Asynchronously Generating Design Suggestions

Yuki Koyama Masataka Goto
koyama.y@aist.go.jp m.goto@aist.go.jp

National Institute of Advanced Industrial Science and National Institute of Advanced Industrial Science and
Technology (AIST) Technology (AIST)

Tsukuba, Ibaraki, Japan Tsukuba, Ibaraki, Japan

Bayesian Optimization (BO) AssistantDesigner

(1) Monitor slider manipulation
(2) Estimate the design goal

(3) Provide suggestions

Manipulate sliders to search for the best design as usual

The designer can use suggestions or ignore them
BO-generated Suggestions

…

… BO-based
sampling

Figure 1: Concept of BO as Assistant, a framework for assisting designers in fnding appropriate design parameter values by
using Bayesian optimization (BO) techniques. The system (1) monitors the designer’s slider manipulation, (2) automatically
estimates the designer’s design goal, and (3) asynchronously provides suggestions sampled using BO’s strategy. The designer
can choose to use suggestions or ignore them.

ABSTRACT
Many design tasks involve parameter adjustment, and designers
often struggle to fnd desirable parameter value combinations by
manipulating sliders back and forth. For such a multi-dimensional
search problem, Bayesian optimization (BO) is a promising tech-
nique because of its intelligent sampling strategy; in each iteration,
BO samples the most efective points considering both exploration
(i.e., prioritizing unexplored regions) and exploitation (i.e., prior-
itizing promising regions), enabling efcient searches. However,
existing BO-based design frameworks take the initiative in the
design process and thus are not fexible enough for designers to
freely explore the design space using their domain knowledge. In
this paper, we propose a novel design framework, BO as Assistant,
which enables designers to take the initiative in the design process
while also benefting from BO’s sampling strategy. The designer can
manipulate sliders as usual; the system monitors the slider manipu-
lation to automatically estimate the design goal on the fy and then
asynchronously provides unexplored-yet-promising suggestions
using BO’s sampling strategy. The designer can choose to use the
suggestions at any time. This framework uses a novel technique

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UIST ’22, October 29-November 2, 2022, Bend, OR, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9320-1/22/10.
https://doi.org/10.1145/3526113.3545664

to automatically extract the necessary information to run BO by
observing slider manipulation without requesting additional inputs.
Our framework is domain-agnostic, demonstrated by applying it to
photo color enhancement, 3D shape design for personal fabrication,
and procedural material design in computer graphics.

CCS CONCEPTS
• Computing methodologies → Graphics systems and interfaces;
• Human-centered computing → Human computer interaction
(HCI).

KEYWORDS
Bayesian optimization, visual design, suggestive interface

ACM Reference Format:
Yuki Koyama and Masataka Goto. 2022. BO as Assistant: Using Bayesian
Optimization for Asynchronously Generating Design Suggestions. In The
35th Annual ACM Symposium on User Interface Software and Technology
(UIST ’22), October 29-November 2, 2022, Bend, OR, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3526113.3545664

1 INTRODUCTION

1.1 Background
Many design tasks involve parameter adjustment, i.e., searching for
a parameter value combination that produces a desirable design out-
come [26]. For example, a photo color enhancement task involves
multiple parameters such as brightness, contrast, and saturation,
which in combination create interesting color efects to the original

https://orcid.org/0000-0002-3978-1444
https://orcid.org/0000-0003-1167-0977
https://doi.org/10.1145/3526113.3545664
https://doi.org/10.1145/3526113.3545664
mailto:m.goto@aist.go.jp
mailto:koyama.y@aist.go.jp
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3526113.3545664&domain=pdf&date_stamp=2022-10-28

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Yuki Koyama and Masataka Goto

photograph [21]. Similarly, digital content creation (DCC) tools
[3, 44, 50] and computer-aided design (CAD) tools [10, 35] provide
parametric functionality to procedurally generate and edit con-
tents. Also, machine learning techniques [17, 31, 36] have enabled
designers to generate various high-quality content by providing pa-
rameters called latent codes. While such parametric design features
enable designers to try diferent design variations easily, design-
ers are required to make an efort to fnd a desirable parameter
combination by manipulating sliders back and forth many times.
This task is considered a high-dimensional optimization problem,
in which the objective is the design goal that the designer has in
mind. Designers manually solve this problem in practice. In this
work, we want to facilitate designers’ manual optimization tasks.

Computational optimization is a promising technique to tackle
such high-dimensional design problems because optimization al-
gorithms [29] use mathematically reasonable sampling strategies
to navigate high-dimensional search spaces. With this in mind, re-
searchers have investigated human-in-the-loop optimization frame-
works [7, 8, 12, 18, 22, 23, 34, 48, 56, 57] for design problems that
need human evaluators to evaluate the optimization objective.
Among various optimization algorithms, Bayesian optimization
(BO) [38] is particularly attractive for human-in-the-loop settings
[8, 12, 18, 22, 23, 57] due to its intelligent sampling strategy; in each
iteration, BO searches for the most efective sampling points con-
sidering both exploration (i.e., prioritizing unexplored regions in the
design space) and exploitation (i.e., prioritizing promising regions
in the design space), enabling efcient searches. BO iteratively asks
human evaluators (i.e., the designer in our case) to provide feedback
about the sampled points.

However, existing designer-in-the-loop optimization frameworks
(i.e., human-in-the-loop optimization frameworks in which a de-
signer plays the role of the evaluator), regardless of using BO, are
insufciently fexible for designers to freely explore the design
space using their domain knowledge. For example, suppose a de-
signer is adjusting parameters for photo color enhancement using a
designer-in-the-loop optimization framework. At a certain iteration
step, the system may propose a nice color enhancement, but the
designer may wish for the image to be brighter. Thus, this designer
may want to increase the “brightness” parameter value according
to the designer’s domain knowledge. However, such an operation is
not possible during the optimization since the optimizer determines
what and how parameters are changed (i.e., all the designer can do is
evaluate the provided designs). In this way, the designer-in-the-loop
workfow does not enable designers to take the initiative in deter-
mining how the design process progresses, unlike the traditional
slider-based workfow. As a result, it may reduce the designers’
sense of agency, ownership, and creativity [6].

1.2 Contributions
We propose a novel design framework, BO as Assistant, which en-
ables designers to take the full initiative in the design process while
also benefting from BO’s intelligent sampling strategy. Figure 1
illustrates this framework. This framework does not require the
designer to provide any additional input to run the optimization;
the designer can manipulate sliders as usual. The system monitors
the slider manipulation to progressively and automatically estimate

the design goal in a Bayesian manner, and then it asynchronously
provides suggestions. Thus, this framework has no explicit opti-
mization loop unlike previous frameworks. Suggestions are sampled
from unexplored-yet-promising regions in the multi-dimensional
design space using BO techniques. The designer can choose to use
the suggested designs or just ignore them if they are unsatisfactory
or the designer wants to focus on manual exploration. This “op-
timization as a design assistant” approach has been investigated
previously [2, 30, 51]. Our framework is unique in that it dynam-
ically estimates the designer’s design goal (i.e., the intention to
determine parameter sets of interest) from the behavior of the de-
sign exploration (i.e., how the designer explores the design space),
instead of assuming domain-specifc pre-defned design goals; thus,
our framework is general and domain-agnostic.

To develop this framework, we propose a novel technique to
automatically extract the necessary information to run BO only
from slider manipulations. Standard BO [38] requires to observe a
numerical value of the objective function at each sampling point
(i.e., in our case, a score representing how subjectively good the cor-
responding design is). This information cannot be observed unless
the designer explicitly provides an absolute score for every visited
parameter set, which is impractical; thus, standard BO is unsuitable
for our purpose. Instead, we use preferential Bayesian optimization
(PBO) [5, 22, 23], a variant of BO that runs with relative preferen-
tial information (i.e., which parameter set is preferred over other
parameter sets) instead of absolute scores. Our technique enables
to extract such relative preferential information by observing the
behavior of the designer’s slider manipulation, and then runs PBO
using the acquired data to generate reasonable suggestions.

To demonstrate the proposed framework and its generality, we
apply it to diverse design domains, including photo color enhance-
ment, 3D shape design for personal fabrication, and procedural
material design in computer graphics. The framework could work
in these diferent scenarios in a unifed manner and automatically
provide reasonable suggestions without interrupting the original
slider-based workfow.

2 RELATED WORK

2.1 Interface for Design Parameter Tweaking
Various user interfaces have been proposed for adjusting design
parameters. For example, gallery-based interfaces [22, 26, 28, 39]
enable designers to select from visually presented options, by which
the user can concentrate on the look of the design rather than raw
parameter values. In this work, we focus on using sliders as the
means of design exploration since sliders are very common in prac-
tical scenarios. Our framework considers sliders as the main tool
and adds asynchronous suggestions into the slider-based workfow.

Researchers have extended slider interfaces in various ways
[11, 20, 21, 41, 43, 49], and some of the systems estimate design
goals either by explicitly asking human evaluators for feedback
[11, 20, 41] or by implicitly gathering data by monitoring multiple
design sessions [21]. However, none of them focus on monitoring
the trajectory of the designer’s exploration and estimating the
designer’s design goal from the slider trajectory.

BO as Assistant: Using Bayesian Optimization for Asynchronously Generating Design Suggestions UIST ’22, October 29-November 2, 2022, Bend, OR, USA

2.2 Design Tools with Optimization Assistant
Optimization techniques have been utilized as assistants in design
tools [2, 30, 51]. DesignScape [30] and Sketchplore [51] assist de-
signers in designing graphic layouts by asynchronously providing
suggestions using optimization. Our framework has similarities to
these systems in that designers are not required to provide extra
input to run optimization but are expected to operate tools as usual
and that the generated suggestions neither automatically overwrite
the current design nor interrupt ongoing tool operations (i.e., the
designer has full initiative). However, our framework is unique
in that it dynamically estimates the design goal on the fy in a
Bayesian manner by monitoring tool operations (more specifcally,
slider manipulations), and that it does not rely on domain-specifc,
pre-defned design goals; DesignScape and Sketchplore use pre-
defned objectives specialized to layout design tasks (e.g., avoiding
visual clutter, harmonizing colors).

In addition, our suggestions are generated considering not only
exploitation (i.e., respecting the estimated design goal) but also
exploration (i.e., trying not-yet-explored designs).

2.3 Human-in-the-Loop Bayesian Optimization
Human-in-the-loop optimization is a computational approach to
solve parameter optimization problems, where human evaluators
are involved in its iterative algorithm. This approach is efective
in design problems where the objective (i.e., how well the design
goal is achieved) needs to be evaluated by human evaluators (e.g.,
evaluated subjectively [7, 22, 23, 34, 48, 56], and evaluated by human
performance measurement [12, 16, 18]). The optimizer asks human
evaluators to provide feedback iteratively to obtain information
about the objective and then proceeds to search for the optimal
parameters.

BO is a black-box optimization algorithm [38], known for its
sample efciency: it can fnd good solutions within a small number
of iterations due to its intelligent sampling strategy, which considers
both exploration and exploitation. Thus, BO has been applied to
expensive-to-evaluate problems such as hyperparameter tuning in
deep learning [1]. Since humans are also expensive to query, BO is
an attractive choice for human-in-the-loop optimization [8, 12, 18,
22, 23, 57]. For example, BO has been successfully applied to the
optimization of user interface design [12], game level design [18],
and font design [16], since these design tasks need expensive human
performance measurements to evaluate their objective functions.

When the design goal is defned subjectively (e.g., on the basis of
the designer’s preference), it is in general considered to be better to
request a relative assessment (e.g., which design is better between
two options), instead of an absolute assessment (e.g., how good the
design is) [4, 52]. To enable BO to run with such relative informa-
tion, Brochu et al. [5] proposed a new variant of BO that runs with
pairwise comparison queries: the human evaluator is asked to select
one of the two options sampled by BO techniques. Following [22],
we call BO variants that run with relative information PBO1. Re-
cently, Koyama et al. [22, 23] proposed even more sample-efcient
PBO methods, where the human evaluator is asked to manipulate
a slider [23] or to select the best option from a design gallery [22].

1Gonzalez et al. [13] also use the term PBO for a slightly diferent scope; we use the
term in a broader sense.

PBO has been applied to specifc domains such as animation [4],
GAN-based image generation [8], and melody composition [57].

Our framework difers from human-in-the-loop optimization
frameworks in interaction design. There is no explicit optimization
loop; instead, BO implicitly learns the design goal by observing the
design exploration behavior, and then it provides sampled points
as asynchronous suggestions. Our work is the frst to enable BO
to run without requiring an explicit feedback loop and to use it as
a suggestive assistant. The key idea is to utilize BO’s intelligent
sampling strategy to generate suggestions.

3 FRAMEWORK AND INTERACTION

3.1 Framework Overview
Our framework, BO as Assistant, uses BO as a design suggestive
assistant. That is, it uses BO techniques for assisting designers
in adjusting design parameters by providing suggestions without
requesting any explicit inputs for the assistance. The designer can
interact with the suggestions at any time or ignore them if the
designer fnds them unattractive or wants to concentrate on slider
manipulation. This enables the designer to take the full initiative
in the design process, unlike designer-in-the-loop optimization
frameworks [5, 7, 22]. Figure 1 illustrates this concept, and Figure 2
shows the interfaces of our proof-of-concept systems.

Benefts of BO-based suggestions. Suggestions are carefully gen-
erated by sampling from the multi-dimensional parameter space by
simultaneously considering exploration and exploitation. The explo-
ration aspect is useful for avoiding getting stuck in local optima; for
example, the designer might be reluctant to try diferent parameters
by manipulating sliders after fnding a satisfactory design, but there
might be better, unseen designs of which the designer is unaware.
The exploitation aspect is useful for making suggestions respectful
to the designer’s design goal; without considering the design goal,
the system may continue to sample suggestions from the regions
that are intentionally unexplored because the designer knows they
are useless. Together, our suggestions are expected to provide addi-
tional inspiration during the slider-based design process. Note that,
even when the suggested designs are unattractive, they can still
assist familiarizing the designer with the design space (i.e., what
designs are possible), and thus enabling the designer to be more
confdent about their current design. Another important beneft of
providing reasonable suggestions is to enable efcient navigation
in the parameter space; if the designer fnds a better design in the
suggestions, the designer can navigate the high-dimensional space
directly towards the suggested point without manipulating multiple
sliders individually.

Technical components. The framework runs the following steps
automatically in the background.

Monitoring the slider manipulation (Section 6) The system
monitors how the designer manipulates the sliders. This in-
cludes not only the slider values that the designer eventually
determines but also the entire back-and-forth trajectories.
Then, the system extracts the information to run BO.

Estimating the design goal (Section 5) Using the extracted
information, the system estimates the designer’s design goal
by determining which regions in the parameter space are

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Yuki Koyama and Masataka Goto

Target sliders Design preview Design preview SuggestionsSuggestions

Blending sliders Target sliders

Blending sliders

Regenerating buttonRegenerating button

Figure 2: Interfaces of our proof-of-concept systems. The designer primarily interacts with the target sliders while seeing the
design preview. The system asynchronously provides several suggestions (three suggestions in these cases). The designer can
blend a suggested design with the current design using the associated blending slider. The designer can also request regen-
erating suggestions to see more variations. (Left) A photo color enhancement system, implemented as a standalone system.
(Right) A procedural modeling system, implemented as an addon for Blender [3].

preferred and which are not. More precisely, it constructs a
predictive model that predicts how good the design is under
a set of parameter values.

Providing suggestions (Section 5) The system determines
what to provide as suggestions using the estimated design
goal. For this purpose, the system solves optimization sub-
problems where both exploration and exploitation are maxi-
mized simultaneously.

3.2 Task Assumptions
Our framework targets parametric design tasks where a designer
adjusts multiple design parameter values via sliders and fnds the
best parameter value combination. We put several assumptions as
follows.

Parameter types. Each parameter value needs to be mapped to a
continuous fnite value range (e.g., [0, 1]) so that it can be manipu-
lated by a slider. Integer parameters are within this scope since they
can be mapped to sliders by quantization. Nominal parameters (e.g.,
parameters usually selected by dropdown lists) are out of scope.

Design goal. We assume that the design goal is defned by the
designer’s subjective preference and can be evaluated visually. Also,
we assume that the goodness function does not change over time.
For example, given a preferable design, the designer consistently
considers it to be preferable, regardless of the progression of the
design session. If this assumption is broken, the suggestions may be-
come unreasonable. Note that, even in this case, the system does not
bother the designer since the designer can ignore the suggestions.

Number of parameters. We assume that the number of target
parameters is two to around twenty, considering typical settings
in DCC tools. The case that more parameters need to be adjusted
simultaneously, such as content generation using deep generative
models [7] (e.g., 512 parameters [17]), is out of scope.

Real-time preview. We assume that the design preview can be
generated in real time while the designer manipulates sliders. Thus,

the case that heavy computation is necessary to generate design
previews given design parameter values (e.g., ofine photorealistic
rendering, high-resolution physical simulation, geometry synthesis
using topology optimization [27]) is out of scope.

Continuous change. We assume that the design (and thus its
goodness) continuously changes when a parameter value changes.
This assumption is necessary for the estimation of the design goal.
Note that most practical scenarios satisfy this assumption. One
exception is the random seed parameter, which often plays an
important role in procedural modeling with stochastic rules [45] in
computer graphics. This is out of scope since the design changes
discontinuously along with the random seed.

Inter-parameter efects. We are interested in the case that param-
eters have inter-parameter efects and are not perfectly orthogonal;
that is, their values cannot be determined independently but need
to be determined in combination. Thus, the designer needs to ma-
nipulate each slider several times; if a slider value has changed,
other slider values need to change accordingly. For example, in
photo color enhancement, the brightness and contrast parameters
defne the photo look in combination, so they need to be adjusted
together. Note that if a subset of the parameters is known to be
perfectly orthogonal to the rest, we can divide the task into two
independent subtasks beforehand, and doing so is more reasonable.

3.3 Interaction with Suggestions
3.3.1 Blending suggestions. The most straightforward approach
to using suggestions may be to let the designer select one of the
suggestions and then replace the current design with the selected
one. While this approach is fne, we adopt a diferent approach: let
the designer blend the current design with the selected suggestion.
This blending approach is inspired by previous work [23], which
demonstrated that blending could be very efective in searching for
optimal parameters compared with using only discrete selection [5].

More specifcally, we provide a “blending” slider along with each
suggestion (see Figure 2) and let the designer interactively specify a

BO as Assistant: Using Bayesian Optimization for Asynchronously Generating Design Suggestions UIST ’22, October 29-November 2, 2022, Bend, OR, USA

blending weight whose default and minimum value is zero (i.e., no
blend with the suggested design) and maximum value is one (i.e.,
full overwrite by the suggested design). While the designer moves
the blending slider, the original sliders are automatically moved in
conjunction, and the design preview is updated accordingly in real
time. This helps the designer understand how each parameter value
changes. Once the blending slider is released, the current design is
replaced with the blended design. Then, the designer can either go
back to slider manipulation or blend the new design with another
suggested design.

3.3.2 Regenerating suggestions. We also provide an optional in-
teraction: the designer can request the system to discard all the
current suggestions and generate new ones. For the designer, this
interaction is useful for exploring design variations quickly with-
out manipulating sliders. For the system, this request is helpful
for better estimating the designer’s design goal; it interprets that
the discarded suggested designs are not preferred over the current
design, and this information is used to refne the estimation and
thus provide more sophisticated suggestions.

4 PROBLEM FORMULATION
Let n be the number of target design parameters, and let xi (i =
1, . . . , N) be their values. We assume that the range of each param-
eter is normalized into [0, 1] without loss of generality. During the
design process, the designer manipulates these values via sliders.
We denote these values altogether by x = [x1 · · · xN]

⊤ ∈ X, where
X = [0, 1]N is the search space. The goal of the design task is to

∗determine the optimal parameter set, x ∈ X, defned as
∗ x = arg max д(x), (1)

x∈X

where the objective function д : X → R is called a goodness function
[23] and represents the subjective design goal (i.e., how good the
design is). Under the assumptions described in Section 3.2, the
function д does not change during the design process.

The goodness function value cannot be directly evaluated (i.e.,
the system never requests the designer to provide a score for a
given design), and even the designer does not know the function
shape (e.g., which regions in X provide large goodness values).
Instead, the system can observe the designer’s behavior that is based
on the goodness function; in general, the designer is expected to
manipulate sliders such that the goodness function value becomes
larger.

Technical goal. Our goal is to always provide the designer with
suggest suggest

K suggestion points, x , . . . , x , and asynchronously up-1 K
date these points during the design process. Our implementation
uses K = 3 considering the balance between the chance of including
good suggestions (i.e., large K is desirable) and that of overwhelm-
ing the designer with the number of suggestions available at once
(i.e., small K is desirable).

Baselines and our proposition. A possible naïve approach is to
use random sampling from the search space X to provide random
suggestions. However, this approach is not ideal because it may gen-
erate samples from already explored regions and regions in which
the designer is not interested. Another possible, more sophisticated

approach is to generate samples from not-yet-explored regions.
However, this approach still ignores the designer’s design goal, and
it may stick to the regions that the designer is not interested in
and thus has not explored intentionally. We propose using BO to
sample suggestions by considering both exploration (i.e., prioritiz-
ing not-yet-explored regions) and exploitation (i.e., prioritizing the
regions that are expected to align with the design goal). For this
purpose, we need a technique to run BO by only observing slider
manipulation behaviors.

5 PREFERENTIAL BAYESIAN OPTIMIZATION
Before describing our technique to extract the necessary informa-
tion to run BO from slider manipulation, we explain how BO [38]
works. In particular, we explain PBO [5, 22, 23], a variant of BO that
runs with relative preferential data. Readers who are familiar with
PBO can skip this section; we include this section for completeness.

Preferential data modeling. In PBO, the observable data are not
absolute function values (e.g., д(xA) = 0.1, д(xB) = 0.2) but relative
comparison information (e.g., д(xA) < д(xB)). More specifcally,
we consider the following observation as a preferential data entry:

(1) (i) (1 ≤ i ≤“given L options, x , . . . , x(L) (L ≥ 2), the i-th option x
L) is preferred.” We denote this observation by

d = [x(i) ≻ {x(1), . . . , x(i−1), x(i+1), . . . , x(L)}]. (2)

Let us denote their (latent) goodness values by д(i) = д(x(i)) for
i = 1, . . . , L, and g = [д(1) · · · д(L)]⊤. The likelihood of the afore-
mentioned preferential data entry can be modeled by the Bradley–
Terry–Luce model [52]:

exp(д(i))
p(d | g) = ÍL

. (3)
=1 exp(д(j))j

When we have multiple preferential data entries, we denote them
by D = {d1, d2, . . .}. The overall data likelihood is p(D | g) =Î

i p(di | g). In human-in-the-loop PBO systems, such preferential
data is obtained by explicitly asking human evaluators for feedback
repeatedly. In our case, the goal is to extract such preferential data
by observing slider manipulation (Section 6).

Goodness value estimation. We assume that the goodness func-
tion follows a Gaussian process (GP) [33]. Suppose that we have

(1) (M)observed M data points in total, x , . . . , x ∈ X in the pref-
erential data D. Since we cannot directly observe the goodness
values, we need to estimate them from the preferential data. For
this purpose, we use the maximum a posteriori (MAP) estimation
[23]; that is, we obtain the estimate of the goodness values by

MAPg = arg max p(g | D) = arg max p(D | g) p(g), (4)
g∈RM g∈RM

where p(g) is the prior distribution of the goodness values, which
is simply a Gaussian distribution by the GP assumption. Once the
goodness values are estimated, we can calculate the predictive
distribution at any unseen data point x as

д(x) ∼ N(µ(x), σ 2(x)). (5)

See Section A.1 for the details of the mean µ and the variance σ 2.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Yuki Koyama and Masataka Goto

0.0 1.0

(1) (2) (3) (4)

D
es

ig
n

go
al

Press Move Move Move & Release

0.0 1.0

D
es

ig
n

go
al

0.0 1.0

D
es

ig
n

go
al

0.0 1.0

D
es

ig
n

go
al

Figure 3: Illustration of a slider manipulation session. The designer moves the slider back and forth to adjust the brightness
of the image in this example. (1) To increase the parameter value, the designer presses and moves the slider knob to the right
to increase it. (2) The designer can observe the changes in the design preview while increasing the value. So far, it looks good
(i.e., the goodness value д is getting larger). (3) When the quality of the image starts to look worse (i.e., the goodness value д
is getting smaller), it becomes clear that the value has become too high, and therefore, the slider has been moved too much.
(4) The designer moves the slider knob back to the left to a suitable position and releases it. The fnal point of the knob is
assumed to be around the maximum of the goodness function д in this one-dimensional subspace.

Sampling. BO uses an acquisition function to determine the next
sampling points (in our case, the suggestions to provide to the
designer). Given the predictive distribution (Equation 5), an acqui-
sition function, a : X → R, estimates the “efectiveness” of a point,
x, if the point x is observed next. Thus, the point with the highest
acquisition function value is considered the most efective point to
observe next. To determine such a point, a maximization problem:

xsample = arg max a(x) (6)
x∈X

is solved. Commonly used acquisition functions (such as GP-UCB
and EI; see Section A.3 for more details) are designed to balance
exploration and exploitation automatically. To generate multiple
samples at once, we can use batch BO techniques [14, 37]. Specif-
ically, we use a method proposed by Schonlau et al. [37]; that is,
we solve Equation 6 sequentially K times while adding the newly
sampled point in the calculation of the variance of the predictive
distribution each time (see Section A.4).

6 TECHNIQUE TO EXTRACT DATA FOR
PREFERENTIAL BAYESIAN OPTIMIZATION

then released at a point that provides a good design. We call each
sequence of these mouse interactions (i.e., mouse press, mouse move,
and mouse release) a slider manipulation session. Our technique
extracts one preferential data entry from each slider manipulation
session.

Our key idea is that, in each slider manipulation session, the
designer is expected to manipulate the target slider to search for
a better point within the one-dimensional search space. Figure 3
illustrates a slider manipulation session and how this idea can be
interpreted. On the basis of this idea, we can come up with several
strategies to interpret the observed data into a preferential data
entry as described in Section 6.1.2.

Suppose that the designer adjusts the i-th slider among the N
sliders in a slider manipulation session. The system records the
trajectory of all the slider values. Let s be the list of all the recorded
points in this slider session, which we denote by

s = (x(1), . . . , x(ns)), (7)

where ns = |s |. Since only the i-th slider is manipulated, the i-th
dimensional components of these vectors vary over time, and the
other components are static.

This section describes our technique to extract the necessary in-
formation to run BO without explicitly requesting the designer
perform additional tasks. More specifcally, our technique extracts
preferential data in the format of Equation 2 by observing slider
manipulation (Section 6.1). We also gather preferential data when
the designer interacts with suggestions (Section 6.2 and Section 6.3)
to better estimate the designer’s design goal (i.e., the goodness
function).

6.1 Extraction from Slider Manipulation
6.1.1 Slider Manipulation Session. Although there are multiple
sliders to manipulate, the designer can manipulate only one slider
at once. Typically, the following steps occur repeatedly: the knob of
a slider is pressed by the mouse cursor, moved back and forth, and

6.1.2 Strategies. It is a reasonable assumption that the last point,
x(ns), is a relatively good choice among the list s . However, it is not
trivial to defne the set of non-preferred points. Several strategies
are possible as follows.

Initial Point This strategy uses only the initial point for the
set of non-preferred points. The preferential data entry is
composed as

d = [x(ns) ≻ {x(1)}]. (8)

This strategy provides only minimal information to PBO.
All Points This strategy uses all the recorded points except

for the last point. The preferential data entry is composed as

d = [x(ns) ≻ {x(1), . . . , x(ns −1)}] (9)

BO as Assistant: Using Bayesian Optimization for Asynchronously Generating Design Suggestions UIST ’22, October 29-November 2, 2022, Bend, OR, USA

This strategy, however, has a risk of mistakenly encoding the
designer’s preference. The designer may release the slider
knob without fne tuning to fnd the exact best position but
roughly around the best position. In this case, there may be

(1)a better point in x , . . . , x(ns −1) than x(ns), by which PBO
can estimate the preference wrongly.

Turning Points This strategy uses all the “turning” points (i.e.,
the points at which the slider movement turns from back
to forth, or from forth to back) for the set of non-preferred
points. Turning points are important because these points
are where the designer intentionally changes the direction.
Using mathematical notations, the set of turning points in s
is described as

Ts = {x(j) | Ts (j), j ∈ {2, . . . , ns − 1}}, (10)

where Ts is a boolean function to discriminate whether the
j-th point is a turning point or not, defned as h

(j+1) (j) (j) (j−1)
i

Ts (j) = (x − x)(x − x) < 0 . (11)i i i i

Note that it is reasonable to include the initial point, x(1), to
the set of non-preferred points. Thus, the preferential data
entry is composed as

d = [x(ns) ≻ {x(1)} ∪ Ts]. (12)

6.1.3 Example. For discussion purpose, here we introduce an il-
lustrative slider manipulation data (Figure 4), where the number
of target parameters is two (N = 2), and the designer performed
fve slider manipulation sessions (s1, . . . , s5). The data is around
25-second long.

Figure 5 visualizes how data points (orange dots) are accumu-
lated, how BO’s internal models (i.e., the mean of the predictive
distribution µ(x), the standard deviation of the predictive distribu-
tion σ (x), and the acquisition function, a(x)) evolve, and how the
suggestions (blue dots) are updated through these sessions using
the Turning Points strategy. The number of suggestions is three
(K = 3). In the beginning, since the standard deviation σ (x) (i.e.,
the uncertainty of the estimate) is large in most regions, the sugges-
tions are sampled at distant locations from the existing data points
(i.e., the exploration is dominant). After several sessions, since the
standard deviation becomes smaller in most regions, and so the
suggestions are sampled from both unexplored (i.e., high σ (x)) and
promising (i.e., high µ(x)) regions.

The other strategies can also work and generate similar sug-
gestions. However, we can observe that the Initial Point strategy
estimates the design goal (i.e., the distribution of µ(x)) less reason-
ably, and that it is more likely to generate extereme suggestions
sampled from the boundary of the search space, compared to the
Turning Points strategy; see Figure 6 for an example. The All Points
strategy generates suggestions similar to the Turning Points strat-
egy (see Figure 7). However, with the All Point strategy, the number
of data points, M , increases very quickly, and it is concerned that the
computational cost becomes intractable; note that the complexity
is O(M3) to calculate the predictive distribution (see Section A.1).
Thus, we recommend using the Turning Points strategy, and we
will use it in the rest of the paper.

Elapsed
time [s]

Figure 4: Illustrative slider manipulation data in a two-
dimensional problem. Two sliders (corresponding to x1 and
x2, respectively) are manipulated alternately. It consists of
fve slider manipulation sessions (s1, . . . , s5). (Left) A time
view. (Right) A two-dimensional space view.

6.2 Extraction from Suggestion Blending
The designer can perform linear interpolation between the current
design and one of the suggestions. Suppose that the designer selects
the i-th suggestion. The blended design is calculated by

blend current suggestx = (1 − t)x + tx , (13)i

where t ∈ [0, 1] is the blending weight that the designer specifes
by manipulating the blending slider. Once the blending is done, the
system adds a new preferential data entry,

blend ≻ {xcurrent suggest suggest
d = [x , x , . . . , x }], (14)1 K

and then updates the internal models and generates new sugges-
tions.

6.3 Extraction from Suggestion Regeneration
When the designer requests the “Regenerate Suggestions” func-
tionality, the system can add a preferential data entry by assuming
that the current design is preferred over all the current suggestions.
That is, a preferential data entry:

current ≻ {xsuggest suggest
d = [x , . . . , x }], (15)1 K

is composed, and then the system refnes the internal model and
generates new suggestions. For the designer, this is useful not only
for seeking unseen good designs but also for explicitly training the
system to obtain more personalized suggestions. Figure 8 visualizes
how the internal models are updated by applying this functionality.

7 GENERALITY DEMONSTRATION
To demonstrate the generality of our framework, we show three
applications in diverse parametric design scenarios. We recommend
readers watch the supplemental video for the entire screen record-
ings; in this section, we only ofer several representative screenshots
from the recordings. Note that the two interaction techniques (i.e.,
blending and regenerating suggestions) are efectively used in the
demonstration.

Photo color enhancement. Photo color enhancement is the task of
adjusting the colors of a target image by manipulating parameters
such as brightness and contrast [21]. This task is performed by
various people, from casual end-users (e.g., using Instagram) to

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Yuki Koyama and Masataka Goto

BO-generated
suggestions

Strategy: Turning Points

Figure 5: Visualization of BO’s internal models (i.e., µ(x), σ (x),
and a(x)) derived from the illustrative slider manipulation
data (Figure 4) using the Turning Points strategy. Orange
dots represent the points used by BO. Blue dots represent
the suggestions generated by BO. (Left) The mean of the pre-
dictive distribution, µ(x), representing the estimated design
goal. (Center) The standard deviation of the predictive dis-
tribution, σ (x), representing uncertainty. (Right) The acqui-
sition function, a(x), which is used for suggestion sampling.

expert photographers (e.g., using Photoshop). For demonstration,
our implementation uses a 12-dimensional setting (i.e., brightness,
contrast, saturation, lift (RGB), gamma (RGB), and gain (RGB))
following previous work [22]. This system runs as a standalone
application. Figure 9 shows two enhancement sequences with dif-
ferent photographs. Note that diferent parameters are eventually
applied to these two photographs, indicating diferent design goals.

Strategy: Initial Point

BO-generated
suggestions

Figure 6: Visualization of BO’s internal models derived from
the illustrative slider manipulation data (Figure 4) using the
Initial Point strategy. It shows the visualizations after the
frst and second slider manipulation sessions. Compared to
the results using the Turning Points strategy (Figure 5), the
points used by BO are sparse, and extreme suggestions are
more likely to be sampled.

Strategy: All Points

BO-generated
suggestions

Figure 7: Visualization of BO’s internal models derived from
the illustrative slider manipulation data (Figure 4) using the
All Points strategy. It shows the visualizations after the frst
and second slider manipulation sessions. It generates sug-
gestions similar to the Turning Points strategy (Figure 5),
but uses more points for BO.

Procedural modeling. Procedural modeling [45, 55] has become
common in DCC tools [3, 44], and CAD tools [10, 19, 35]. In addition
to visual art and engineering, it is also popular in the context of per-
sonal fabrication; for example, in Thingiverse [25], end-users share
“customizable” parametric models with each other. For demonstra-
tion, we implemented a Blender addon, which provides an addi-
tional slider window on top of the Blender window. We prepared a

BO as Assistant: Using Bayesian Optimization for Asynchronously Generating Design Suggestions UIST ’22, October 29-November 2, 2022, Bend, OR, USA

BO-generated
suggestions

New suggestions

Figure 8: Comparison between before and after applying the
“regenerate suggestions” functionality. Green dots represent
the newly generated suggestions. In addition to generating
new suggestions, this functionality reduces the estimation
uncertainty; see the before and after of σ (x).

fabrication-oriented procedural shape model, which has 6 param-
eters in total and is controlled by a cubic Bézier curve. We can
preview it in real time with the Eevee renderer2 in the Blender’s 3D
viewport. We show suggestions next to the current design in the 3D
viewport. Figure 10 shows three modeling sequences with diferent
design goals: modeling a vase, a plate, and a pen holder, respectively.
Since our framework does not assume pre-defned design goals but
learns the goals on the fy, it can handle these diferent cases in a
unifed manner and provide context-aware suggestions.

Procedural material. Procedural material is a method to create
materials for 3D objects procedurally rather than relying on static
texture images. It has been popular in many 3D graphics tools
[3, 9, 53]. Designers need to adjust many non-intuitive parameters
(such as the ones for controlling Perlin noise [32]) to create desired
materials. Note that, while inverse procedural material methods
have been proposed [15, 40], they require preparing reference pho-
tographs that precisely specify the designer’s design goal, which
is not practical in many cases. We prepared a procedural rusted
metal material with peeled painting3, controlled by 8 parameters.
As in the procedural modeling demonstration, we implemented a
Blender addon that provides a slider window and uses the real-time
3D viewport preview with the Eevee renderer. Figure 11 shows a
material designing sequence, suggesting that our framework could
successfully provide useful suggestions.

8 DISCUSSIONS AND FUTURE WORK
Assumption on slider manipulation. Our data extraction strategies

(Section 6) assume that the designer always tries to fnd a better
design in each individual slider session. It is our limitation that we
have not evaluated how much and when this assumption is valid in
real-world scenarios. Although this is a reasonable assumption, the
designer may sometimes break this assumption (i.e., releasing the

2https://docs.blender.org/manual/en/3.1/render/eevee/index.html
3https://www.youtube.com/watch?v=5LYF4sJ3tBo

slider knob at a location where the design is worse than the one
before manipulating the slider). In this case, a wrong preferential
data entry may be derived and added to the data for BO, decreasing
the accuracy of the design goal estimation. Nonetheless, this is
not critical to our framework because our data interpretation is
probabilistic (Equation 3); the estimation can be improved once
appropriate data entries are accumulated in the following slider
manipulation. Also, even wrong estimation is not negative in our
case (in contrast to human-in-the-loop systems); the designer can
always ignore the assistance when fnding it useless.

Target dimensionality. As described in Section 3.2, our framework
assumes that the target dimensionality is around twenty at most.
This is because DCC tools typically expose less than twenty sliders
at once as a slider group. Also, it is known that BO does not work
very efectively in higher-dimensional problems [7, 54]. Nonethe-
less, in case of applying our framework to higher-dimensional
problems, one possible remedy is to provide a “freeze” option for
each slider; only sliders with the “freeze” option unchecked are
considered active dimensions. For the problems with no semantics
in each slider (e.g., searching for a latent code for deep generative
models), it is efective to apply dimensionality reduction techniques
and then use BO in the reduced space [57].

Assumption on preference. We assume that the designer has a
consistent preference (Section 3.2). This does not require the de-
signer to have a fnal look in their mind from the beginning; instead,
it requires just picking a better option during slider manipulation
according to their preference, which could be feasible in broader
contexts. We also assume that the preference (i.e., the goodness func-
tion) does not change over time. Nonetheless, even if the preference
changes during a design session, the model often quickly adapts
to the new preference as more slider manipulation sessions are ob-
served. Also, we consider that supporting the change of preference
could be achieved by providing a “discard history” button to allow
the designer to explicitly indicate preference change or decaying
the infuence of observed data to prioritize newer observations.

Computational cost. Our framework could run so fast that it
could provide new suggestions immediately once a slider session
is done. For example, we observed in a typical design process that
it could run in 18 ms (for the 1st–10th slider sessions), 65 ms (for
11th–20th slider sessions), and 122 ms (for the 21st–30th slider
sessions) on average using MacBook Pro with M1 Max. Note that
the numbers of slider sessions in our demonstrations (Section 7)
were 12 at most. Note also that the user does not need to wait;
suggestions can be asynchronously displayed.

Implementation to existing tools. Since many DCC tools (e.g.,
Blender) can be augmented by developing editor extension plugins,
implementing our framework as a third-party plugin for those tools
is straightforward. Such a plugin needs three components: (1) a
PBO engine, (2) a slider widget, and (3) a design preview widget. If
the target tool’s API is fexible enough, (2) and (3) are implemented
by directly overriding the tool’s native sliders and preview inter-
faces. If not, they can be implemented as an independent window.
Our Blender demos (Figure 10 and Figure 11) use an independent
window for sliders and use Blender’s native preview interface.

https://docs.blender.org/manual/en/3.1/render/eevee/index.html
https://www.youtube.com/watch?v=5LYF4sJ3tBo

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Yuki Koyama and Masataka Goto

0:03 0:22 1:03 1:42

0:03 0:53 1:09 1:49

Figure 9: Screenshots of two design sessions (Top and Bottom) for photo color enhancement (12 parameters). Each photograph
needs diferent parameters. Our system could estimate the design goal from slider manipulation on the fy and provide sug-
gestions adaptively. Elapsed time is displayed on the lower left corner of each screenshot. See the supplemental material for the entire
screen recordings.

0:11 0:26 0:47 1:02 1:17

0:10 0:22 0:35 0:50 1:04

0:10 0:25 0:39 0:53 1:08

Current design Suggested designsGoal: Vase

Goal: Plate

Goal: Pen holder

Figure 10: Screenshots of three design sessions (Top, Middle, and Bottom) for procedural shape modeling (6 parameters). Each
design session uses the same procedural model but has a diferent design goal; creating a vase, a plate, and a pen holder,
respectively. Our system could estimate the design goal from slider manipulation on the fy and provide suggestions adaptively.
Elapsed time is displayed on the lower left corner of each screenshot. See the supplemental material for the entire screen recordings.

Sense of agency. It is an interesting question how the sense of
agency in our framework difers from that in designer-in-the-loop
optimization systems [6]. While this research question is beyond
the scope, it is important in the human-AI collaboration viewpoint
and is an interesting future research direction.

Usability and usefulness. We have not evaluated the usability
and usefulness of our framework because our focus is on enabling
a novel computational interaction concept (i.e., BO as Assistant),
and a formal evaluation of such interaction is considered beyond
the scope of this paper. Nonetheless, evaluating these aspects is
important to understand the efcacy of our framework. Note that
these aspects should be highly dependent on contexts (e.g., the
designer’s domain knowledge and design goal, the target domain,

etc.), and it is not easy to discuss general usability and usefulness.
It is interesting future work to focus on specifc domains and users
and then evaluate the usability and usefulness to obtain insights
for better interactions.

Control of suggestion diversity. Our framework automatically ad-
justs the diversity of suggestions by computationally balancing
exploration and exploitation using BO techniques. Note that it has
been suggested that allowing users to control the balance would im-
prove user engagement in human-in-the-loop systems [58]. Adding
such control and evaluating the experience in the context of sug-
gestive assistance would be interesting future work. Also, similar to
previous systems [30, 51], it could be useful to generate exploration-
dominated and exploitation-dominated suggestions separately.

BO as Assistant: Using Bayesian Optimization for Asynchronously Generating Design Suggestions UIST ’22, October 29-November 2, 2022, Bend, OR, USA

0:05 0:30 0:50

1:09 1:24 1:34

1:52 2:10 2:26

Figure 11: Screenshots of a design session of procedural material editing (8 parameters). The design goal is to create a nice-
looking rusted metal with peeled painting. Elapsed time is displayed on the upper left corner of each screenshot. See the supplemental
material for the entire screen recording. The 3D model is provided by Bastien Genbrugge under CC BY 4.0 at https://skfb.ly/6pNQ6.

Design stages. We expect BO’s exploration and exploitation as-
pects can support various stages of the whole design process. The
former aspect (i.e., sampling unexplored designs) can be useful to
the stage of trying diverse options, and the latter (i.e., sampling
likely-preferred designs) can be useful to the stage of approaching
a goal. Our framework would naturally support the seamless tran-
sition between such stages since BO typically tends to emphasize
exploration at the beginning (because of a shortage of observed
data) and then emphasize exploitation later. Explicit control of
the exploration-exploitation balance [58] may help the seamless
transition further, which is worth investigating in future work.

Creativity support. We hope that our framework inspires re-
searchers in the Creativity Support Tools domain [42]. It is often
discussed [24] that creative ideas are linked to originality and use-
fulness. We can see an analogy with exploration and exploitation
in BO. With this in mind, new research questions arise: are BO-
generated suggestions creative? Can BO support creativity? Future
investigation is necessary to answer these questions.

9 CONCLUSION
In summary, our contributions are (1) the frst framework where
BO plays the role of a suggestive assistant, (2) the frst technique to
extract preferential data from slider manipulation and run BO using
it, and (3) the demonstrations with diverse scenarios, validating its
generality. We believe that our work is an important step toward
drawing BO’s unrevealed potential and the human-centered use of
Bayesian methods in broader contexts.

ACKNOWLEDGMENTS
This work was supported in part by JST CREST Grant Number JP-
MJCR20D4, Japan. The 3D model used in Figure 11 was provided by
Bastien Genbrugge under CC BY 4.0 at https://skfb.ly/6pNQ6, and
we modifed its material to demonstrate the proposed framework.

REFERENCES
[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. 2019. Optuna: A Next-Generation Hyperparameter Optimization Frame-
work. In Proc. KDD ’19. 2623–2631. https://doi.org/10.1145/3292500.3330701

[2] Gilles Bailly, Antti Oulasvirta, Timo Kötzing, and Sabrina Hoppe. 2013. MenuOp-
timizer: Interactive Optimization of Menu Systems. In Proc. UIST ’13. 331–342.
https://doi.org/10.1145/2501988.2502024

[3] Blender Foundation. 2022. blender.org - Home of the Blender project - Free and
Open 3D Creation Software. Retrieved March 24, 2022 from https://www.blender.
org/.

[4] Eric Brochu, Tyson Brochu, and Nando de Freitas. 2010. A Bayesian Interactive
Optimization Approach to Procedural Animation Design. In Proc. SCA ’10. 103–
112. https://doi.org/10.2312/SCA/SCA10/103-112

[5] Eric Brochu, Nando de Freitas, and Abhijeet Ghosh. 2007. Active Preference
Learning with Discrete Choice Data. In Proc. NIPS ’07. 409–416. http://papers.
nips.cc/paper/3219-active-preference-learning-with-discrete-choice-data

[6] Liwei Chan, Yi-Chi Liao, George B Mo, John J Dudley, Chun-Lien Cheng, Per Ola
Kristensson, and Antti Oulasvirta. 2022. Investigating Positive and Negative Qual-
ities of Human-in-the-Loop Optimization for Designing Interaction Techniques.
In Proc. CHI ’22. 112:1–112:14. https://doi.org/10.1145/3491102.3501850

[7] Chia-Hsing Chiu, Yuki Koyama, Yu-Chi Lai, Takeo Igarashi, and Yonghao Yue.
2020. Human-in-the-Loop Diferential Subspace Search in High-Dimensional
Latent Space. ACM Trans. Graph. 39, 4 (July 2020), 85:1–85:15. https://doi.org/10.
1145/3386569.3392409

[8] Toby Chong, I-Chao Shen, Issei Sato, and Takeo Igarashi. 2021. Interactive
Optimization of Generative Image Modelling using Sequential Subspace Search
and Content-based Guidance. Comput. Graph. Forum 40, 1 (February 2021),
279–292. https://doi.org/10.1111/cgf.14188

https://skfb.ly/6pNQ6
https://skfb.ly/6pNQ6
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/2501988.2502024
https://www.blender.org/
https://www.blender.org/
https://doi.org/10.2312/SCA/SCA10/103-112
http://papers.nips.cc/paper/3219-active-preference-learning-with-discrete-choice-data
http://papers.nips.cc/paper/3219-active-preference-learning-with-discrete-choice-data
https://doi.org/10.1145/3491102.3501850
https://doi.org/10.1145/3386569.3392409
https://doi.org/10.1145/3386569.3392409
https://doi.org/10.1111/cgf.14188

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Yuki Koyama and Masataka Goto

[9] Dassault Systèmes SolidWorks Corporation. 2022. Adobe. Retrieved March 24,
2022 from https://www.adobe.com/products/substance3d-designer.html.

[10] Dassault Systèmes SolidWorks Corporation. 2022. Design/Engineering | SOLID-
WORKS. Retrieved March 24, 2022 from https://www.solidworks.com/domain/
design-engineering.

[11] Ruta Desai, Fraser Anderson, Justin Matejka, Stelian Coros, James McCann,
George Fitzmaurice, and Tovi Grossman. 2019. Geppetto: Enabling Semantic
Design of Expressive Robot Behaviors. In Proc. CHI ’19. 369:1–369:14. https:
//doi.org/10.1145/3290605.3300599

[12] John J. Dudley, Jason T. Jacques, and Per Ola Kristensson. 2019. Crowdsourcing
Interface Feature Design with Bayesian Optimization. In Proc. CHI ’19. 252:1–
252:12. https://doi.org/10.1145/3290605.3300482

[13] Javier González, Zhenwen Dai, Andreas C. Damianou, and Neil D. Lawrence.
2017. Preferential Bayesian Optimization. In Proc. ICML ’17. 1282–1291. http:
//proceedings.mlr.press/v70/gonzalez17a.html

[14] Javier Gonzalez, Zhenwen Dai, Philipp Hennig, and Neil Lawrence. 2016. Batch
Bayesian Optimization via Local Penalization. In Proc. AISTATS ’16. 648–657.
https://proceedings.mlr.press/v51/gonzalez16a.html

[15] Yiwei Hu, Julie Dorsey, and Holly Rushmeier. 2019. A Novel Framework for
Inverse Procedural Texture Modeling. ACM Trans. Graph. 38, 6 (November 2019),
186:1–186:14. https://doi.org/10.1145/3355089.3356516

[16] Florian Kadner, Yannik Keller, and Constantin Rothkopf. 2021. AdaptiFont:
Increasing Individuals’ Reading Speed with a Generative Font Model and Bayesian
Optimization. In Proc. CHI ’21. 585:1–585:11. https://doi.org/10.1145/3411764.
3445140

[17] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive
Growing of GANs for Improved Quality, Stability, and Variation. In Proc. ICLR
2018. https://openreview.net/forum?id=Hk99zCeAb

[18] Mohammad M. Khajah, Brett D. Roads, Robert V. Lindsey, Yun-En Liu, and
Michael C. Mozer. 2016. Designing Engaging Games Using Bayesian Optimization.
In Proc. CHI ’16. 5571–5582. https://doi.org/10.1145/2858036.2858253

[19] Marius Kintel. 2022. OpenSCAD - The Programmers Solid 3D CAD Modeller.
Retrieved March 24, 2022 from https://openscad.org/.

[20] Yuki Koyama, Daisuke Sakamoto, and Takeo Igarashi. 2014. Crowd-Powered
Parameter Analysis for Visual Design Exploration. In Proc. UIST ’14. 65–74. https:
//doi.org/10.1145/2642918.2647386

[21] Yuki Koyama, Daisuke Sakamoto, and Takeo Igarashi. 2016. SelPh: Progressive
Learning and Support of Manual Photo Color Enhancement. In Proc. CHI ’16.
2520–2532. https://doi.org/10.1145/2858036.2858111

[22] Yuki Koyama, Issei Sato, and Masataka Goto. 2020. Sequential Gallery for Interac-
tive Visual Design Optimization. ACM Trans. Graph. 39, 4 (July 2020), 88:1–88:12.
https://doi.org/10.1145/3386569.3392444

[23] Yuki Koyama, Issei Sato, Daisuke Sakamoto, and Takeo Igarashi. 2017. Sequential
Line Search for Efcient Visual Design Optimization by Crowds. ACM Trans.
Graph. 36, 4 (July 2017), 48:1–48:11. https://doi.org/10.1145/3072959.3073598

[24] Aaron Kozbelt, Ronald A. Beghetto, and Mark A. Runco. 2010. Theories of
Creativity. In The Cambridge Handbook of Creativity, James C. Kaufman and
Robert J. Sternberg (Eds.). Cambridge University Press, Chapter 2, 20–47. https:
//doi.org/10.1017/CBO9780511763205.004

[25] MakerBot Industries, LLC. 2022. Thingiverse - Digital Designs for Physical
Objects. Retrieved March 24, 2022 from https://www.thingiverse.com/.

[26] Joe Marks, Brad Andalman, Paul A. Beardsley, William T. Freeman, Sarah F.
Gibson, Jessica K. Hodgins, Thomas Kang, Brian Mirtich, Hanspeter Pfster,
Wheeler Ruml, Kathy Ryall, Joshua E. Seims, and Stuart M. Shieber. 1997. Design
Galleries: A General Approach to Setting Parameters for Computer Graphics
and Animation. In Proc. SIGGRAPH ’97. 389–400. https://doi.org/10.1145/258734.
258887

[27] Justin Matejka, Michael Glueck, Erin Bradner, Ali Hashemi, Tovi Grossman,
and George Fitzmaurice. 2018. Dream Lens: Exploration and Visualization of
Large-Scale Generative Design Datasets. In Proc. CHI ’18. 369:1–369:12. https:
//doi.org/10.1145/3173574.3173943

[28] Addy Ngan, Frédo Durand, and Wojciech Matusik. 2006. Image-driven Navigation
of Analytical BRDF Models. In Proc. EGSR ’06. 399–407. https://doi.org/10.2312/
EGWR/EGSR06/399-407

[29] Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization (2nd ed.).
Springer Science+Business Media. https://doi.org/10.1007/978-0-387-40065-5

[30] Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann. 2015. DesignScape:
Design with Interactive Layout Suggestions. In Proc. CHI ’15. 1221–1224. https:
//doi.org/10.1145/2702123.2702149

[31] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven
Lovegrove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for
Shape Representation. In Proc. CVPR ’19. 165–174. https://doi.org/10.1109/CVPR.
2019.00025

[32] Ken Perlin. 2002. Improving Noise. In Proc. SIGGRAPH ’02. 681–682. https:
//doi.org/10.1145/566570.566636

[33] Carl Edward Rasmussen and Christopher K. I. Williams. 2005. Gaussian Processes
for Machine Learning. The MIT Press. http://www.gaussianprocess.org/gpml/

[34] Yi Ren and Panos Y. Papalambros. 2011. A Design Preference Elicitation Query
as an Optimization Process. Journal of Mechanical Design 133, 11 (November
2011), 111004:1–111004:11. https://doi.org/10.1115/1.4005104

[35] Robert McNeel & Associates. 2022. Rhino - Rhinoceros 3D. Retrieved March 24,
2022 from https://www.rhino3d.com/.

[36] Adam Roberts, Jesse Engel, Colin Rafel, Curtis Hawthorne, and Douglas Eck.
2018. A Hierarchical Latent Vector Model for Learning Long-Term Structure in
Music. In Proc. ICML ’18. 4364–4373.

[37] Matthias Schonlau, William J. Welch, and Donald R. Jones. 1998. Global versus
local search in constrained optimization of computer models. IMS Lecture Notes—
Monograph Series 34, 1 (January 1998), 11–25. https://doi.org/10.1214/lnms/
1215456182

[38] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de
Freitas. 2016. Taking the Human Out of the Loop: A Review of Bayesian Opti-
mization. Proc. IEEE 104, 1 (January 2016), 148–175. https://doi.org/10.1109/
JPROC.2015.2494218

[39] Lior Shapira, Ariel Shamir, and Daniel Cohen-Or. 2009. Image Appearance
Exploration by Model-Based Navigation. Comput. Graph. Forum 28, 2 (2009),
629–638. https://doi.org/10.1111/j.1467-8659.2009.01403.x

[40] Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli, Tamy Boubekeur, Radomir
Mech, and Wojciech Matusik. 2020. Match: Diferentiable Material Graphs for
Procedural Material Capture. ACM Trans. Graph. 39, 6 (November 2020), 196:1–
196:15. https://doi.org/10.1145/3414685.3417781

[41] Evan Shimizu, Matthew Fisher, Sylvain Paris, James McCann, and Kayvon
Fatahalian. 2020. Design Adjectives: A Framework for Interactive Model-
Guided Exploration of Parameterized Design Spaces. In Proc. UIST ’20. 261–278.
https://doi.org/10.1145/3379337.3415866

[42] Ben Shneiderman. 2007. Creativity Support Tools: Accelerating Discovery and
Innovation. Commun. ACM 50, 12 (Dec. 2007), 20–32. https://doi.org/10.1145/
1323688.1323689

[43] Maria Shugrina, Ariel Shamir, and Wojciech Matusik. 2015. Fab Forms: Customiz-
able Objects for Fabrication with Validity and Geometry Caching. ACM Trans.
Graph. 34, 4 (July 2015), 100:1–100:12. https://doi.org/10.1145/2766994

[44] SideFX. 2022. Houdini | 3D Procedural Software for Film, TV & Gamedev | SideFX.
Retrieved March 24, 2022 from https://www.sidefx.com/products/houdini/.

[45] Ruben M. Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. 2014. A Survey
on Procedural Modelling for Virtual Worlds. Comput. Graph. Forum 33, 6 (2014),
31–50. https://doi.org/10.1111/cgf.12276

[46] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical Bayesian
Optimization of Machine Learning Algorithms. In Proc. NIPS ’12. 2951–
2959. https://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-
machine-learning-algorithms

[47] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. 2012.
Information-Theoretic Regret Bounds for Gaussian Process Optimization in the
Bandit Setting. IEEE Trans. Inf. Theory 58, 5 (May 2012), 3250–3265. https:
//doi.org/10.1109/TIT.2011.2182033

[48] Hideyuki Takagi. 2001. Interactive Evolutionary Computation: Fusion of the
Capabilities of EC Optimization and Human Evaluation. Proc. IEEE 89, 9 (Sep.
2001), 1275–1296. https://doi.org/10.1109/5.949485

[49] Michael Terry and Elizabeth D. Mynatt. 2002. Side Views: Persistent, On-demand
Previews for Open-ended Tasks. In Proc. UIST ’02. 71–80. https://doi.org/10.1145/
571985.571996

[50] The Foundry Visionmongers Ltd. 2022. Nuke | VFX and Film Editing Software.
Retrieved April 7, 2022 from https://www.foundry.com/products/nuke-family/
nuke.

[51] Kashyap Todi, Daryl Weir, and Antti Oulasvirta. 2016. Sketchplore: Sketch and
Explore with a Layout Optimiser. In Proc. DIS ’16. 543–555. https://doi.org/10.
1145/2901790.2901817

[52] Kristi Tsukida and Maya R. Gupta. 2011. How to Analyze Paired Comparison Data.
Technical Report UWEETR-2011-0004. University of Washington, Department
of Electrical Engineering. https://vannevar.ece.uw.edu/techsite/papers/refer/
UWEETR-2011-0004.html

[53] Unity Technologies. 2022. Unity Real-Time Development Platform | 3D, 2D VR &
AR Engine. Retrieved March 24, 2022 from https://unity.com/.

[54] Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, and Nando De Freitas.
2016. Bayesian Optimization in a Billion Dimensions via Random Embeddings.
J. Artif. Intell. Res. 55 (February 2016), 361–387. https://doi.org/10.1613/jair.4806

[55] Mehmet Ersin Yumer, Paul Asente, Radomir Mech, and Levent Burak Kara. 2015.
Procedural Modeling Using Autoencoder Networks. In Proc. UIST ’15. 109–118.
https://doi.org/10.1145/2807442.2807448

[56] Mingyuan Zhong, Gang Li, and Yang Li. 2021. Spacewalker: Rapid UI Design Ex-
ploration Using Lightweight Markup Enhancement and Crowd Genetic Program-
ming. In Proc. CHI ’21. 315:1–315:11. https://doi.org/10.1145/3411764.3445326

[57] Yijun Zhou, Yuki Koyama, Masataka Goto, and Takeo Igarashi. 2020. Generative
Melody Composition with Human-in-the-Loop Bayesian Optimization. In Proc.
CSMC-MuMe ’20. 21:1–21:10. https://boblsturm.github.io/aimusic2020/papers/
CSMC__MuMe_2020_paper_21.pdf

https://www.adobe.com/products/substance3d-designer.html
https://www.solidworks.com/domain/design-engineering
https://www.solidworks.com/domain/design-engineering
https://doi.org/10.1145/3290605.3300599
https://doi.org/10.1145/3290605.3300599
https://doi.org/10.1145/3290605.3300482
http://proceedings.mlr.press/v70/gonzalez17a.html
http://proceedings.mlr.press/v70/gonzalez17a.html
https://proceedings.mlr.press/v51/gonzalez16a.html
https://doi.org/10.1145/3355089.3356516
https://doi.org/10.1145/3411764.3445140
https://doi.org/10.1145/3411764.3445140
https://openreview.net/forum?id=Hk99zCeAb
https://doi.org/10.1145/2858036.2858253
https://openscad.org/
https://doi.org/10.1145/2642918.2647386
https://doi.org/10.1145/2642918.2647386
https://doi.org/10.1145/2858036.2858111
https://doi.org/10.1145/3386569.3392444
https://doi.org/10.1145/3072959.3073598
https://doi.org/10.1017/CBO9780511763205.004
https://doi.org/10.1017/CBO9780511763205.004
https://www.thingiverse.com/
https://doi.org/10.1145/258734.258887
https://doi.org/10.1145/258734.258887
https://doi.org/10.1145/3173574.3173943
https://doi.org/10.1145/3173574.3173943
https://doi.org/10.2312/EGWR/EGSR06/399-407
https://doi.org/10.2312/EGWR/EGSR06/399-407
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1145/2702123.2702149
https://doi.org/10.1145/2702123.2702149
https://doi.org/10.1109/CVPR.2019.00025
https://doi.org/10.1109/CVPR.2019.00025
https://doi.org/10.1145/566570.566636
https://doi.org/10.1145/566570.566636
http://www.gaussianprocess.org/gpml/
https://doi.org/10.1115/1.4005104
https://www.rhino3d.com/
https://doi.org/10.1214/lnms/1215456182
https://doi.org/10.1214/lnms/1215456182
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1111/j.1467-8659.2009.01403.x
https://doi.org/10.1145/3414685.3417781
https://doi.org/10.1145/3379337.3415866
https://doi.org/10.1145/1323688.1323689
https://doi.org/10.1145/1323688.1323689
https://doi.org/10.1145/2766994
https://www.sidefx.com/products/houdini/
https://doi.org/10.1111/cgf.12276
https://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms
https://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms
https://doi.org/10.1109/TIT.2011.2182033
https://doi.org/10.1109/TIT.2011.2182033
https://doi.org/10.1109/5.949485
https://doi.org/10.1145/571985.571996
https://doi.org/10.1145/571985.571996
https://www.foundry.com/products/nuke-family/nuke
https://www.foundry.com/products/nuke-family/nuke
https://doi.org/10.1145/2901790.2901817
https://doi.org/10.1145/2901790.2901817
https://vannevar.ece.uw.edu/techsite/papers/refer/UWEETR-2011-0004.html
https://vannevar.ece.uw.edu/techsite/papers/refer/UWEETR-2011-0004.html
https://unity.com/
https://doi.org/10.1613/jair.4806
https://doi.org/10.1145/2807442.2807448
https://doi.org/10.1145/3411764.3445326
https://boblsturm.github.io/aimusic2020/papers/CSMC__MuMe_2020_paper_21.pdf
https://boblsturm.github.io/aimusic2020/papers/CSMC__MuMe_2020_paper_21.pdf

BO as Assistant: Using Bayesian Optimization for Asynchronously Generating Design Suggestions UIST ’22, October 29-November 2, 2022, Bend, OR, USA

[58] Yijun Zhou, Yuki Koyama, Masataka Goto, and Takeo Igarashi. 2021. Interactive
Exploration-Exploitation Balancing for Generative Melody Composition. In Proc.
IUI ’21. 43–47. https://doi.org/10.1145/3397481.3450663

A DETAILS OF BAYESIAN OPTIMIZATION
IMPLEMENTATION

In this appendix section, we describe the details of our Bayesian
optimization implementation for completeness and reproducibility.
The implementation is available at https://koyama.xyz/project/bo-
as-assistant/.

A.1 Gaussian Process
A GP model is characterized by its prior mean function µ0 : X → R
and its kernel function k : X×X → R [33]. In this work, a constant
prior mean function, µ0(x) = 0, is assumed. The kernel is explained
in Section A.2.

Suppose that we have M pairs of a data point and its goodness
function value, {(xi , M дi)}

=1. Under the GP prior, it is known [33]i
that the predictive distribution of the goodness function value at
an unseen data point x is a Gaussian distribution; that is,

2д(x) ∼ N(µ(x), σ (x)). (16)

The mean and variance of this Gaussian distribution can be written
in closed forms as

µ(x) = k⊤ 1(K + θnoiseI −) g, (17)
2σ x k x, x k⊤ −1() = () − (K + θnoiseI) k, (18)

where � �⊤ g = д1 · · · дM , (19)� �⊤ k = k(x, x1) · · · k(x, xM) , (20) k(x1, x  1) · · · k(x1, xM)  . . . K =  . . . , . . .  (21) k (xM , x1) · · · k()xM , xM 
and θnoise is a hyperparameter to represent the noise level in ob-
served function values, and our implementation sets θnoise = 0.005
by consulting the prior work [23].

A.2 Kernel
Following Snoek et al. [46], our implementation uses the Matérn
5/2 kernel: � �

√ 5 � √ � 2k(xA, xB) = θsignal 1 + 5r + exp
3
r − 5r , (22)

where 1 θ− r = ∥ xA − xB ∥. The parameters, θsignal > 0 and length
θlength > 0, are the kernel hyperparameters, and we set θsignal = 0.5
and θlength = 0.5 throughout the paper.

Note that the kernel hyperparameters can be adaptively set via
maximum a posteriori (MAP) estimation [23] rather than fxed. We
tested MAP estimated hyperparameters, but we observed that the
generated suggestions were similar to those in the case with fxed
values. To avoid unnecessary complexity, we fxed the hyperparam-
eter values.

Figure 12: Breakdown of a process of sampling multiple
points using a batch BO technique [37]. The frst row shows
three sampled points after the frst and second slider ses-
sions (see the second row of Figure 5). The second to fourth
rows show how these three points are sampled sequentially.
Every time a new point is sampled, the variance (or the stan-
dard deviation) is temporarily updated, and the acquisition
function is updated accordingly.

A.3 Acquisition Function
For the acquisition function, our implementation uses the Gaussian
process upper confdence bound (GP-UCB) [47], defned by

a GP-UCB(x) = µ(x) + βσ (x), (23)

where β ≥ 0 is a hyperparameter controlling the balance between
exploration (i.e., the efect of σ (x)) and exploitation (i.e., the efect of
µ(x)). Our implementation uses a fxed value, β = 0.5, for simplicity.
Note that it is possible to automatically change this value on the
basis of the context [47] or let the designer directly control this
value [58].

Another commonly used choice for the acquisition function is
the expected improvement (EI) [46], calculated by

a EI(x) = (д+ − µ(x))Φ(γ (x)) + σ (x)N(γ (x); 0, 1), (24)

where д+ is the largest predicted function value at the so-far visited
points, γ (x) = (д+ −µ(x))/σ (x), and Φ is the cumulative distribution

https://doi.org/10.1145/3397481.3450663
https://koyama.xyz/project/bo-as-assistant/
https://koyama.xyz/project/bo-as-assistant/

UIST ’22, October 29-November 2, 2022, Bend, OR, USA

function of the standard normal. We tested EI and observed that it
worked as expected. We chose GP-UCB instead of EI simply because
GP-UCB is more interpretable in terms of the balance between
exploration and exploitation.

A.4 Sampling Multiple Points
Standard BO samples a single point in each step by maximizing
the acquisition function (Equation 6). To generate multiple samples
at once, we use a batch BO technique proposed by Schonlau et
al. [37]. This technique greedily samples K points (K = 3 in our
case) as follows. The frst point is sampled as usual by maximizing

Yuki Koyama and Masataka Goto

the acquisition function (Equation 6). Since we do not know its
goodness function value at this moment, we cannot update the
mean function, µ (Equation 17), with this new point. Instead, we
can update the variance function, σ 2 (Equation 18), with this new
point since its calculation does not require knowing the goodness
function value. Consequently, we can calculate an updated acquisi-
tion function using the original mean function µ and the updated
variance function σ 2. By maximizing this updated acquisition func-
tion, the second point is sampled. The rest of the points (i.e., the
third point in our case) is sampled sequentially in the same way
by maximizing updated acquisition functions. Figure 12 shows a
breakdown of our batch BO process.

	Abstract
	1 Introduction
	1.1 Background
	1.2 Contributions

	2 Related Work
	2.1 Interface for Design Parameter Tweaking
	2.2 Design Tools with Optimization Assistant
	2.3 Human-in-the-Loop Bayesian Optimization

	3 Framework and Interaction
	3.1 Framework Overview
	3.2 Task Assumptions
	3.3 Interaction with Suggestions

	4 Problem Formulation
	5 Preferential Bayesian Optimization
	6 Technique to Extract Data for Preferential Bayesian Optimization
	6.1 Extraction from Slider Manipulation
	6.2 Extraction from Suggestion Blending
	6.3 Extraction from Suggestion Regeneration

	7 Generality Demonstration
	8 Discussions and Future Work
	9 Conclusion
	Acknowledgments
	References
	A Details of Bayesian Optimization Implementation
	A.1 Gaussian Process
	A.2 Kernel
	A.3 Acquisition Function
	A.4 Sampling Multiple Points

