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Figure 1: Concept of BO as Assistant, a framework for assisting designers in fnding appropriate design parameter values by 
using Bayesian optimization (BO) techniques. The system (1) monitors the designer’s slider manipulation, (2) automatically 
estimates the designer’s design goal, and (3) asynchronously provides suggestions sampled using BO’s strategy. The designer 
can choose to use suggestions or ignore them. 

ABSTRACT 
Many design tasks involve parameter adjustment, and designers 
often struggle to fnd desirable parameter value combinations by 
manipulating sliders back and forth. For such a multi-dimensional 
search problem, Bayesian optimization (BO) is a promising tech-
nique because of its intelligent sampling strategy; in each iteration, 
BO samples the most efective points considering both exploration 
(i.e., prioritizing unexplored regions) and exploitation (i.e., prior-
itizing promising regions), enabling efcient searches. However, 
existing BO-based design frameworks take the initiative in the 
design process and thus are not fexible enough for designers to 
freely explore the design space using their domain knowledge. In 
this paper, we propose a novel design framework, BO as Assistant, 
which enables designers to take the initiative in the design process 
while also benefting from BO’s sampling strategy. The designer can 
manipulate sliders as usual; the system monitors the slider manipu-
lation to automatically estimate the design goal on the fy and then 
asynchronously provides unexplored-yet-promising suggestions 
using BO’s sampling strategy. The designer can choose to use the 
suggestions at any time. This framework uses a novel technique 
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to automatically extract the necessary information to run BO by 
observing slider manipulation without requesting additional inputs. 
Our framework is domain-agnostic, demonstrated by applying it to 
photo color enhancement, 3D shape design for personal fabrication, 
and procedural material design in computer graphics. 

CCS CONCEPTS 
• Computing methodologies → Graphics systems and interfaces; 
• Human-centered computing → Human computer interaction 
(HCI). 

KEYWORDS 
Bayesian optimization, visual design, suggestive interface 

ACM Reference Format: 
Yuki Koyama and Masataka Goto. 2022. BO as Assistant: Using Bayesian 
Optimization for Asynchronously Generating Design Suggestions. In The 
35th Annual ACM Symposium on User Interface Software and Technology 
(UIST ’22), October 29-November 2, 2022, Bend, OR, USA. ACM, New York, 
NY, USA, 14 pages. https://doi.org/10.1145/3526113.3545664 

1 INTRODUCTION 

1.1 Background 
Many design tasks involve parameter adjustment, i.e., searching for 
a parameter value combination that produces a desirable design out-
come [26]. For example, a photo color enhancement task involves 
multiple parameters such as brightness, contrast, and saturation, 
which in combination create interesting color efects to the original 
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photograph [21]. Similarly, digital content creation (DCC) tools 
[3, 44, 50] and computer-aided design (CAD) tools [10, 35] provide 
parametric functionality to procedurally generate and edit con-
tents. Also, machine learning techniques [17, 31, 36] have enabled 
designers to generate various high-quality content by providing pa-
rameters called latent codes. While such parametric design features 
enable designers to try diferent design variations easily, design-
ers are required to make an efort to fnd a desirable parameter 
combination by manipulating sliders back and forth many times. 
This task is considered a high-dimensional optimization problem, 
in which the objective is the design goal that the designer has in 
mind. Designers manually solve this problem in practice. In this 
work, we want to facilitate designers’ manual optimization tasks. 

Computational optimization is a promising technique to tackle 
such high-dimensional design problems because optimization al-
gorithms [29] use mathematically reasonable sampling strategies 
to navigate high-dimensional search spaces. With this in mind, re-
searchers have investigated human-in-the-loop optimization frame-
works [7, 8, 12, 18, 22, 23, 34, 48, 56, 57] for design problems that 
need human evaluators to evaluate the optimization objective. 
Among various optimization algorithms, Bayesian optimization 
(BO) [38] is particularly attractive for human-in-the-loop settings 
[8, 12, 18, 22, 23, 57] due to its intelligent sampling strategy; in each 
iteration, BO searches for the most efective sampling points con-
sidering both exploration (i.e., prioritizing unexplored regions in the 
design space) and exploitation (i.e., prioritizing promising regions 
in the design space), enabling efcient searches. BO iteratively asks 
human evaluators (i.e., the designer in our case) to provide feedback 
about the sampled points. 

However, existing designer-in-the-loop optimization frameworks 
(i.e., human-in-the-loop optimization frameworks in which a de-
signer plays the role of the evaluator), regardless of using BO, are 
insufciently fexible for designers to freely explore the design 
space using their domain knowledge. For example, suppose a de-
signer is adjusting parameters for photo color enhancement using a 
designer-in-the-loop optimization framework. At a certain iteration 
step, the system may propose a nice color enhancement, but the 
designer may wish for the image to be brighter. Thus, this designer 
may want to increase the “brightness” parameter value according 
to the designer’s domain knowledge. However, such an operation is 
not possible during the optimization since the optimizer determines 
what and how parameters are changed (i.e., all the designer can do is 
evaluate the provided designs). In this way, the designer-in-the-loop 
workfow does not enable designers to take the initiative in deter-
mining how the design process progresses, unlike the traditional 
slider-based workfow. As a result, it may reduce the designers’ 
sense of agency, ownership, and creativity [6]. 

1.2 Contributions 
We propose a novel design framework, BO as Assistant, which en-
ables designers to take the full initiative in the design process while 
also benefting from BO’s intelligent sampling strategy. Figure 1 
illustrates this framework. This framework does not require the 
designer to provide any additional input to run the optimization; 
the designer can manipulate sliders as usual. The system monitors 
the slider manipulation to progressively and automatically estimate 

the design goal in a Bayesian manner, and then it asynchronously 
provides suggestions. Thus, this framework has no explicit opti-
mization loop unlike previous frameworks. Suggestions are sampled 
from unexplored-yet-promising regions in the multi-dimensional 
design space using BO techniques. The designer can choose to use 
the suggested designs or just ignore them if they are unsatisfactory 
or the designer wants to focus on manual exploration. This “op-
timization as a design assistant” approach has been investigated 
previously [2, 30, 51]. Our framework is unique in that it dynam-
ically estimates the designer’s design goal (i.e., the intention to 
determine parameter sets of interest) from the behavior of the de-
sign exploration (i.e., how the designer explores the design space), 
instead of assuming domain-specifc pre-defned design goals; thus, 
our framework is general and domain-agnostic. 

To develop this framework, we propose a novel technique to 
automatically extract the necessary information to run BO only 
from slider manipulations. Standard BO [38] requires to observe a 
numerical value of the objective function at each sampling point 
(i.e., in our case, a score representing how subjectively good the cor-
responding design is). This information cannot be observed unless 
the designer explicitly provides an absolute score for every visited 
parameter set, which is impractical; thus, standard BO is unsuitable 
for our purpose. Instead, we use preferential Bayesian optimization 
(PBO) [5, 22, 23], a variant of BO that runs with relative preferen-
tial information (i.e., which parameter set is preferred over other 
parameter sets) instead of absolute scores. Our technique enables 
to extract such relative preferential information by observing the 
behavior of the designer’s slider manipulation, and then runs PBO 
using the acquired data to generate reasonable suggestions. 

To demonstrate the proposed framework and its generality, we 
apply it to diverse design domains, including photo color enhance-
ment, 3D shape design for personal fabrication, and procedural 
material design in computer graphics. The framework could work 
in these diferent scenarios in a unifed manner and automatically 
provide reasonable suggestions without interrupting the original 
slider-based workfow. 

2 RELATED WORK 

2.1 Interface for Design Parameter Tweaking 
Various user interfaces have been proposed for adjusting design 
parameters. For example, gallery-based interfaces [22, 26, 28, 39] 
enable designers to select from visually presented options, by which 
the user can concentrate on the look of the design rather than raw 
parameter values. In this work, we focus on using sliders as the 
means of design exploration since sliders are very common in prac-
tical scenarios. Our framework considers sliders as the main tool 
and adds asynchronous suggestions into the slider-based workfow. 

Researchers have extended slider interfaces in various ways 
[11, 20, 21, 41, 43, 49], and some of the systems estimate design 
goals either by explicitly asking human evaluators for feedback 
[11, 20, 41] or by implicitly gathering data by monitoring multiple 
design sessions [21]. However, none of them focus on monitoring 
the trajectory of the designer’s exploration and estimating the 
designer’s design goal from the slider trajectory. 
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2.2 Design Tools with Optimization Assistant 
Optimization techniques have been utilized as assistants in design 
tools [2, 30, 51]. DesignScape [30] and Sketchplore [51] assist de-
signers in designing graphic layouts by asynchronously providing 
suggestions using optimization. Our framework has similarities to 
these systems in that designers are not required to provide extra 
input to run optimization but are expected to operate tools as usual 
and that the generated suggestions neither automatically overwrite 
the current design nor interrupt ongoing tool operations (i.e., the 
designer has full initiative). However, our framework is unique 
in that it dynamically estimates the design goal on the fy in a 
Bayesian manner by monitoring tool operations (more specifcally, 
slider manipulations), and that it does not rely on domain-specifc, 
pre-defned design goals; DesignScape and Sketchplore use pre-
defned objectives specialized to layout design tasks (e.g., avoiding 
visual clutter, harmonizing colors). 

In addition, our suggestions are generated considering not only 
exploitation (i.e., respecting the estimated design goal) but also 
exploration (i.e., trying not-yet-explored designs). 

2.3 Human-in-the-Loop Bayesian Optimization 
Human-in-the-loop optimization is a computational approach to 
solve parameter optimization problems, where human evaluators 
are involved in its iterative algorithm. This approach is efective 
in design problems where the objective (i.e., how well the design 
goal is achieved) needs to be evaluated by human evaluators (e.g., 
evaluated subjectively [7, 22, 23, 34, 48, 56], and evaluated by human 
performance measurement [12, 16, 18]). The optimizer asks human 
evaluators to provide feedback iteratively to obtain information 
about the objective and then proceeds to search for the optimal 
parameters. 

BO is a black-box optimization algorithm [38], known for its 
sample efciency: it can fnd good solutions within a small number 
of iterations due to its intelligent sampling strategy, which considers 
both exploration and exploitation. Thus, BO has been applied to 
expensive-to-evaluate problems such as hyperparameter tuning in 
deep learning [1]. Since humans are also expensive to query, BO is 
an attractive choice for human-in-the-loop optimization [8, 12, 18, 
22, 23, 57]. For example, BO has been successfully applied to the 
optimization of user interface design [12], game level design [18], 
and font design [16], since these design tasks need expensive human 
performance measurements to evaluate their objective functions. 

When the design goal is defned subjectively (e.g., on the basis of 
the designer’s preference), it is in general considered to be better to 
request a relative assessment (e.g., which design is better between 
two options), instead of an absolute assessment (e.g., how good the 
design is) [4, 52]. To enable BO to run with such relative informa-
tion, Brochu et al. [5] proposed a new variant of BO that runs with 
pairwise comparison queries: the human evaluator is asked to select 
one of the two options sampled by BO techniques. Following [22], 
we call BO variants that run with relative information PBO1. Re-
cently, Koyama et al. [22, 23] proposed even more sample-efcient 
PBO methods, where the human evaluator is asked to manipulate 
a slider [23] or to select the best option from a design gallery [22]. 

1Gonzalez et al. [13] also use the term PBO for a slightly diferent scope; we use the 
term in a broader sense. 

PBO has been applied to specifc domains such as animation [4], 
GAN-based image generation [8], and melody composition [57]. 

Our framework difers from human-in-the-loop optimization 
frameworks in interaction design. There is no explicit optimization 
loop; instead, BO implicitly learns the design goal by observing the 
design exploration behavior, and then it provides sampled points 
as asynchronous suggestions. Our work is the frst to enable BO 
to run without requiring an explicit feedback loop and to use it as 
a suggestive assistant. The key idea is to utilize BO’s intelligent 
sampling strategy to generate suggestions. 

3 FRAMEWORK AND INTERACTION 

3.1 Framework Overview 
Our framework, BO as Assistant, uses BO as a design suggestive 
assistant. That is, it uses BO techniques for assisting designers 
in adjusting design parameters by providing suggestions without 
requesting any explicit inputs for the assistance. The designer can 
interact with the suggestions at any time or ignore them if the 
designer fnds them unattractive or wants to concentrate on slider 
manipulation. This enables the designer to take the full initiative 
in the design process, unlike designer-in-the-loop optimization 
frameworks [5, 7, 22]. Figure 1 illustrates this concept, and Figure 2 
shows the interfaces of our proof-of-concept systems. 

Benefts of BO-based suggestions. Suggestions are carefully gen-
erated by sampling from the multi-dimensional parameter space by 
simultaneously considering exploration and exploitation. The explo-
ration aspect is useful for avoiding getting stuck in local optima; for 
example, the designer might be reluctant to try diferent parameters 
by manipulating sliders after fnding a satisfactory design, but there 
might be better, unseen designs of which the designer is unaware. 
The exploitation aspect is useful for making suggestions respectful 
to the designer’s design goal; without considering the design goal, 
the system may continue to sample suggestions from the regions 
that are intentionally unexplored because the designer knows they 
are useless. Together, our suggestions are expected to provide addi-
tional inspiration during the slider-based design process. Note that, 
even when the suggested designs are unattractive, they can still 
assist familiarizing the designer with the design space (i.e., what 
designs are possible), and thus enabling the designer to be more 
confdent about their current design. Another important beneft of 
providing reasonable suggestions is to enable efcient navigation 
in the parameter space; if the designer fnds a better design in the 
suggestions, the designer can navigate the high-dimensional space 
directly towards the suggested point without manipulating multiple 
sliders individually. 

Technical components. The framework runs the following steps 
automatically in the background. 

Monitoring the slider manipulation (Section 6) The system 
monitors how the designer manipulates the sliders. This in-
cludes not only the slider values that the designer eventually 
determines but also the entire back-and-forth trajectories. 
Then, the system extracts the information to run BO. 

Estimating the design goal (Section 5) Using the extracted 
information, the system estimates the designer’s design goal 
by determining which regions in the parameter space are 
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Figure 2: Interfaces of our proof-of-concept systems. The designer primarily interacts with the target sliders while seeing the 
design preview. The system asynchronously provides several suggestions (three suggestions in these cases). The designer can 
blend a suggested design with the current design using the associated blending slider. The designer can also request regen-
erating suggestions to see more variations. (Left) A photo color enhancement system, implemented as a standalone system. 
(Right) A procedural modeling system, implemented as an addon for Blender [3]. 

preferred and which are not. More precisely, it constructs a 
predictive model that predicts how good the design is under 
a set of parameter values. 

Providing suggestions (Section 5) The system determines 
what to provide as suggestions using the estimated design 
goal. For this purpose, the system solves optimization sub-
problems where both exploration and exploitation are maxi-
mized simultaneously. 

3.2 Task Assumptions 
Our framework targets parametric design tasks where a designer 
adjusts multiple design parameter values via sliders and fnds the 
best parameter value combination. We put several assumptions as 
follows. 

Parameter types. Each parameter value needs to be mapped to a 
continuous fnite value range (e.g., [0, 1]) so that it can be manipu-
lated by a slider. Integer parameters are within this scope since they 
can be mapped to sliders by quantization. Nominal parameters (e.g., 
parameters usually selected by dropdown lists) are out of scope. 

Design goal. We assume that the design goal is defned by the 
designer’s subjective preference and can be evaluated visually. Also, 
we assume that the goodness function does not change over time. 
For example, given a preferable design, the designer consistently 
considers it to be preferable, regardless of the progression of the 
design session. If this assumption is broken, the suggestions may be-
come unreasonable. Note that, even in this case, the system does not 
bother the designer since the designer can ignore the suggestions. 

Number of parameters. We assume that the number of target 
parameters is two to around twenty, considering typical settings 
in DCC tools. The case that more parameters need to be adjusted 
simultaneously, such as content generation using deep generative 
models [7] (e.g., 512 parameters [17]), is out of scope. 

Real-time preview. We assume that the design preview can be 
generated in real time while the designer manipulates sliders. Thus, 

the case that heavy computation is necessary to generate design 
previews given design parameter values (e.g., ofine photorealistic 
rendering, high-resolution physical simulation, geometry synthesis 
using topology optimization [27]) is out of scope. 

Continuous change. We assume that the design (and thus its 
goodness) continuously changes when a parameter value changes. 
This assumption is necessary for the estimation of the design goal. 
Note that most practical scenarios satisfy this assumption. One 
exception is the random seed parameter, which often plays an 
important role in procedural modeling with stochastic rules [45] in 
computer graphics. This is out of scope since the design changes 
discontinuously along with the random seed. 

Inter-parameter efects. We are interested in the case that param-
eters have inter-parameter efects and are not perfectly orthogonal; 
that is, their values cannot be determined independently but need 
to be determined in combination. Thus, the designer needs to ma-
nipulate each slider several times; if a slider value has changed, 
other slider values need to change accordingly. For example, in 
photo color enhancement, the brightness and contrast parameters 
defne the photo look in combination, so they need to be adjusted 
together. Note that if a subset of the parameters is known to be 
perfectly orthogonal to the rest, we can divide the task into two 
independent subtasks beforehand, and doing so is more reasonable. 

3.3 Interaction with Suggestions 
3.3.1 Blending suggestions. The most straightforward approach 
to using suggestions may be to let the designer select one of the 
suggestions and then replace the current design with the selected 
one. While this approach is fne, we adopt a diferent approach: let 
the designer blend the current design with the selected suggestion. 
This blending approach is inspired by previous work [23], which 
demonstrated that blending could be very efective in searching for 
optimal parameters compared with using only discrete selection [5]. 

More specifcally, we provide a “blending” slider along with each 
suggestion (see Figure 2) and let the designer interactively specify a 
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blending weight whose default and minimum value is zero (i.e., no 
blend with the suggested design) and maximum value is one (i.e., 
full overwrite by the suggested design). While the designer moves 
the blending slider, the original sliders are automatically moved in 
conjunction, and the design preview is updated accordingly in real 
time. This helps the designer understand how each parameter value 
changes. Once the blending slider is released, the current design is 
replaced with the blended design. Then, the designer can either go 
back to slider manipulation or blend the new design with another 
suggested design. 

3.3.2 Regenerating suggestions. We also provide an optional in-
teraction: the designer can request the system to discard all the 
current suggestions and generate new ones. For the designer, this 
interaction is useful for exploring design variations quickly with-
out manipulating sliders. For the system, this request is helpful 
for better estimating the designer’s design goal; it interprets that 
the discarded suggested designs are not preferred over the current 
design, and this information is used to refne the estimation and 
thus provide more sophisticated suggestions. 

4 PROBLEM FORMULATION 
Let n be the number of target design parameters, and let xi (i = 
1, . . . , N ) be their values. We assume that the range of each param-
eter is normalized into [0, 1] without loss of generality. During the 
design process, the designer manipulates these values via sliders. 
We denote these values altogether by x = [x1 · · · xN ]

⊤ ∈ X, where 
X = [0, 1]N is the search space. The goal of the design task is to 

∗determine the optimal parameter set, x ∈ X, defned as 
∗ x = arg max д(x), (1) 

x∈X 

where the objective function д : X → R is called a goodness function 
[23] and represents the subjective design goal (i.e., how good the 
design is). Under the assumptions described in Section 3.2, the 
function д does not change during the design process. 

The goodness function value cannot be directly evaluated (i.e., 
the system never requests the designer to provide a score for a 
given design), and even the designer does not know the function 
shape (e.g., which regions in X provide large goodness values). 
Instead, the system can observe the designer’s behavior that is based 
on the goodness function; in general, the designer is expected to 
manipulate sliders such that the goodness function value becomes 
larger. 

Technical goal. Our goal is to always provide the designer with
suggest suggest

K suggestion points, x , . . . , x , and asynchronously up-1 K
date these points during the design process. Our implementation 
uses K = 3 considering the balance between the chance of including 
good suggestions (i.e., large K is desirable) and that of overwhelm-
ing the designer with the number of suggestions available at once 
(i.e., small K is desirable). 

Baselines and our proposition. A possible naïve approach is to 
use random sampling from the search space X to provide random 
suggestions. However, this approach is not ideal because it may gen-
erate samples from already explored regions and regions in which 
the designer is not interested. Another possible, more sophisticated 

approach is to generate samples from not-yet-explored regions. 
However, this approach still ignores the designer’s design goal, and 
it may stick to the regions that the designer is not interested in 
and thus has not explored intentionally. We propose using BO to 
sample suggestions by considering both exploration (i.e., prioritiz-
ing not-yet-explored regions) and exploitation (i.e., prioritizing the 
regions that are expected to align with the design goal). For this 
purpose, we need a technique to run BO by only observing slider 
manipulation behaviors. 

5 PREFERENTIAL BAYESIAN OPTIMIZATION 
Before describing our technique to extract the necessary informa-
tion to run BO from slider manipulation, we explain how BO [38] 
works. In particular, we explain PBO [5, 22, 23], a variant of BO that 
runs with relative preferential data. Readers who are familiar with 
PBO can skip this section; we include this section for completeness. 

Preferential data modeling. In PBO, the observable data are not 
absolute function values (e.g., д(xA) = 0.1, д(xB ) = 0.2) but relative 
comparison information (e.g., д(xA) < д(xB )). More specifcally, 
we consider the following observation as a preferential data entry: 

(1) (i) (1 ≤ i ≤“given L options, x , . . . , x(L) (L ≥ 2), the i-th option x 
L) is preferred.” We denote this observation by 

d = [x(i) ≻ {x(1), . . . , x(i−1), x(i+1), . . . , x(L)}]. (2) 

Let us denote their (latent) goodness values by д(i) = д(x(i)) for 
i = 1, . . . , L, and g = [д(1) · · · д(L)]⊤. The likelihood of the afore-
mentioned preferential data entry can be modeled by the Bradley– 
Terry–Luce model [52]: 

exp(д(i))
p(d | g) = ÍL 

. (3) 
=1 exp(д(j))j 

When we have multiple preferential data entries, we denote them 
by D = {d1, d2, . . .}. The overall data likelihood is p(D | g) =Î 

i p(di | g). In human-in-the-loop PBO systems, such preferential 
data is obtained by explicitly asking human evaluators for feedback 
repeatedly. In our case, the goal is to extract such preferential data 
by observing slider manipulation (Section 6). 

Goodness value estimation. We assume that the goodness func-
tion follows a Gaussian process (GP) [33]. Suppose that we have 

(1) (M )observed M data points in total, x , . . . , x ∈ X in the pref-
erential data D. Since we cannot directly observe the goodness 
values, we need to estimate them from the preferential data. For 
this purpose, we use the maximum a posteriori (MAP) estimation 
[23]; that is, we obtain the estimate of the goodness values by 

MAPg = arg max p(g | D) = arg max p(D | g) p(g), (4) 
g∈RM g∈RM 

where p(g) is the prior distribution of the goodness values, which 
is simply a Gaussian distribution by the GP assumption. Once the 
goodness values are estimated, we can calculate the predictive 
distribution at any unseen data point x as 

д(x) ∼ N(µ(x), σ 2(x)). (5) 

See Section A.1 for the details of the mean µ and the variance σ 2. 
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Figure 3: Illustration of a slider manipulation session. The designer moves the slider back and forth to adjust the brightness 
of the image in this example. (1) To increase the parameter value, the designer presses and moves the slider knob to the right 
to increase it. (2) The designer can observe the changes in the design preview while increasing the value. So far, it looks good 
(i.e., the goodness value д is getting larger). (3) When the quality of the image starts to look worse (i.e., the goodness value д 
is getting smaller), it becomes clear that the value has become too high, and therefore, the slider has been moved too much. 
(4) The designer moves the slider knob back to the left to a suitable position and releases it. The fnal point of the knob is 
assumed to be around the maximum of the goodness function д in this one-dimensional subspace. 

Sampling. BO uses an acquisition function to determine the next 
sampling points (in our case, the suggestions to provide to the 
designer). Given the predictive distribution (Equation 5), an acqui-
sition function, a : X → R, estimates the “efectiveness” of a point, 
x, if the point x is observed next. Thus, the point with the highest 
acquisition function value is considered the most efective point to 
observe next. To determine such a point, a maximization problem: 

xsample = arg max a(x) (6) 
x∈X 

is solved. Commonly used acquisition functions (such as GP-UCB 
and EI; see Section A.3 for more details) are designed to balance 
exploration and exploitation automatically. To generate multiple 
samples at once, we can use batch BO techniques [14, 37]. Specif-
ically, we use a method proposed by Schonlau et al. [37]; that is, 
we solve Equation 6 sequentially K times while adding the newly 
sampled point in the calculation of the variance of the predictive 
distribution each time (see Section A.4). 

6 TECHNIQUE TO EXTRACT DATA FOR 
PREFERENTIAL BAYESIAN OPTIMIZATION 

then released at a point that provides a good design. We call each 
sequence of these mouse interactions (i.e., mouse press, mouse move, 
and mouse release) a slider manipulation session. Our technique 
extracts one preferential data entry from each slider manipulation 
session. 

Our key idea is that, in each slider manipulation session, the 
designer is expected to manipulate the target slider to search for 
a better point within the one-dimensional search space. Figure 3 
illustrates a slider manipulation session and how this idea can be 
interpreted. On the basis of this idea, we can come up with several 
strategies to interpret the observed data into a preferential data 
entry as described in Section 6.1.2. 

Suppose that the designer adjusts the i-th slider among the N 
sliders in a slider manipulation session. The system records the 
trajectory of all the slider values. Let s be the list of all the recorded 
points in this slider session, which we denote by 

s = (x(1), . . . , x(ns )), (7) 

where ns = |s |. Since only the i-th slider is manipulated, the i-th 
dimensional components of these vectors vary over time, and the 
other components are static. 

This section describes our technique to extract the necessary in-
formation to run BO without explicitly requesting the designer 
perform additional tasks. More specifcally, our technique extracts 
preferential data in the format of Equation 2 by observing slider 
manipulation (Section 6.1). We also gather preferential data when 
the designer interacts with suggestions (Section 6.2 and Section 6.3) 
to better estimate the designer’s design goal (i.e., the goodness 
function). 

6.1 Extraction from Slider Manipulation 
6.1.1 Slider Manipulation Session. Although there are multiple 
sliders to manipulate, the designer can manipulate only one slider 
at once. Typically, the following steps occur repeatedly: the knob of 
a slider is pressed by the mouse cursor, moved back and forth, and 

6.1.2 Strategies. It is a reasonable assumption that the last point, 
x(ns ), is a relatively good choice among the list s . However, it is not 
trivial to defne the set of non-preferred points. Several strategies 
are possible as follows. 

Initial Point This strategy uses only the initial point for the 
set of non-preferred points. The preferential data entry is 
composed as 

d = [x(ns ) ≻ {x(1)}]. (8) 

This strategy provides only minimal information to PBO. 
All Points This strategy uses all the recorded points except 

for the last point. The preferential data entry is composed as 

d = [x(ns ) ≻ {x(1), . . . , x(ns −1)}] (9) 
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This strategy, however, has a risk of mistakenly encoding the 
designer’s preference. The designer may release the slider 
knob without fne tuning to fnd the exact best position but 
roughly around the best position. In this case, there may be 

(1)a better point in x , . . . , x(ns −1) than x(ns ), by which PBO 
can estimate the preference wrongly. 

Turning Points This strategy uses all the “turning” points (i.e., 
the points at which the slider movement turns from back 
to forth, or from forth to back) for the set of non-preferred 
points. Turning points are important because these points 
are where the designer intentionally changes the direction. 
Using mathematical notations, the set of turning points in s 
is described as 

Ts = {x(j) | Ts (j), j ∈ {2, . . . , ns − 1}}, (10) 

where Ts is a boolean function to discriminate whether the 
j-th point is a turning point or not, defned as h 

(j+1) (j) (j) (j−1) 
i 

Ts (j) = (x − x )(x − x ) < 0 . (11)i i i i 

Note that it is reasonable to include the initial point, x(1), to 
the set of non-preferred points. Thus, the preferential data 
entry is composed as 

d = [x(ns ) ≻ {x(1)} ∪ Ts ]. (12) 

6.1.3 Example. For discussion purpose, here we introduce an il-
lustrative slider manipulation data (Figure 4), where the number 
of target parameters is two (N = 2), and the designer performed 
fve slider manipulation sessions (s1, . . . , s5). The data is around 
25-second long. 

Figure 5 visualizes how data points (orange dots) are accumu-
lated, how BO’s internal models (i.e., the mean of the predictive 
distribution µ(x), the standard deviation of the predictive distribu-
tion σ (x), and the acquisition function, a(x)) evolve, and how the 
suggestions (blue dots) are updated through these sessions using 
the Turning Points strategy. The number of suggestions is three 
(K = 3). In the beginning, since the standard deviation σ (x) (i.e., 
the uncertainty of the estimate) is large in most regions, the sugges-
tions are sampled at distant locations from the existing data points 
(i.e., the exploration is dominant). After several sessions, since the 
standard deviation becomes smaller in most regions, and so the 
suggestions are sampled from both unexplored (i.e., high σ (x)) and 
promising (i.e., high µ(x)) regions. 

The other strategies can also work and generate similar sug-
gestions. However, we can observe that the Initial Point strategy 
estimates the design goal (i.e., the distribution of µ(x)) less reason-
ably, and that it is more likely to generate extereme suggestions 
sampled from the boundary of the search space, compared to the 
Turning Points strategy; see Figure 6 for an example. The All Points 
strategy generates suggestions similar to the Turning Points strat-
egy (see Figure 7). However, with the All Point strategy, the number 
of data points, M , increases very quickly, and it is concerned that the 
computational cost becomes intractable; note that the complexity 
is O(M3) to calculate the predictive distribution (see Section A.1). 
Thus, we recommend using the Turning Points strategy, and we 
will use it in the rest of the paper. 

Elapsed
time [s]

Figure 4: Illustrative slider manipulation data in a two-
dimensional problem. Two sliders (corresponding to x1 and 
x2, respectively) are manipulated alternately. It consists of 
fve slider manipulation sessions (s1, . . . , s5). (Left) A time 
view. (Right) A two-dimensional space view. 

6.2 Extraction from Suggestion Blending 
The designer can perform linear interpolation between the current 
design and one of the suggestions. Suppose that the designer selects 
the i-th suggestion. The blended design is calculated by 

blend current suggestx = (1 − t)x + tx , (13)i 

where t ∈ [0, 1] is the blending weight that the designer specifes 
by manipulating the blending slider. Once the blending is done, the 
system adds a new preferential data entry, 

blend ≻ {xcurrent suggest suggest
d = [x , x , . . . , x }], (14)1 K 

and then updates the internal models and generates new sugges-
tions. 

6.3 Extraction from Suggestion Regeneration 
When the designer requests the “Regenerate Suggestions” func-
tionality, the system can add a preferential data entry by assuming 
that the current design is preferred over all the current suggestions. 
That is, a preferential data entry: 

current ≻ {xsuggest suggest
d = [x , . . . , x }], (15)1 K 

is composed, and then the system refnes the internal model and 
generates new suggestions. For the designer, this is useful not only 
for seeking unseen good designs but also for explicitly training the 
system to obtain more personalized suggestions. Figure 8 visualizes 
how the internal models are updated by applying this functionality. 

7 GENERALITY DEMONSTRATION 
To demonstrate the generality of our framework, we show three 
applications in diverse parametric design scenarios. We recommend 
readers watch the supplemental video for the entire screen record-
ings; in this section, we only ofer several representative screenshots 
from the recordings. Note that the two interaction techniques (i.e., 
blending and regenerating suggestions) are efectively used in the 
demonstration. 

Photo color enhancement. Photo color enhancement is the task of 
adjusting the colors of a target image by manipulating parameters 
such as brightness and contrast [21]. This task is performed by 
various people, from casual end-users (e.g., using Instagram) to 
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BO-generated
suggestions

Strategy: Turning Points

Figure 5: Visualization of BO’s internal models (i.e., µ(x), σ (x), 
and a(x)) derived from the illustrative slider manipulation 
data (Figure 4) using the Turning Points strategy. Orange 
dots represent the points used by BO. Blue dots represent 
the suggestions generated by BO. (Left) The mean of the pre-
dictive distribution, µ(x), representing the estimated design 
goal. (Center) The standard deviation of the predictive dis-
tribution, σ (x), representing uncertainty. (Right) The acqui-
sition function, a(x), which is used for suggestion sampling. 

expert photographers (e.g., using Photoshop). For demonstration, 
our implementation uses a 12-dimensional setting (i.e., brightness, 
contrast, saturation, lift (RGB), gamma (RGB), and gain (RGB)) 
following previous work [22]. This system runs as a standalone 
application. Figure 9 shows two enhancement sequences with dif-
ferent photographs. Note that diferent parameters are eventually 
applied to these two photographs, indicating diferent design goals. 

Strategy: Initial Point

BO-generated
suggestions

Figure 6: Visualization of BO’s internal models derived from 
the illustrative slider manipulation data (Figure 4) using the 
Initial Point strategy. It shows the visualizations after the 
frst and second slider manipulation sessions. Compared to 
the results using the Turning Points strategy (Figure 5), the 
points used by BO are sparse, and extreme suggestions are 
more likely to be sampled. 

Strategy: All Points

BO-generated
suggestions

Figure 7: Visualization of BO’s internal models derived from 
the illustrative slider manipulation data (Figure 4) using the 
All Points strategy. It shows the visualizations after the frst 
and second slider manipulation sessions. It generates sug-
gestions similar to the Turning Points strategy (Figure 5), 
but uses more points for BO. 

Procedural modeling. Procedural modeling [45, 55] has become 
common in DCC tools [3, 44], and CAD tools [10, 19, 35]. In addition 
to visual art and engineering, it is also popular in the context of per-
sonal fabrication; for example, in Thingiverse [25], end-users share 
“customizable” parametric models with each other. For demonstra-
tion, we implemented a Blender addon, which provides an addi-
tional slider window on top of the Blender window. We prepared a 
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BO-generated
suggestions

New suggestions

Figure 8: Comparison between before and after applying the 
“regenerate suggestions” functionality. Green dots represent 
the newly generated suggestions. In addition to generating 
new suggestions, this functionality reduces the estimation 
uncertainty; see the before and after of σ (x). 

fabrication-oriented procedural shape model, which has 6 param-
eters in total and is controlled by a cubic Bézier curve. We can 
preview it in real time with the Eevee renderer2 in the Blender’s 3D 
viewport. We show suggestions next to the current design in the 3D 
viewport. Figure 10 shows three modeling sequences with diferent 
design goals: modeling a vase, a plate, and a pen holder, respectively. 
Since our framework does not assume pre-defned design goals but 
learns the goals on the fy, it can handle these diferent cases in a 
unifed manner and provide context-aware suggestions. 

Procedural material. Procedural material is a method to create 
materials for 3D objects procedurally rather than relying on static 
texture images. It has been popular in many 3D graphics tools 
[3, 9, 53]. Designers need to adjust many non-intuitive parameters 
(such as the ones for controlling Perlin noise [32]) to create desired 
materials. Note that, while inverse procedural material methods 
have been proposed [15, 40], they require preparing reference pho-
tographs that precisely specify the designer’s design goal, which 
is not practical in many cases. We prepared a procedural rusted 
metal material with peeled painting3, controlled by 8 parameters. 
As in the procedural modeling demonstration, we implemented a 
Blender addon that provides a slider window and uses the real-time 
3D viewport preview with the Eevee renderer. Figure 11 shows a 
material designing sequence, suggesting that our framework could 
successfully provide useful suggestions. 

8 DISCUSSIONS AND FUTURE WORK 
Assumption on slider manipulation. Our data extraction strategies 

(Section 6) assume that the designer always tries to fnd a better 
design in each individual slider session. It is our limitation that we 
have not evaluated how much and when this assumption is valid in 
real-world scenarios. Although this is a reasonable assumption, the 
designer may sometimes break this assumption (i.e., releasing the 

2https://docs.blender.org/manual/en/3.1/render/eevee/index.html 
3https://www.youtube.com/watch?v=5LYF4sJ3tBo 

slider knob at a location where the design is worse than the one 
before manipulating the slider). In this case, a wrong preferential 
data entry may be derived and added to the data for BO, decreasing 
the accuracy of the design goal estimation. Nonetheless, this is 
not critical to our framework because our data interpretation is 
probabilistic (Equation 3); the estimation can be improved once 
appropriate data entries are accumulated in the following slider 
manipulation. Also, even wrong estimation is not negative in our 
case (in contrast to human-in-the-loop systems); the designer can 
always ignore the assistance when fnding it useless. 

Target dimensionality. As described in Section 3.2, our framework 
assumes that the target dimensionality is around twenty at most. 
This is because DCC tools typically expose less than twenty sliders 
at once as a slider group. Also, it is known that BO does not work 
very efectively in higher-dimensional problems [7, 54]. Nonethe-
less, in case of applying our framework to higher-dimensional 
problems, one possible remedy is to provide a “freeze” option for 
each slider; only sliders with the “freeze” option unchecked are 
considered active dimensions. For the problems with no semantics 
in each slider (e.g., searching for a latent code for deep generative 
models), it is efective to apply dimensionality reduction techniques 
and then use BO in the reduced space [57]. 

Assumption on preference. We assume that the designer has a 
consistent preference (Section 3.2). This does not require the de-
signer to have a fnal look in their mind from the beginning; instead, 
it requires just picking a better option during slider manipulation 
according to their preference, which could be feasible in broader 
contexts. We also assume that the preference (i.e., the goodness func-
tion) does not change over time. Nonetheless, even if the preference 
changes during a design session, the model often quickly adapts 
to the new preference as more slider manipulation sessions are ob-
served. Also, we consider that supporting the change of preference 
could be achieved by providing a “discard history” button to allow 
the designer to explicitly indicate preference change or decaying 
the infuence of observed data to prioritize newer observations. 

Computational cost. Our framework could run so fast that it 
could provide new suggestions immediately once a slider session 
is done. For example, we observed in a typical design process that 
it could run in 18 ms (for the 1st–10th slider sessions), 65 ms (for 
11th–20th slider sessions), and 122 ms (for the 21st–30th slider 
sessions) on average using MacBook Pro with M1 Max. Note that 
the numbers of slider sessions in our demonstrations (Section 7) 
were 12 at most. Note also that the user does not need to wait; 
suggestions can be asynchronously displayed. 

Implementation to existing tools. Since many DCC tools (e.g., 
Blender) can be augmented by developing editor extension plugins, 
implementing our framework as a third-party plugin for those tools 
is straightforward. Such a plugin needs three components: (1) a 
PBO engine, (2) a slider widget, and (3) a design preview widget. If 
the target tool’s API is fexible enough, (2) and (3) are implemented 
by directly overriding the tool’s native sliders and preview inter-
faces. If not, they can be implemented as an independent window. 
Our Blender demos (Figure 10 and Figure 11) use an independent 
window for sliders and use Blender’s native preview interface. 

https://docs.blender.org/manual/en/3.1/render/eevee/index.html
https://www.youtube.com/watch?v=5LYF4sJ3tBo
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0:03 0:22 1:03 1:42

0:03 0:53 1:09 1:49

Figure 9: Screenshots of two design sessions (Top and Bottom) for photo color enhancement (12 parameters). Each photograph 
needs diferent parameters. Our system could estimate the design goal from slider manipulation on the fy and provide sug-
gestions adaptively. Elapsed time is displayed on the lower left corner of each screenshot. See the supplemental material for the entire 
screen recordings. 

0:11 0:26 0:47 1:02 1:17

0:10 0:22 0:35 0:50 1:04

0:10 0:25 0:39 0:53 1:08

Current design Suggested designsGoal: Vase

Goal: Plate

Goal: Pen holder

Figure 10: Screenshots of three design sessions (Top, Middle, and Bottom) for procedural shape modeling (6 parameters). Each 
design session uses the same procedural model but has a diferent design goal; creating a vase, a plate, and a pen holder, 
respectively. Our system could estimate the design goal from slider manipulation on the fy and provide suggestions adaptively. 
Elapsed time is displayed on the lower left corner of each screenshot. See the supplemental material for the entire screen recordings. 

Sense of agency. It is an interesting question how the sense of 
agency in our framework difers from that in designer-in-the-loop 
optimization systems [6]. While this research question is beyond 
the scope, it is important in the human-AI collaboration viewpoint 
and is an interesting future research direction. 

Usability and usefulness. We have not evaluated the usability 
and usefulness of our framework because our focus is on enabling 
a novel computational interaction concept (i.e., BO as Assistant), 
and a formal evaluation of such interaction is considered beyond 
the scope of this paper. Nonetheless, evaluating these aspects is 
important to understand the efcacy of our framework. Note that 
these aspects should be highly dependent on contexts (e.g., the 
designer’s domain knowledge and design goal, the target domain, 

etc.), and it is not easy to discuss general usability and usefulness. 
It is interesting future work to focus on specifc domains and users 
and then evaluate the usability and usefulness to obtain insights 
for better interactions. 

Control of suggestion diversity. Our framework automatically ad-
justs the diversity of suggestions by computationally balancing 
exploration and exploitation using BO techniques. Note that it has 
been suggested that allowing users to control the balance would im-
prove user engagement in human-in-the-loop systems [58]. Adding 
such control and evaluating the experience in the context of sug-
gestive assistance would be interesting future work. Also, similar to 
previous systems [30, 51], it could be useful to generate exploration-
dominated and exploitation-dominated suggestions separately. 
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0:05 0:30 0:50

1:09 1:24 1:34

1:52 2:10 2:26

Figure 11: Screenshots of a design session of procedural material editing (8 parameters). The design goal is to create a nice-
looking rusted metal with peeled painting. Elapsed time is displayed on the upper left corner of each screenshot. See the supplemental 
material for the entire screen recording. The 3D model is provided by Bastien Genbrugge under CC BY 4.0 at https://skfb.ly/6pNQ6. 

Design stages. We expect BO’s exploration and exploitation as-
pects can support various stages of the whole design process. The 
former aspect (i.e., sampling unexplored designs) can be useful to 
the stage of trying diverse options, and the latter (i.e., sampling 
likely-preferred designs) can be useful to the stage of approaching 
a goal. Our framework would naturally support the seamless tran-
sition between such stages since BO typically tends to emphasize 
exploration at the beginning (because of a shortage of observed 
data) and then emphasize exploitation later. Explicit control of 
the exploration-exploitation balance [58] may help the seamless 
transition further, which is worth investigating in future work. 

Creativity support. We hope that our framework inspires re-
searchers in the Creativity Support Tools domain [42]. It is often 
discussed [24] that creative ideas are linked to originality and use-
fulness. We can see an analogy with exploration and exploitation 
in BO. With this in mind, new research questions arise: are BO-
generated suggestions creative? Can BO support creativity? Future 
investigation is necessary to answer these questions. 

9 CONCLUSION 
In summary, our contributions are (1) the frst framework where 
BO plays the role of a suggestive assistant, (2) the frst technique to 
extract preferential data from slider manipulation and run BO using 
it, and (3) the demonstrations with diverse scenarios, validating its 
generality. We believe that our work is an important step toward 
drawing BO’s unrevealed potential and the human-centered use of 
Bayesian methods in broader contexts. 
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A DETAILS OF BAYESIAN OPTIMIZATION 
IMPLEMENTATION 

In this appendix section, we describe the details of our Bayesian 
optimization implementation for completeness and reproducibility. 
The implementation is available at https://koyama.xyz/project/bo-
as-assistant/. 

A.1 Gaussian Process 
A GP model is characterized by its prior mean function µ0 : X → R 
and its kernel function k : X×X → R [33]. In this work, a constant 
prior mean function, µ0(x) = 0, is assumed. The kernel is explained 
in Section A.2. 

Suppose that we have M pairs of a data point and its goodness 
function value, {(xi , M дi )}        

=1. Under the GP prior, it is known [33]i
that the predictive distribution of the goodness function value at 
an unseen data point x is a Gaussian distribution; that is, 

2д(x) ∼ N(µ(x), σ (x)). (16) 

The mean and variance of this Gaussian distribution can be written 
in closed forms as 

µ(x) = k⊤ 1(K + θnoiseI −) g, (17) 
2σ x   k x, x  k⊤ −1( ) = ( ) − (K + θnoiseI) k, (18) 

where � �⊤ g = д1 · · · дM , (19)� �⊤ k = k(x, x1) · · · k(x, xM ) , (20) k(x1, x   1) · · · k(x1, xM )  . . . K =  . . . , . . .  (21)  k (xM , x1) · · · k( )xM , xM   
and θnoise is a hyperparameter to represent the noise level in ob-
served function values, and our implementation sets θnoise = 0.005 
by consulting the prior work [23]. 

A.2 Kernel 
Following Snoek et al. [46], our implementation uses the Matérn 
5/2 kernel: � �

√ 5 � √ � 2k(xA, xB ) = θsignal 1 + 5r +  exp 
3
r − 5r , (22)

where 1   θ−  r = ∥ xA − xB ∥. The parameters, θsignal > 0 and length
θlength > 0, are the kernel hyperparameters, and we set θsignal = 0.5 
and θlength = 0.5 throughout the paper. 

Note that the kernel hyperparameters can be adaptively set via 
maximum a posteriori (MAP) estimation [23] rather than fxed. We 
tested MAP estimated hyperparameters, but we observed that the 
generated suggestions were similar to those in the case with fxed 
values. To avoid unnecessary complexity, we fxed the hyperparam-
eter values. 

Figure 12: Breakdown of a process of sampling multiple 
points using a batch BO technique [37]. The frst row shows 
three sampled points after the frst and second slider ses-
sions (see the second row of Figure 5). The second to fourth 
rows show how these three points are sampled sequentially. 
Every time a new point is sampled, the variance (or the stan-
dard deviation) is temporarily updated, and the acquisition 
function is updated accordingly. 

A.3 Acquisition Function 
For the acquisition function, our implementation uses the Gaussian 
process upper confdence bound (GP-UCB) [47], defned by 

a GP-UCB(x) = µ(x) + βσ (x), (23) 

where β ≥ 0 is a hyperparameter controlling the balance between 
exploration (i.e., the efect of σ (x)) and exploitation (i.e., the efect of 
µ(x)). Our implementation uses a fxed value, β = 0.5, for simplicity. 
Note that it is possible to automatically change this value on the 
basis of the context [47] or let the designer directly control this 
value [58]. 

Another commonly used choice for the acquisition function is 
the expected improvement (EI) [46], calculated by 

a EI(x) = (д+ − µ(x))Φ(γ (x)) + σ (x)N(γ (x); 0, 1), (24) 

where д+ is the largest predicted function value at the so-far visited 
points, γ (x) = (д+ −µ(x))/σ (x), and Φ is the cumulative distribution 
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function of the standard normal. We tested EI and observed that it 
worked as expected. We chose GP-UCB instead of EI simply because 
GP-UCB is more interpretable in terms of the balance between 
exploration and exploitation. 

A.4 Sampling Multiple Points 
Standard BO samples a single point in each step by maximizing 
the acquisition function (Equation 6). To generate multiple samples 
at once, we use a batch BO technique proposed by Schonlau et 
al. [37]. This technique greedily samples K points (K = 3 in our 
case) as follows. The frst point is sampled as usual by maximizing 

Yuki Koyama and Masataka Goto 

the acquisition function (Equation 6). Since we do not know its 
goodness function value at this moment, we cannot update the 
mean function, µ (Equation 17), with this new point. Instead, we 
can update the variance function, σ 2 (Equation 18), with this new 
point since its calculation does not require knowing the goodness 
function value. Consequently, we can calculate an updated acquisi-
tion function using the original mean function µ and the updated 
variance function σ 2. By maximizing this updated acquisition func-
tion, the second point is sampled. The rest of the points (i.e., the 
third point in our case) is sampled sequentially in the same way 
by maximizing updated acquisition functions. Figure 12 shows a 
breakdown of our batch BO process. 
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