
Form Follows Function(): An IDE to Create Laser-cut Interfaces
and Microcontroller Programs from Single Code Base

Jun Kato Masataka Goto
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

{jun.kato, m.goto}@aist.go.jp

ABSTRACT
During the development of physical computing devices,
physical object models and programs for microcontrollers
are usually created with separate tools with distinct files. As
a result, it is difficult to track the changes in hardware and
software without discrepancy. Moreover, the software
cannot directly access hardware metrics. Designing
hardware interface cannot benefit from the source code
information either. This demonstration proposes a browser-
based IDE named f3.js that enables development of both as
a single JavaScript code base. The demonstration allows
audiences to play with the f3.js IDE and showcases example
applications such as laser-cut interfaces generated from the
same code but with different parameters. Programmers can
experience the full feature and designers can interact with
preset projects with a mouse or touch to customize laser-cut
interfaces. More information is available at http://f3js.org.

Author Keywords
Integrated development environment; personal fabrication;
laser-cut interface; microcontroller.

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces – GUI; D.2.6. Software Engineering:
Programming Environments – Integrated environments.

INTRODUCTION
Physical computing, or the development process of the so-
called Internet of Things (IoT), involves iterative cycles of
modeling hardware and programming software. The recent
proliferation of personal fabrication techniques reduces the
cost and time of printing physical objects. Microcontrollers
are becoming more powerful, and some are capable of
running programs written in dynamically-typed languages
such as JavaScript, allowing more software enthusiasts to
create their prototypes easily.

Development of hardware and software is usually done with

different tools, making it cumbersome to keep track of both
changes synchronously. Moreover, tool separation prevents
the software from accessing the hardware metrics and vice
versa. For instance, modeling an object that has holes to
support sensors and actuators requires manual input of their
metrics. The source code contains ‘import’-like statements
for their drivers and thus might know which sensors and
actuators are used, but it is not aware of the metrics, such as
the size of the printed objects.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).

UIST '15 Adjunct, November 08-11, 2015, Charlotte, NC, USA
ACM 978-1-4503-3780-9/15/11.
http://dx.doi.org/10.1145/2815585.2817797

Figure 1. Overview of the development workflow with f3.js,
completed in a single web page, language and code base.

43

http://f3js.org/
http://dx.doi.org/10.1145/2815585.2817797

We aim to address these issues and leverage the potential of
microcontroller applications aware of the hardware metrics.
This demonstration proposes an integrated development
environment f3.js that stands for “form follows function(),
written in JavaScript.” It allows development of both a
physical user interface (form) and its behavior by writing
JavaScript code (function) on a browser (Figure 1). The
programmer can write the same code that runs in a browser
as well as on a microcontroller to allow customization of
the layout of laser-cut interfaces and to define its behavior,
respectively. Such double-meaning source code is achieved
by utilizing two different JavaScript interpreters – one
running on the f3.js and the other on the microcontroller.

FORM FOLLOWS FUNCTION() – F3.JS
The main interface of f3.js is rendered as a single web page
as shown in Figure 1. The top of the page presents general
information (such as the project directory) and becomes
more detailed as the page progresses. While common
commands are provided as links under the Operations menu
in the file manager, the user can always switch to Console
or Secure Shell tabs and input any command.

The current system supports Tessel.io 1 and Intel Edison 2
microcontrollers, which can run Node.js-based JavaScript
applications. Once the user chooses a directory on the
system, existing code in the project is analyzed, and its
overview is shown in the ‘Project Summary’ tab. While
most of the information is specified in package.json and
can be edited in-place, the platform type is automatically
detected by analyzing the JavaScript source code.

The current f3.js library contains Node.js packages that
drive Grove and Tessel.io modules. These are sensors and
actuators encapsulated with standardized connectors, easily
attached to the supported microcontrollers. The next tab
‘Code with Print Preview’ shows the source code editor and
the print preview. The programmer can write JavaScript
application code that imports the f3.js library and creates
the hardware module instances on the code editor.

The f3.js library does not only enable controlling the
hardware modules but also provides the metrics information
and supports live programming of laser-cut interfaces. The
print preview is dynamically rendered by executing the
source code with the sandboxed f3.js JavaScript interpreter
on the browser. The interpreter ignores any calls to
undefined functions meant to run on the microcontrollers.
When a change is made to the source code, the system
instantly evaluates the code and updates the preview. With
this live programming support, the programmer can easily
design the laser-cut interface as well as the interactive GUI
on the print preview. With this interactivity, end-users
including designers can use a mouse or touch to customize
the laser-cut interfaces to fit their needs.

1 Tessel. https://tessel.io
2 Intel Edison. https://www.intel.com/content/www/do-it-yourself/edison.html

When the user is satisfied with the source code and the
laser-cut interface, the system generates a PDF file and
allows the user to laser-cut the acrylic panels. Finally, the
assembled hardware can be connected to the host computer,
and the user can upload the source code to start running the
program on the microcontroller. The f3.js library on the
microcontrollers does the same calculation as on the
browser but does not render anything nor provide any
interactivity (since there is no canvas to draw graphics) –
therefore only allows to retrieve the metrics information.
During execution of the program, f3.js shows a console
with which the user can monitor the console output and
input commands if needed.

RELATED WORK AND DISCUSSION
There exists prior work on programming tools for either
physical objects or microcontroller applications. The former
work includes DressCode [1] that allows designers to write
code in a domain-specific language that generates two-
dimensional artifacts. ShapeJS [2] provides JavaScript API
that enables generating three-dimensional printer-ready
objects. Our interaction design does not only allow the
design of the hardware but also its behavior and can be
integrated into these techniques. Recent work from the
latter category includes .NET Gadgeteer [3] and Autodesk
123D Circuits [4], both of which support programming
microcontrollers along with the graphical representations of
the circuits. While these environments only care logical
connections between microcontrollers and other modules,
our system provides print preview that can be interactively
edited by the designers and outputs laser-cut interfaces.

As discussed above, the novelty of our work resides in the
integration of hardware and software design using a single
programming language and single code base. The potential
benefits include fast iterative development of applications
aware of hardware metrics, simple version control, loose
learning curve, and easy collaboration, whose validations
remain as our future work. Whether JavaScript is suitable
for designing layout of physical objects or not is an open
question. Upon the choice of the language, we attached
importance to the fact that it is popular, used for various
purposes, and has a defacto standard package manager.
Further details on the f3.js IDE and library are available on
http://f3js.org.

REFERENCES
1. Jacobs, J., and Buechley, L. Codeable Objects:

Computational Design and Digital Fabrication for
Novice Programmers. In Proc. of CHI’13, 1589-1598.

2. Shapeways. ShapeJS. http://shapejs.shapeways.com
3. Villar, N., Scott. J., Hodges, S., Hammil, K., and Miller,

C. .NET Gadgeteer: A Platform for Custom Devices. In
Proc. of Pervasive'12, 216-233.

4. Autodesk. Autodesk 123D Circuits.
http://www.123dapp.com/circuits

44

https://tessel.io/
https://www.intel.com/content/www/do-it-yourself/edison.html
http://f3js.org/
http://shapejs.shapeways.com/
http://www.123dapp.com/circuits

	Form Follows Function(): An IDE to Create Laser-cut Interfaces and Microcontroller Programs from Single Code Base
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	Form Follows Function() – f3.js
	Related Work and Discussion
	REFERENCES

