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Toward an Understanding of Musical Factors in Judging a Song on

First Listen*

Kosetsu TSUKUDA ", Tomoyasu NAKANO ™, Masahiro HAMASAKI'®, Nonmembers,

SUMMARY  When auser listens to a song for the first time, what musical
factors (e.g., melody, tempo, and lyrics) influence the user’s decision to like
or dislike the song? An answer to this question would enable researchers
to more deeply understand how people interact with music. Thus, in this
paper, we report the results of an online survey involving 302 participants to
investigate the influence of 10 musical factors. We also evaluate how a user’s
personal characteristics (i.e., personality traits and musical sophistication)
relate to the importance of each factor for the user. Moreover, we propose
and evaluate three factor-based functions that would enable more effectively
browsing songs on a music streaming service. The user survey results
provide several reusable insights, including the following: (1) for most
participants, the melody and singing voice are considered important factors
in judging whether they like a song on first listen; (2) personal characteristics
do influence the important factors (e.g., participants who have high openness
and are sensitive to beat deviations emphasize melody); and (3) the proposed
functions each have a certain level of demand because they enable users to
easily find music that fits their tastes. We have released part of the survey
results as publicly available data so that other researchers can reproduce the
results and analyze the data from their own viewpoints.

key words: musical factor, music preference, user survey, personality trait,
musical sophistication

1. Introduction

When a user listens to a song for the first time on a music
streaming service and it matches her/his taste, s/he may listen
to it until the end or add it to her/his favorites or a playlist.
On the other hand, if the song does not match the user’s
preferences, s/he may stop playing it partway through [2],
[3]. By accumulating logs of such listening behaviors, music
streaming services can estimate users’ music preferences and
implement functions such as recommendations [4], [5].
However, when a user first listens to a song and de-
cides whether or not s/he likes it, which musical factors does
s/he consider important? For example, one user may like a
song because of its lyrics, another may like it because of its
melody, and third may like it because of the sound of a mu-
sical instrument. Several prior studies investigated people’s
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preferred musical factors [6]-[8]. However, those studies
targeted songs that the study participants already liked and
investigated the reasons for liking those songs in terms of
factors that were specific to the songs. Accordingly, when a
participant answered that s/he liked a certain song because of
its lyrics, it was unclear that s/he would always judge whether
s/he liked or disliked a song because of its lyrics. Thus, de-
spite those studies, there is a lack of research on the musical
factors that influence people’s judgment on whether they like
a song on first listen. This lack of research motivates our first
research question:

RQ1 When people listen to a song for the first time and
judge whether they like it, which musical factors affect
this judgment, and to what extent?

To more deeply understand how people interact with
music, the effects of users’ personality traits and musical
sophistication on their music preferences and listening be-
haviors have also been studied [6], [9]-[22]. For example,
it has been reported that people with high openness tend
to show a preference for folk music [9] and that musical
sophistication positively influences recommendation accep-
tance [10]. Following such studies, we address the second
research question:

RQ2 How do people’s personality traits and musical sophis-
tication affect the importance of each musical factor in
judging whether they like a song?

If a certain musical factor influences judgments about
song preferences, it would be useful to propose practical
examples of its engineering use. In fact, proposed improve-
ments to the functions of music streaming services from
user study results have provided useful insights to the re-
search community [23]-[36]. Hence, we investigate a third
research question:

RQ3 What are the implications of musical factors for the
functions of music streaming services?

To address these research questions, we targeted 10 mu-
sical factors and conducted a questionnaire-based online user
survey involving 302 participants. Our main contributions
can be summarized as follows.

* We reveal that the factors of melody and singing voice
have large influences on music preference judgment,
whereas the factor of danceability has a small influence.

Copyright © 2025 The Institute of Electronics, Information and Communication Engineers
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* From a psychological perspective, we show that both
personality traits and musical sophistication affect the
importance of the various musical factors. Given these
results, we discuss the possibility that the important
factors for a particular user could be estimated from the
user’s listening behaviors on a music streaming service.

* From an engineering perspective, we propose three
functions that would enable users to effectively browse
songs by leveraging musical factors, and we show that
each function has a certain level of demand.

* We have made the English translation of the survey
questionnaire and the survey results publicly available
on the web to support future studies’.

2. Related Work
2.1 Musical Factors

Understanding why people listen to music has been of interest
to researchers. One typical research direction focuses on
the motivation to listen to music in daily life. The main
reasons include emotional reasons such as relaxation [21],
[37]-[40] and relief [41], [42]. People also listen to music to
concentrate and to pass time [43].

Another research direction investigates the reasons for
listening to specific preferred songs in terms of musical fac-
tors. Greasley et al. [7] conducted interviews about partic-
ipants’ music collections. Among the main reasons why
the participants liked their collections were musical factors
such as the lyrics and instruments. Sanfilippo et al. [8] asked
participants to sample two songs from their music library
on a listening device and answer questions such as “why
do you enjoy listening to the track?” The participants often
answered the questions by using a vocabulary of musical
factors. Boyle et al. [6] investigated the influence of musi-
cal factors on young people’s pop music preferences. Each
participant listed her/his three favorite pop songs and rated
the importance of various musical factors in liking those
songs. The results revealed that melody, mood, and rhythm
had large influences. Although these studies investigated the
influences of musical factors, they focused on only songs that
the participants already liked. Our study is different in that
we focus on the musical factors that people consider impor-
tant when they listen to a song for the first time. Since there
is a vast number of songs that people have not yet listened
to, investigating such factors is beneficial to support finding
songs that match their preferences.

2.2 Personal Characteristics

In the music domain, user’s preferences, interests, and behav-
iors are influenced by personal characteristics. In particular,
many studies have investigated the influences of personal-
ity traits measured by the Big Five Inventory [9], [11]-[18],

T They can be downloaded from https://github.com/ktsukuda/
musical_factor.
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[44]-[48]. For example, personality has significant asso-
ciations with genre preferences [9], [14]-[16], [44] and au-
dio preferences[46]. It also influences the desired level
of diversity in a recommended song list [47]. Ferwerda et
al. [48] revealed that when a user browses for music, the
preferred taxonomy (mood, activity, and genre) depends on
the user’s personality. Such personality-based results can
be used for personalization. In fact, several studies have
shown increased recommendation quality when personality
is incorporated [49]-[52]. Musical sophistication is another
typical personal characteristic that influences music prefer-
ences. For example, musically sophisticated users listen to
more diverse songs on both the artist and genre levels [53],
are more familiar with the songs in a recommended song
list [54], and prefer a less personalized playlist [19]. These
findings can also be used to improve music recommendations
and user interfaces. Following those studies, we investigate
the influences of personality traits and musical sophistication
on the importance of musical factors, and we suggest how
its results can be used to improve the recommendations.

2.3 Design and Function Proposals

For user studies on music listeners’ needs, preferences, and
behaviors, it is common to not only report the results but
also propose designs and functions to improve music ser-
vices by applying the results [23]-[36]. Such proposals have
provided reusable insights for the research community. Ex-
amples of these proposals include song recommendations
according to the user’s attention level [23], support for re-
mote co-listening with a friend [24], and support for users
to add their interpretations of lyrics [25]. Inspired by those
prior studies, we propose three functions that enable music
streaming services to leverage musical factors. Whereas the
above studies only proposed designs and functions, we also
conducted a user study to evaluate users’ willingness to use
the proposed functions.

3. Methods
3.1 Participants

We recruited participants for our user study via an online
research company in Japan. We limited the participants to
those who were Japanese and listened to music an average of
at least one day per week via any music streaming service.
The participants answered our questionnaire through a web
browser. We paid about 11.26 USD (1,750 JPY) to each
participant. Although 354 participants answered the survey,
to make the analysis results more reliable, we removed the
answers from 52 participants who submitted improper re-
sponses to a free-response question’”. The remaining 302
participants were diverse in both gender and age range: 147

T We also examined the responses to multiple-choice questions
and confirmed that no participants selected the same answer number
for all questions. Therefore, we did not remove any participants
based on their multiple-choice responses.
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male (10s: 4; 20s: 31; 30s: 33; 40s: 44; 50s: 35) and 155
female (10s: 9; 20s: 39; 30s: 35; 40s: 34; 50s: 38).

3.2 Influence of Musical Factors
3.2.1 Musical Factors

Referring to prior studies on people’s favorite songs [6]-[8],
[55], we targeted the following 10 musical factors that may
influence a person’s judgment of liking or disliking music
on first listen: melody, singing voice, rhythm, lyrics, mood,
tempo, harmony, sentiment, instruments, and danceability.
Although these 10 factors are not completely independent
each other (e.g., there would be relatively high correlation
between mood and sentiment), we adopted them to analyze
as many factors as possible. In this study, all of these factors
were determined entirely from the music. That is, we did
not consider social factors that depend on the context of the
music or the listener (e.g., the artist’s image, the popularity
of music, and whether music was introduced by a friend).
Rather, as this is an initial study on the influence of musi-
cal factors for judging a song on first listen, we leave the
investigation of such social factors for future work.

3.2.2 Procedure

For each musical factor, we first showed the participants the
factor’s name, its meaning, and a question. In the case of
instruments, for example, we showed the following descrip-
tion to represent its meaning: “Instruments means the type
of instruments used in the piece and their sounds.” Similarly,
we showed the following question: “How important is the
instruments in judging whether you like or dislike a song
on first listen?”" The possible answers were “not important,”
“hardly important,” “somewhat important,” “important,” and
“very important.” When the answer for a factor was “not im-
portant” or “hardly important,” the participant was asked to
respond freely on why it was unimportant. On the other hand,
when the answer was “somewhat important,” “important,”
or “very important,” the participant was asked to respond
freely with at least one criterion for judging that s/he liked
or disliked a song according to the factor. The 10 musical
factors were displayed in a random order to each participant.
Note that in this survey, we asked the participants to
answer the questions without actually listening to music to
avoid answer bias caused by the music they listened to for
the survey. Instead, they were asked to imagine daily situ-
ations where they listen to a song for the first time and rate
the importance of each factor. This type of survey, which in-
volves imagining a certain situation, is an established survey
method in music-related studies [23], [24], [56]-[60].

3.3 Influence of Personal Factors

To enable a more detailed analysis of musical factors from

In this survey, no specifications were made regarding the genre
of the song.
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a psychological perspective, we conduct a survey based on
personality traits and musical sophistication.

3.3.1 Procedure for Personality Traits

We measured the participants’ personality traits in terms of
five aspects (i.e., openness, conscientiousness, extraversion,
agreeableness, and neuroticism) by using the 29-item Big
Five Inventory (BFI) on a 7-point scale (1: strongly disagree
- 7. strongly agree) [61]. We used the BFI because of its
popularity in past studies [9], [11]-[18], [44]-[48] compared
to other traits such as opinion leadership [20].

3.3.2  Procedure for Musical Sophistication

To measure the musical sophistication, we used the following
nine questions on a 7-point scale.

1. InstExp: I engage in regular, daily practice of a musical
instrument (1: never; 2: less than 1 year; 3: 1-2 years;
4: 2-4 years; 5: 4-6 years; 6: 6-10 years; 7: 10 or more
years).

2. DanceExp: I engage in regular, daily dancing (1: never;
2: less than 1 year; 3: 1-2 years; 4: 2-4 years; 5: 4-6
years; 6: 6-10 years; 7: 10 or more years).

3. NoticeBeat: I can tell when people sing or play out of
time with the beat (1: strongly disagree; 2: disagree;
3: somewhat disagree; 4: neither agree nor disagree; 5:
somewhat agree; 6: agree; 7: strongly agree).

4. NoticeTune: I can tell when people sing or play out of
tune (1: strongly disagree; 2: disagree; 3: somewhat
disagree; 4: neither agree nor disagree; 5: somewhat
agree; 6: agree; 7: strongly agree).

5. LsnMusic: 1 listen to music (1: less than 15 minutes
per day; 2: 15-30 minutes per day; 3: 30-60 minutes
per day; 4: 1-1.5 hours per day; 5: 1.5-2 hours per day;
6: 2-4 hours per day; 7: more than 4 hours per day).

6. LsnNew: I listen to music that is new to me (1: less
than 1 song per month; 2: 1-3 songs per month; 3: 4-6
songs per month; 4; 7-10 songs per month; 5: 11-20
songs per month; 6: 21-30 songs per month; 7: more
than 30 songs per month).

7. ViewLyrics: I view lyrics while listening to music (1:
less than 1 song per month; 2: 1-3 songs per month;
3: 4-6 songs per month; 4; 7-10 songs per month; 5:
11-20 songs per month; 6: 21-30 songs per month; 7:
more than 30 songs per month).

8. Karaoke: I sing karaoke (1: less than 1 time per year;
2: 1-2 times per year; 3: 3-5 times per year; 4: 6-11
times per year; 5: 1-3 times per month; 6: 1-3 times
per week; 7: more than 3 times per week).

9. AttEvt: I attend live music events as an audience mem-
ber (1: less than 1 time per year; 2: 1 time per year; 3:
2 times per year; 4: 3 times per year; 5: 4-6 times per
year; 6: 7-10 times per year; 7: more than 10 times per
year).

Questions 1, 3, 4, 5, and 9 derive from the Goldsmiths
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(a) Registration of factor importance

YOUR evaluations
Not Hardly Somewhat Very

important  important important Important important

(b) Evaluation of songs by factors

Angel Baby / Betty Angel Baby / Betty
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(c) Presentation of factor information

| love you / Makiko Hattori

EVERYONE'’S evaluations

Melody O O [ ] O O Lyrics i\( i\( * i\( i\( Lyrics i\( i\( * iﬁ( i\( Lyrics Eternal love

Rhythm O o o o o Melody Y Yo Yo Yo Y Melody Yo YR X Y VY Instruments  Guitar, Piano
va:ics @) (@] @) @) ) Mosod Yo ¥ Je I I Mo;d e %o ¥ Yo e Sentiment Positive

Tempo O [ J @] @] @] Tempo i\{ iﬁ( i\{ i\{ i% Tempo i\( i\g iﬁ( * i& Tempo Fastish

Fig.1  Overview of the three proposed functions. In the user study, these images were presented to

the participants.

Musical Sophistication Index (Gold-MSI) [62]. In addition,
we asked four questions of our own (questions 2, 6, 7, and
8). For questions 5-9, we asked the participants to give the
average frequencies of those behaviors.

3.4 Functions Based on Musical Factors

To enable a more detailed analysis of musical factors from
an engineering perspective, we propose three functions, il-
lustrated in Fig. 1, that could enrich and diversify the music
listening experience on streaming services. We also inves-
tigate the usefulness of these functions. In this subsection,
we first explain each of the three functions, followed by a
description of the survey procedure.

3.4.1 Function 1: Registration of Factor Importance

With this function, shown in Fig. 1 (a), users register the
importance of each of the 10 musical factors on a 5-point
scale when judging whether they like or dislike music on first
listen. Itis not necessary to register the importance of all fac-
tors. For example, the importance of rhythm is not registered
in Fig. 1 (a). The registration process only needs to be done
once, and the registered information can be changed later.

This function supports the users as follows. Suppose
that a user is listening to her/his favorite song s. The user has
registered lyrics as “very important” and tempo as “hardly
important.” Hence, among songs that are new to this user, we
can recommend songs that have various tempos and similar
lyrics to s. By listening to the recommended songs, the user
can find new favorite songs.

3.4.2 Function 2: Evaluation of Songs by Factors

This proposed function allows users to rate their song prefer-
ences on a factor-by-factor basis, as shown in Fig. 1 (b). The
ratings are not mandatory: users only need to rate the songs
that they want to rate. In addition, they do not need to rate
songs in terms of all 10 factors. For example, in the figure,
the user does not rate mood. For each song, by computing the
average value of all users’ rating results for each factor, we
can display others’ evaluations (averaged ratings) like those
shown in Fig. 1 (b).

This function supports the users as follows. Suppose
that a user is interested in an artist named “Betty,” and that
danceability is an important factor for the user. Then, songs
by “Betty” can be sorted and displayed in order of the aver-
aged ratings for danceability. This enables efficient discov-

ery of songs that match the user’s preferences.
3.4.3 Function 3: Presentation of Factor Information

With this function, information on factors that a user wants
to know for a song is displayed as shown in Fig. 1 (c). The
information on each of the 10 factors can be automatically
estimated by using techniques from existing studies [63]—
[69]. Thus, unlike the two previous functions, this one does
not require the user to input any information.

This function supports the users as follows. When a
user checks a list of newly released songs, usually only basic
information such as the artist and title is displayed for each
song. In contrast, our proposed function can display infor-
mation on the musical factor for each song. For example,
if the user prefers slow-tempo songs with piano, s/he can
listen only to such songs by referring to the displayed infor-
mation on tempo and instruments. This allows the user to
efficiently find songs that match her/his preferences among
a vast number of new songs.

3.4.4 Procedure

For each function, we showed the participants an overview
of the function and examples of the user support that the
function would enable as we described above’. The par-
ticipants were asked to indicate their willingness to use the
function, on a 5-point scale (“unwilling,” “not very willing,”
“undecided,” “reasonably willing,” and “willing”), if it were
implemented on the music streaming service that they used
regularly. They were also asked to provide free responses
on their willingness. The three functions were displayed in
a random order to each participant.

4. Results for Influence of Musical Factors

Figure 2 shows the importance distribution for each factor.
We can see that the importance was high for melody and
singing voice; in fact, paired Wilcoxon signed-rank tests
with Bonferroni correction revealed that their medians (i.e.,
4) were statistically higher than the medians of the remain-
ing eight factors at p < 0.017". Among the remaining eight

TWe leave it as future work to actually implement these func-
tions and conduct a long-term user study on them including how to
visualize the information.

TThe details of the significance test results are provided in
Appendix.
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Table 1  Top three criteria for judging “like” and “dislike,” for each musical factor. Each number in
parentheses indicates the number of participants who responded with the corresponding criterion.
Factor [ [ Ist 2nd 3rd
Melody Like (265) Easy to remember (35) Easy to sing or hum (33) Feels comfortable (28)
Dislike (193) Too loud (18) Difficult to sing or hum (16) Feels uncomfortable (15)
Singing voice Like (261) Specific type (beautiful, powerful, soft, etc.) (74) Voice to my liking (54) Feels comfortable (51)
Dislike (203) Feels uncomfortable (50) Specific type (raspy, piercing, etc.) (47) Voice not to my liking (28)
Rhythm Like (237) Groovy (53) Feels comfortable (23) Rhythm to my liking (19)
Dislike (167) Rhythm not to my liking (17) Slow (16) Not groovy (15)
Lyrics Like (218) Sympathetic (71) Inspirational (41) Positive (10)
Dislike (164) Unclear meaning (41) Lack empathy (30) Pedestrian (26)
Mood Like (219) Cheerful (51) Fits my mood/situation (25) Calm (21)
Dislike (162) Gloomy (32) Too loud (29) Feels uncomfortable (12)
Tempo Like (220) Fast (40) Groovy (29) Feels comfortable (24)
Dislike (163) Slow (48) Fast (31) Feels uncomfortable (15)
Harmony Like (174) Feels comfortable (43) Beautiful (23) Harmonious (22)
Dislike (116) Feels uncomfortable (25) Monotonous (7) Inharmonious (6)
Sentiment Like (163) Positive (33) Inspirational (30) Sympathetic (25)
Dislike (114) Negative (32) Evokes no emotion (12) Doesn’t fit my mood/situation (7)
Instruments Like (146) Include specific instruments (24) Fit the song (17) Feel comfortable (15)
Dislike (102) Too loud (24) Feel uncomfortable (11) Don’t fit the song (7)
Danceability Like (66) Body moves naturally to music (13) Groovy (11) Rhythmic (9)
Dislike (46) Not groovy (6) Gloomy (5) Rhythm is bad (4)

—
T
T
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I T
I |
[ m
0 50 160 150 200 250 300

I 1: Not important [ 3: Somewhat important [ 5: Very important
[ 2: Hardly important [ 4: Important

Fig.2 Importance distributions of musical factors (x-axis: number of
participants).
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Fig.3  Spearman’s rank correlations of importance between musical fac-
tors.

factors, more than half of the participants gave a rating of 3,
4, or 5 for rhythm, lyrics, mood, tempo, harmony, and senti-
ment. To more deeply understand the relationships between
factors, we show the Spearman’s rank correlations between
them in Fig.3. There were high (> 0.4) correlations be-
tween rhythm and tempo, mood and sentiment, and melody
and singing voice. Although lyrics had a relatively high av-
erage importance, it had low (< 0.3) correlations with all
other factors. Danceability, which had the lowest average
importance, showed a similar tendency.

For each factor, to analyze the free responses on criteria
for liking a song, the first author, who is an expert in music
information processing, manually grouped the responses.

Because we allowed the participants to give more than one
criterion, each participant’s response could be assigned to
more than one group. Similarly, the first author grouped the
responses on criteria for disliking a song and reasons for the
unimportance of certain factors. Here, we omit the reasons
for unimportance, because the most common response for
all factors was “I am not interested in this factor.” On the
other hand, the criteria for liking or disliking a song were
diverse, as seen in Table 1, which lists the top three criteria
for each factor in terms of the group size. Many criteria
involved opposite terms for liked and disliked songs: in the
case of tempo, for example, participants who gave “fast”
as a criterion for liking a song tended to give “slow” as
a criterion for disliking a song. In addition, the second
column indicates that, for all factors, more participants gave
criteria for liking a song than for disliking a song, which
means that it was more common to have criteria for liking a
song than to have criteria for disliking a song. An interesting
application of this finding would be to use criteria for liking
a song in explainable recommendation. For example, when
a song is recommended to a user who emphasizes melody,
s’/he may be more willing to listen to it if it appears with
an explanation such as “this song is recommended to you
because the melody is easy to remember.”

The results in Fig. 2 are somewhat similar to those re-
ported by Boyle et al. [6] (e.g., melody and rhythm had high
importance, while danceability had low importance). Here,
note that the purpose of this study is not to clarify the dif-
ference between the “important musical factors for songs
that people have previously listened to and already liked,”
as targeted by previous studies, and the “important musical
factors for songs that people listen to for the first time,” as
targeted by this study. Rather, the fact that commonalities
can be observed between the two is also one of the important
research insights.

Finally, since people’s music preferences can be influ-
enced by the context in which they listen to it, the impor-
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tant musical factors may vary depending on the context [70].
However, as shown in Sect. 3.1, there is no significant bias in
the age or gender of participants in this study, indicating that
the contexts assumed by the participants when responding
were diverse, rather than being skewed toward any partic-
ular scenario, such as commuting, studying, or working.
Therefore, the findings of this study can be interpreted as
generalized results in terms of music listening contexts.

5. Results for Influence of Personal Factors

5.1 Results for Personality Traits

Table 2 lists the Spearman’s rank correlations between the
personality traits and the importance of each musical fac-
tor. Following existing studies that analyzed the correlation
between personal factors and music consumption tenden-
cies [9], [11], [12], [14], [15], [44], [46], we discuss our
findings based on the significance of the correlation coeffi-
cients. Openness had significant correlations with as many
as seven factors. That is, participants with higher openness
had more diverse criteria for judging whether a song fits
their taste. This result is similar to a previous finding that
people with high openness tended to listen to more diverse
songs in terms of genres[9]. Similarly, extraversion also
had significant correlations with many factors, particularly,
danceability. This result echoes a report that people with
high extraversion tended to listen to songs with high dance-
ability on a music streaming service [52]. Conscientiousness
was the only trait that had a significant correlation with sen-
timent. Both agreeableness and neuroticism had significant
correlations with as few as two factors. These results are sim-
ilar to a previous finding that those traits showed significant

Table 2
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correlations with few genres [9].

Prior studies correlated personality traits with genre
preferences and music audio preferences [9], [46]. For ex-
ample, people who often listen to folk music were found to
have high openness [9]. As seen in Table 2, people with
high openness emphasize lyrics; accordingly, for a user who
often listens to folk songs, it would be helpful to recommend
songs according to the similarity of lyrics.

5.2 Results for Musical Sophistication

Figure 4 and Table 3 show the distribution of musical so-
phistication and the Spearman’s rank correlations between
musical sophistication and the importance of each musical
factor, respectively. Similar to Sect. 5.1, we discuss our find-
ings based on the significance of the correlation coefficients.
Overall, many of the results matched our intuition. For ex-
ample, DanceExp had a significantly high correlation with
danceability; participants who were sensitive to beat and tune
deviations emphasized audio-based factors such as melody,
singing voice, and harmony; and ViewLyrics had the highest
correlation with lyrics. It is also convincing that participants

InstExp [ 1 T [ |
DanceExp [ ] I [ 111
NoticeBeat ]| [ | [ [ |
NoticeTune ]| [ | [ [ |
LsnMusic [ [ [ [ [ [ |
LsnNew [ [ [ \ [T ]
ViewLyrics [ [ I [T
Karaoke [ [ I I 11
AttEvent [ [ [ [ [1]
0 50 100 150 200 250 300
/= 1 2 13 1 4 3 5 = 6 /3 7
Fig.4  Distribution of musical sophistication. The specific response op-

tions from 1 to 7 are described in Sect. 3.3.2.

Spearman’s rank correlations between personality traits and musical factor importance

(N=302). Significant correlations are shown in bold (*: p< 0.05; **: p< 0.01; ***: p< 0.001).
M and SD stand for the mean and standard deviation of personality traits, respectively.

Trait ‘ M (SD) ‘ Melody  Singing voice ~ Rhythm Lyrics Mood Tempo Harmony Sentiment Instruments Danceability
Openness 4.23 (1.18) 0.127* 0.135* 0.155%*  0.177*%* 0.107 0.109 0.255%** 0.050 0.157%* 0.1517%%*
Conscientiousness | 4.47 (1.14) 0.076 0.128%* 0.062 0.031 0.127* 0.128%* 0.125% 0.119* 0.028 0.013
Extraversion 4.29 (1.44) 0.062 0.130* 0.172%%  0.175%* 0.098 0.114%  0.254%%* 0.107 0.151%* 0.219%#
Agreeableness 4.57 (1.00) 0.025 0.123* 0.048 0.088 0.158**  0.029 0.021 0.060 0.049 0.065
Neuroticism 4.49 (1.38) 0.003 0.010 -0.081 0.036 -0.025 -0.004  -0.142% 0.109 -0.072 -0.120*
Table 3  Spearman’s rank correlations between musical sophistication and the importance of each
musical factor (N=302). Significant correlations are shown in bold (*: p< 0.05; **: p< 0.01; ***:
p< 0.001).
Question [ Melody Singing voice  Rhythm Lyrics Mood Tempo Harmony  Sentiment Instruments  Danceability
InstExp 0.100 0.061 -0.019 0.108 0.037 -0.099 0.134* 0.093 0.091 0.101
DanceExp -0.041 0.039 -0.047 0.126* 0.030 -0.024 0.044 0.098 -0.005 0.347 %%
NoticeBeat | 0.228%** 0.2287%#%%* 0.126* 0.082 0.107 0.073 0.302%%%  (.205%%* 0.147* 0.072
NoticeTune | 0.272%%% 0.231 %% 0.099 0.088 0.121* 0.039 0.276%** 0.167%* 0.078 0.001
LsnMusic 0.041 0.054 0.111 0.141* 0.135* 0.101 0.078 0.108 0.051 0.090
LsnNew 0.003 0.107 0.152%%  0.152%* 0.112 0.194#%:% 0.115% 0.101 0.126%* 0.169%*
ViewLyrics 0.001 0.085 0.118*  0.243***%  0.120* 0.147* 0.136* 0.128* 0.101 0.110
Karaoke 0.085 0.087 0.005 0.210%%%  (.154%* -0.015 0.057 0.129* -0.033 0.081
AttEvent -0.038 0.037 -0.023 0.200%*%* 0.004 0.016 0.039 -0.005 0.088 0.179%*
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Top three free-response reasons for “reasonably willing” or “willing” to use each of the

proposed functions. Each number in parentheses indicates the number of participants who gave that

reason.

Function 1: registration of factor importance

Function 2: evaluation of songs by factors

Function 3: presentation of factor information

Ist Easy to find music that fits my taste. (46)
2nd Helpful for listening to new songs. (33)
3rd Looks interesting to use. (11)

Would like to refer to others’ evaluations. (22)
Easy to understand others’ evaluations. (14)
Easy to find music that fits my taste. (13)

Easy to find music that fits my mood/situation. (27)
Easy to find music that fits my taste. (26)
Helpful for listening to new songs. (16)

who often sang karaoke emphasized Iyrics; those who of-
ten attended live music events emphasized both lyrics and
danceability; and InstExp had a significant correlation with
harmony. Table 3 also indicates certain high correlations
that are not obvious (e.g., between LsnMusic/LsnNew and
lyrics and between LsnNew and danceability).

Certain metrics, such as LsnMusic, LsnNew, and View-
Lyrics, can be computed for each user on a music streaming
service [60], [71], [72]. Thus, the results in Table 3 can also
be used to increase the confidence in estimating the impor-
tance of each factor to a user without explicitly asking the
importance. For example, if a user often listens to folk music
(i.e., the user would have high openness as has been reported
by Ferwerda et al. [9]) and new songs, we can estimate from
the results in Tables 2 and 3 that rhythm is one of the user’s
important factors. Hence, the user would be more likely to
accept recommendations by recommending songs according
to the similarity of their rhythms.

6. Results for Functions Based on Musical Factors

Figure 5 shows the answer distribution for each function.
Functions 1 and 3 were more positively received than func-
tion 2. To analyze the results, the first author manually
grouped negative responses (i.e., the free responses for “un-
willing” and “not very willing”). As we had anticipated,
a reason of “I do not need the function” was common for
all three functions. Regarding function 2, although we ex-
plained that the ratings were not mandatory, a response of “It
is tedious to rate songs” was also common. This is why the
distribution for function 2 was more biased in the negative
direction. Here, note that our goal was not to propose func-
tions that all participants would be willing to use. Rather,
we sought to confirm that the proposed functions would have
a certain level of demand; accordingly, the results in Fig. 5
indicate that we achieved our objective.

The first author also manually grouped the positive re-
sponses (i.e., the free responses for “willing” and “reasonably
willing”). Table 4 lists the top three responses in terms of
the group size for each function. We can see that, in general,
the participants tended to appreciate functions that would
make it easy to find music that fits their taste (all functions)
and easy to listen to new songs (functions 1 and 3). The re-
sponses for function 2 also indicate that they were interested
in referring to other users’ evaluations of a song. We can
also see that the participants felt it was valuable to be able to
find music according to their mood or situation (function 3).
These responses provide reusable insights for later studies:
when researchers or streaming services propose a new func-

Function 1 [ \ -
Function 2 [ \ -
Function 3 [ \ -
0 50 100 150 200 250 300
I 1: unwilling [ 3:undecided I 5: willing

1 2: not very willing [ 4:reasonably willing

Fig.5 Distribution of the willingness to use each of the proposed func-
tions (x-axis: number of participants).

tion, such user demand could serve as a useful guideline for
its design.

If function 3 were implemented on a music streaming
service, it might be difficult to estimate the information for
all factors because of the platform’s resource limitations. In
such a case, a possible solution would be to decrease the
number of displayed factors according to the results shown
in Fig. 3. For example, rhythm information could be omitted,
because fempo has a high correlation with rhythm, and users
who emphasize rhythm could thus refer to fempo information
instead. In contrast, lyrics should not be eliminated because
it has low correlations with the other factors, and there would
not be no alternative factor for users who emphasize lyrics.

7. Conclusion

In this paper, we conducted an online user survey involving
302 participants. The reusable insights obtained from our
user survey can be summarized as follows.

* We showed that the melody and singing voice are con-
sidered important for most participants. Because there
were trends in the criteria for each factor, as seen in
Table 1, the criteria could be used to increase the ex-
plainability of song recommendations, as discussed in
Sect. 4.

* Personality and musical sophistication influence the
importance of each musical factor. As discussed in
Sects. 5.1 and 5.2, these results would be useful for es-
timating which factors are important to a user from the
user’s listening behaviors on a streaming service.

* The evaluation results for our proposed functions show
that there is a certain demand for functions that enable
users to browse songs according to musical factors. The
reasons for each function’s demand in Table 4 could
provide guidelines for other researchers and services to
propose novel factor-based functions.

Finally, since the participants in our user study were
Japanese, we acknowledge the limitation of this study in that
not all of the findings can be generalized. For example, as
shown in Fig. 2, the importance of danceability was low, but
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this may be due to the fact that most Japanese people do not
have the habit of dancing while listening to music on a daily
basis, as indicated in Fig.4. In Western countries, where
more people are likely to have such a habit, the importance of
danceability would be higher. Nevertheless, we believe that
our study provides a worthwhile contribution as a first step
toward understanding how musical factors influence whether
people like a song on first listen. At the same time, the above
limitation can guide future work such as investigating the
differences in important musical factors among countries
and cultures. The publicly available dataset of results from
our user study will enable researchers not only to perform
such comparisons but also to analyze and compare results
from different viewpoints.
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Appendix: Statistical Tests of Importance Differences
between Musical Factors

Table A- 1 shows the details of the significance test results
regarding melody and singing voice. In Sect. 4, as statistical
tests were conducted for arbitrary pairs of musical factors,
the corrected alpha value is ]00'—212 =2.22x 107*. As shown
in Table A1, there were no results indicating negligible
effect sizes (—0.1 < effect size < 0). Specifically, two tests
exhibited small effect sizes (—0.3 < effect size < —0.1),
12 tests showed moderate effect sizes (—0.5 < effect size
< —0.3), and two tests demonstrated large effect sizes (effect
size < —0.5). Therefore, it was confirmed that the small
p-values were not merely due to the large sample size; the
effect sizes also indicated fundamental differences in the
importance of melody and singing voice compared to the

importance of the other eight musical factors.
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Table A-1  Details of the significance test results regarding melody and
singing voice.
Factor 1 [ Factor2 | Z-statistic p-value effect size
Melody Rhythm -7.30 287x10°B  -0.297
Melody Lyrics -8.04  9.06x 1071 -0.327
Melody Mood —8.48 2.24x 1077 —0.345
Melody Tempo -9.10 8.67x 10720 —0.371
Melody Harmony —11.63  2.87x 10731 —0.473
Melody Sentiment —11.79  4.49x 10732 —0.480
Melody Instruments -12.10 1.08x 1073 —-0.492
Melody Danceability | —13.83  1.60x 1007 -0.563
Singing voice Rhythm ~5.74 9.35x 107° -0.234
Singing voice Lyrics —7.44 9.85x 107 -0.303
Singing voice Mood -7.90 2.83x107°  -0.321
Singing voice Tempo -7.98 1.49x 1075 -0.325
Singing voice Harmony -10.75 5.80 x 1072 —0.438
Singing voice | Sentiment —11.51  1.18x 10730 —0.468
Singing voice | Instruments —11.85  2.05x 10732 —0.482
Singing voice | Danceability | —13.60  3.83x 1072  —0.554
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