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Improvements of Voice Timbre Control Based on Perceived Age in
Singing Voice Conversion

Kazuhiro KOBAYASHI†a), Nonmember, Tomoki TODA††, Member, Tomoyasu NAKANO†††,
Masataka GOTO†††, Nonmembers, and Satoshi NAKAMURA†, Member

SUMMARY As one of the techniques enabling individual singers to
produce the varieties of voice timbre beyond their own physical constraints,
a statistical voice timbre control technique based on the perceived age has
been developed. In this technique, the perceived age of a singing voice,
which is the age of the singer as perceived by the listener, is used as one
of the intuitively understandable measures to describe voice characteris-
tics of the singing voice. The use of statistical voice conversion (SVC)
with a singer-dependent multiple-regression Gaussian mixture model (MR-
GMM), which effectively models the voice timbre variations caused by a
change of the perceived age, makes it possible for individual singers to ma-
nipulate the perceived ages of their own singing voices while retaining their
own singer identities. However, there still remain several issues; e.g., 1) a
controllable range of the perceived age is limited; 2) quality of the con-
verted singing voice is significantly degraded compared to that of a natural
singing voice; and 3) each singer needs to sing the same phrase set as sung
by a reference singer to develop the singer-dependent MR-GMM. To ad-
dress these issues, we propose the following three methods; 1) a method
using gender-dependent modeling to expand the controllable range of the
perceived age; 2) a method using direct waveform modification based on
spectrum differential to improve quality of the converted singing voice; and
3) a rapid unsupervised adaptation method based on maximum a posteriori
(MAP) estimation to easily develop the singer-dependent MR-GMM. The
experimental results show that the proposed methods achieve a wider con-
trollable range of the perceived age, a significant quality improvement of
the converted singing voice, and the development of the singer-dependnet
MR-GMM using only a few arbitrary phrases as adaptation data.
key words: statistical singing voice conversion, perceived age, gender-
dependent modeling, direct waveform modification, unsupervised adapta-
tion

1. Introduction

Singers can express various singing expressions by using
not only the linguistic information of the lyrics but also
pitch, dynamics, and rhythm. Voice timbre can also be
changed to some extent but it is essentially difficult to
widely control due to physical constraints in speech pro-
duction of the singers. Towards the development of new
forms of singing expression in music, several techniques to
widely control voice timbre of a singing voice beyond each
singer’s physical constraints have been proposed, such as
a singing voice morphing technique [1] in the speech anal-
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ysis/synthesis framework [2] or a singing voice conversion
(SVC) technique [3]–[5] based on statistical voice conver-
sion techniques [6], [7].

In our previous work, we have proposed a method
for controlling voice timbre of the singing voice of a spe-
cific singer by manipulating its perceived age, which is the
age of the singer as perceived by the listener [8]. This
method makes it possible to use the perceived age as an
intuitively understandable and controllable measure to de-
scribe converted singing voice characteristics. Such a voice
timbre control process has been successfully implemented
within the SVC framework [8], inspired by statistical voice
conversion techniques based on a Gaussian mixture model
(GMM) [6], [7] and voice quality control techniques based
on a multiple-regression GMM (MR-GMM) [9]. Using
multiple parallel data sets consisting of phrase pairs sung
by a single reference singer and multiple pre-stored target
singers, a singer-independent MR-GMM is first developed
to model voice timbre variations caused by the perceived age
differential. Then, it is further adapted to each singer (i.e., a
user of the voice timbre control) by using only his/her cor-
responding parallel data set to develop a singer-dependent
MR-GMM to model voice timbre variations likely observed
in his/her singing voices.

Although our previously proposed method makes it
possible for individual singers to manipulate the perceived
ages of their own singing voices while retaining their own
singer identities, there still remain several issues to be ad-
dressed. In this paper, we focus on the following three is-
sues.

• 1) A controllable range of the perceived age is lim-
ited. Significantly large quality degradation in the con-
verted singing voice tends to be easily caused if setting
the perceived age to ±5 ages from the original one. In
the previous method, the single MR-GMM is used to
model the voice timbre variation caused by a change of
the perceived age assuming that it can be shared among
all singers. On the other hand, it has been observed
from results of analysis of normal voices that spec-
tral variations caused by aging are different between
male and female speakers [10], [11]. Therefore, it is
expected that modeling accuracy of voice timbre vari-
ations in singing voices caused by a change of the per-
ceived age is also improved by considering gender de-
pendency, and it will expand the controllable range of
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the perceived age.
• 2) Quality of the converted singing voice is sig-

nificantly degraded compared to that of a natural
singing voice. The use of a vocoder [12] to synthe-
size the converted singing voice is one of the biggest
factors causing this degradation because sound qual-
ity of the converted singing voice suffers from various
errors in vocoding process, such as F0 extraction er-
rors and modeling errors in spectral parameterization.
Moreover, an over-smoothing effect on the converted
acoustic features is also a well-known factor causing
the quality degradation [13], [14]. These issues are in-
deed hard to be addressed even by using high-quality
vocoder systems [15]–[18].
• 3) Each singer always needs to sing the same

phrase set as sung by the reference singer to de-
velop the singer-dependent MR-GMM. In the pre-
vious method, the singer-dependent MR-GMM param-
eters need to be estimated using a parallel data set con-
sisting of the singer’s singing voices corresponding to
the reference singer’s singing voices because the MR-
GMM models a joint probability density function of
those two singers’ acoustic features. It is more conve-
nient to develop a more flexible framework capable of
using only a few phrases or accepting arbitrary phrases
even if they are not the same as sung by the reference
singer.

Towards the development of a better controllable,
higher-quality, and more flexible framework compared to
the previous one, we propose the following three methods
to address the above three issues;

• 1) a method using gender-dependent MR-GMMs
that can more accurately model the spectral variations
caused by a change of the perceived age in each gender
to expand the controllable range of the perceived age;
• 2) a method using direct waveform modification

based on spectrum differential to improve quality of
the converted singing voice by avoiding using vocoder
in converted waveform generation; and
• 3) a rapid unsupervised adaptation method based on

maximum a posteriori (MAP) estimation [19]–[21] to
easily develop the singer-dependent MR-GMM.

It is shown from results of several subjective evaluations
that the proposed methods yield significant improvements
in controllability of the perceived age, quality of the con-
verted singing voices, and flexibility of the development of
the singer-dependent MR-GMM. In this paper, we present
further details of the proposed method, more discussions,
and more evaluations than those in our previous work [22].

2. Voice Timbre Control Based on Perceived Age while
Retaining Singer Individuality

2.1 Training Process

2.1.1 Training of the MR-GMM

The MR-GMM is trained using multiple parallel data sets
consisting of the reference singer’s singing voices and many
pre-stored target singers’ singing voices. The joint prob-
ability density function of 2D-dimensional joint static and
dynamic feature vectors modeled by the MR-GMM is given
by

P
(
Xt,Yt(s)|λ(MR), w(s)

)
=

M∑
m=1

αmN
([

Xt

Yt(s)

]
;

[
μ(X)

m

μ(Y)
m (s)

]
,

[
Σ

(XX)
m Σ

(XY)
m

Σ
(YX)
m Σ

(YY)
m

])
, (1)

μ(Y)
m (s) = b(Y)

m w(s) + μ(Y)
m , (2)

where N (·;μ,Σ) denotes the normal distribution with a
mean vector μ and a covariance matrix Σ. The mixture
component index is m. The total number of mixture com-
ponents is M. The vectors Xt =

[
x�t ,Δx�t

]� and Yt(s) =[
Y�t (s),ΔY�t (s)

]� are joint static and delta feature vectors
of the reference singer and the s-th pre-stored target singer
at frame t, which are automatically aligned to each other
by applying dynamic time warping to their corresponding
singing voices. The vectors b(Y)

m and μ(Y)
m indicate a repre-

sentative vector to capture voice timbre variations caused
by a change of the perceived age and a bias vector to cap-
ture voice characteristics averaged over all pre-stored tar-
get singers, respectively. The value w(s) indicates the per-
ceived age score of the s-th pre-stored target singer, which is
manually assigned to each pre-stored target singer. The no-
tation λ(MR) indicates an MR-GMM parameter set consist-
ing of mixture-dependent parameters, such as the mixture-
component weight αm, the mean vector μ(X)

m , the represen-
tative vector b(Y)

m , the bias vector μ(Y)
m and the covariance

matrix Σm of the m-th mixture component.
These MR-GMM parameters are trained as shown in

Fig. 1. First, a singer-independent GMM is trained using all
of the multiple parallel data sets. And then, only its target
mean vectors are updated separately using individual paral-
lel data sets to develop singer-dependent GMMs of the indi-
vidual pre-stored target singers. The updated target mean
vectors of each singer-dependent GMMs are extracted as
the singer-dependent target mean vectors, and then, linear
regression is performed using them and the corresponding
perceived age scores among all pre-stored target singers to
extract the representative vector and the bias vector. The
other parameters of the MR-GMM are extracted from the
singer-independent GMM.

To easily create the MR-GMMs for various source
singers (i.e., users), the framework of the many-to-many
SVC [5] is applied to the MR-GMM. The joint probability
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Fig. 1 Trainging process of the MR-GMM.

density function of many-to-many MR-GMM is analytically
derived from that of the MR-GMM shown in Eq. (1), which
is given by

P
(
Yt(i),Yt(o)|λ(MR), w(i), w(o)

)
M∑

m=1

P
(
m|λ(MR)

) ∫
P

(
Yt(i)|Xt,m, λ

(MR), w(i)
)

P
(
Yt(o)|Xt,m, λ

(MR), w(o)
)

P
(
Xt |m, λ(MR)

)
dXt

=
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m=1

αmN
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m (i)
μ(Y)

m (o)
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])
, (3)

Σ(YXY)
m = Σ(YX)

m Σ(XX)
m

−1
Σ(XY)

m , (4)

where w(i) and w(o) indicate the perceived age scores of the
source and target singers, respectively. The source and tar-
get mean vectors, μ(Y)

m (i) and μ(Y)
m (o), are modeled by the

same subspace spanned by the representative vector and the
bias vector as shown in Eq. (2). Therefore, the representa-
tion form of the target mean vectors can be reformulated by
applying w(o) = w(i) + Δw, where the perceived age score
of the target singing voice w(o) can be represented by using
that of the source singing voice w(i) and the perceived age
score differential Δw. The reformulated target mean vector
of the m-th mixture component is given by

μ(Y)
m (o) = b(Y)

m (w(i) + Δw) + μ(Y)
m

= b(Y)
m w(i) + μ(Y)

m + b(Y)
m Δw

= μ(Y)
m (i) + b(Y)

m Δw. (5)

Namely, the target mean vectors of the many-to-many MR-
GMM can be represented as the source mean vectors μ(Y)

m (i),

the representative vectors b(Y)
m , and the perceived age score

differential Δw.

2.1.2 Adaptation of MR-GMM to a Specific Singer

To develop the voice timbre control system for each user, the
many-to-many MR-GMM needs to be adapted to him/her.
It is possible to do it by only adjusting the perceived age
score w(i) to adapt the source mean vectors μ(Y)

m (i), which are
represented by Eq. (2). However, modeling accuracy of the
MR-GMM adapted by this approach is usually insufficient
due to the limited representation of the adapted source mean
vectors, which also affect the target mean vectors as shown
in Eq. (5). To develop a better singer-dependent MR-GMM
by more accurately adapting the many-to-many MR-GMM,
the source mean vectors μ(Y)

m (i) are directly updated by using
parallel data sets between the reference singer and the singer
to be adapted.

Let Yt(k) =
[
Y�t (k),ΔY�t (k)

]� denote the joint static
and delta feature vector at frame t of the singer k to be
adapted. The updated source mean vector set μ̂(k) ={
μ̂1(k), · · · , μ̂M(k)

}
is determined as the target mean vectors

updated by maximizing the likelihood function of the MR-
GMM given in Eq. (1) as follows:

μ̂(k) = argmax
μ(k)

T∏
t=1

P
(
Xt,Yt(k)|λ(MR),μ(k)

)
. (6)

This adaptation process is performed using the EM algo-
rithm by maximizing the following auxiliary function:

Q (μ(k), μ̂(k)) =
T∑

t=1

M∑
m=1

P
(
m|Xt,Yt(k), λ(MR),μm(k)

)
log P

(
Xt,Yt(k),m|λ(MR), μ̂m(k)

)
. (7)

The ML estimate of the m-th target mean vector μ̂m(k) is
calculated as follows:

μ̂m(k) =

⎧⎪⎪⎨⎪⎪⎩
M∑

m=1

Γm P(YY)
m

⎫⎪⎪⎬⎪⎪⎭
−1
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M∑
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P(YY)
m′ Ym′ (k) + P(YX)

m′
(
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(X)
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)⎫⎪⎪⎬⎪⎪⎭ , (8)

where

Γm =

T∑
t=1

P
(
m|Xt,Yt(k), λ(MR),μm(k)

)
, (9)

Ym(k) =
T∑

t=1

P
(
m|Xt,Yt(k), λ(MR),μm(k)

)
Yt(k), (10)
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m

]
. (12)
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The updated mean vectors μ̂m(k) are applied to the many-to-
many MR-GMM as follows:

μ(Y)
m (i) � μ̂m(k), (13)

μ(Y)
m (o) � μ̂m(k) + b(Y)

m Δw. (14)

These modification based on supervised adaptation using
the parallel data set is effective for developing the singer-
dependent MR-GMM capable of controlling the singer’s
perceived age while retaining the singer individuality.

2.2 Conversion Process

In the conversion process, the perceived age score differ-
ential Δw is manually set to a desired value. Then, a
singing voice of the singer k is converted into his/her singing
voice corresponding to the desired perceived age using max-
imum likelihood estimation of the speech parameter trajec-
tory with the singer-dpendent MR-GMM [7].

Time sequence vectors of the source and converted
features for the singer k are denoted as Y(i)(k) =[
Y(i)

1 (k)
�
, · · · ,Y(i)

T (k)
�]�

and Y(o)(k) =
[
Y(o)

1 (k)
�
, · · · ,

Y(o)
T (k)

�]�
, where T is the number of frames over

the given source feature vector sequence. A time se-
quence vector of the converted static features ŷ(o)(k) =[
ŷ(o)

1 (k)
�
, · · · , ŷ(o)

T (k)
�]�

is determined as follows:

ŷ(o)(k) = argmax
y(o)(k)

P
(
Y(o)(k)|Y(i)(k), λ(MR), μ̂(k),Δw

)
subject to Y(o)(k) =Wy(o)(k), (15)

where W is a transformation matrix to expand the static
feature vector sequence into the joint static and dynamic
feature vector sequence [23]. The conditional probability
density function P

(
Y(o)(k)|Y(i)(k), λ(MR), μ̂(k),Δw

)
is analyt-

ically derived from the singer-dependent MR-GMM for the
singer k. To alleviate the over-smoothing effects that usu-
ally make the converted singing voice sound muffled, global
variance (GV) [7] is also considered.

3. Proposed Techniques for Improving Voice Timbre
Control Based on Perceived Age

To improve controllability of the perceived age, quality of
the converted speech, and flexibility of the model devel-
opment in the conventional voice timbre control method,
we further implement three techniques, 1) gender-dependent
MR-GMMs for more accurately capturing spectral varia-
tions depending on the perceived age, 2) direct waveform
modification based on spectral differential, and 3) a rapid
unsupervised adaptation method based on MAP estimation
to easily develop the singer-dependent MR-GMM.

3.1 Gender-Dependent MR-GMM

Multiple parallel data sets used in the conventional train-
ing method of the MR-GMM consist of singing voice pairs

of both male and female singers. To improve modeling
accuracy of the MR-GMM on the voice timbre variations,
we propose the gender-dependent modeling, inspired by the
previous work showing that the voice timbre variations of
normal voices caused by aging significantly depend on the
gender [10], [11]. Two gender-dependent MR-GMMs are
trained separately using the parallel data sets consisting of
only male singers or female singers. And then, the singer-
dependent MR-GMM for the specific singer is developed by
adapting the corresponding gender-dependent MR-GMM to
the singer in the same manner as described in Sect. 2.1.2.
Note that not only the representative vectors but also the
other parameters, such as the covariance matrices, are dif-
ferent between these two gender-dependent MR-GMMs.

3.2 Direct Waveform Modification Based on Spectral Dif-
ferential

As a SVC framework without using vocoder-based wave-
form generation, we have proposed a direct waveform mod-
ification method based on spectral differential [24]. In this
paper, this method is applied to the voice timbre control
framework using the MR-GMM.

Figure 2 shows both conventional and proposed con-
version processes. In the direct waveform modification
based on spectral differential, the spectral feature differential
between the source singing voice and the converted singing
voice is directly estimated from the source singer’s spectral
features using a differential MR-GMM (DIFFMR-GMM)
modeling the joint probability density function of the source
singer’s spectral features and the spectral feature differential
caused by the given perceived age differential. In the di-
rect waveform modification based on spectral differential,
the spectral feature differential between the source singing
voice and the converted singing voice is directly estimated
based on a differential MR-GMM (DIFFMR-GMM). The
DIFFMR-GMM models the joint probability density func-
tion of the source singer’s spectral features and the spec-
tral feature differential caused by the given perceived age
differential. This differential model can be analytically de-
rived from the conventional singer-dependent MR-GMM
by applying a simple linear transform to the conventional
model. The source singer’s spectral feature is converted into
the spectral feature differential using the DIFFMR-GMM.
Then, a waveform of the source singing voice is directly
filtered with a time sequence of the estimated the spec-
tral feature differentials. In this conversion process, the
converted singing voice is free from various errors usually
observed in the conventional waveform generation process
with vocoder, such as F0 extraction errors, unvoiced/voiced
decision errors, spectral parameterization errors caused by
liftering on the mel-cepstrum, and so on.

The DIFFMR-GMM is analytically derived from the
singer-dependent MR-GMM as follows. Let Dt =[
d�t ,Δd�t

]�
denote the joint static and delta differential fea-

ture vector, where dt = yt(o) − yt(i). The 2D-dimensional
joint static and delta feature vector between the source and
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Fig. 2 Conventional and proposed conversion processes of perceived age control.

the differential features is represented as linear transforma-
tion of the original joint feature vectors as follows:[

Yt(i)
Dt

]
=

[
Yt(i)

Yt(o) − Yt(i)

]
=

[
I 0
−I I

] [
Yt(i)
Yt(o)

]
, (16)

where I denotes the identity matrix. Applying this linear
transform to the singer-dependent MR-GMM, the DIFFMR-
GMM is derived as follows:

P
(
Yt(i), Dt |λ(DIFFMR), μ̂(Y),Δw

)
=

M∑
m=1

αmN
([

Yt(i)
Dt

]
;

[
μ̂(Y)

m

b(Y)
m Δw

]
,

[
Σ

(YY)
m Σ

(DYD)
m

Σ
(DYD)
m Σ

(DD)
m

])
, (17)

Σ(DYD)
m = Σ(YXY)

m − Σ(YY)
m , (18)

Σ(DD)
m = 2(Σ(YY)

m − Σ(YXY)
m ). (19)

In the conversion process, the converted differential feature
vector is determined in the same manner as described in
Sect. 2.2 except for not considering the GV†.

3.3 Unsupervised Adaptation

To make it possible to reduce the amount of singing voices
and also accept arbitrary phrases used as the adaptation data
to develop the singer-dependent MR-GMM, we propose an
unsupervised adaptation technique based on the MAP es-
timation. Figure 3 shows the conventional and proposed
methods for developing the singer-dependent MR-GMM.

As the prior distribution for the MAP adaptation, the
following Gaussian distribution is employed:

P
(
μ|λ(pri)

)
=

M∏
m=1

N
(
μm;μ(pri)

m ,Σ
(pri)
m

)
, (20)

†We can also consider the GV in the conversion process based
on the spectrum differential as presented in [25].

Fig. 3 Adaptation process of perceived age control based on singer-
dependent MR-GMM.

where λ(pri) is a model parameter set consisting of the mean
vectors μ(pri) =

{
μ(pri)

1 , · · · ,μ(pri)
M

}
and the covariance matri-

ces Σ(pri) =
{
Σ

(pri)
1 , · · · ,Σ(pri)

M

}
. This model parameter set is

trained in advance using a set of the singer-dependent target
mean vectors of all pre-stored target singers as follows:

λ̂(pri) = argmax
λ(pri)

S∏
s=1

P
(
μ(Y)(s)|λ(pri)

)
, (21)

where μ(Y)(s) =
{
μ(Y)

1 (s), · · · ,μ(Y)
M (s)

}
. For the given adap-

tation data, Y(k) =
[
Y�1 (k), · · · ,Y�T (k)

]�
, which denotes a

time sequence of the feature vector of the singer k, the MAP
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adaptation of the MR-GMM is conducted as follows:

μ̂(k)=argmax
μ(k)

P
(
μ(k)|λ(pri)

)τ∫
P

(
X,Y(k)|λ(MR),μ(k)

)
dX

=argmax
μ(k)

P
(
μ(k)|λ(pri)

)τ T∏
t=1

∫
P

(
Xt,Yt(k)|λ(MR),μ(k)

)
dXt

=argmax
μ(k)

P
(
μ(k)|λ(pri)

)τ T∏
t=1

P
(
Yt(k)|λ(MR),μ(k)

)
. (22)

where τ is a hyper-parameter controlling the balance be-
tween the prior distribution of mean vectors and the
marginalized distribution P

(
Y(k)|λ(MR),μ(k)

)
. The MAP es-

timate is determined using the EM algorithm by maximizing
the following auxiliary function:

Q(μ(k), μ̂(k)) = τ
M∑

m=1

log P
(
μ̂m(k)|λ(pri)

)

+

T∑
t=1

M∑
m=1

P
(
m|Yt(k), λ(MR),μm(k)

)
log P

(
Yt(k),m|λ(MR), μ̂m(k)

)
. (23)

The MAP estimate is given by

μ̂m(k) =
{
τΣ

(pri)
m

−1
+ ΓmΣ

(YY)
m

−1
}−1

·
{
τΣ

(pri)
m

−1
μ(pri)

m + Σ(YY)
m

−1
Ym(k)

}
. (24)

4. Experimental Evaluations

4.1 Overall Experimental Conditions

Table 1 indicates a simple description of the experimen-
tal condtions. We used the AIST humming database [26]
consisting of phrases of songs with Japanese lyrics sung
by Japanese male and female amateur singers in their 20s,
30s, 40s, and 50s. The sampling frequency was set to 16
kHz. The 1st through 24th mel-cepstral coefficients ex-
tracted by STRAIGHT analysis [15] were used as spectral
features. As the source excitation features, we used F0 and
aperiodic components in five frequency bands, i.e., 0–1, 1–
2, 2–4, 4–6, and 6–8 kHz, which were also extracted by
STRAIGHT analysis [27]. The frame shift was 5 ms. The
mel log spectrum approximation filter [28] was used as the
synthesis filter in both the conventional waveform genera-
tion with vocoder and the proposed direct waveform modi-
fication.

Table 1 Experimental conditions.

Singing voice database AIST humming database
Sampling frequency 16 [kHz]

Duration of one phrase about 20 [s]
The number of training singers 28 males, 28 females

The number of evaluation singers 8 males, 8 females
The number of training data 23 phrases

The number of subjects 8

In the training of the gender-independent MR-GMM,
we used parallel data sets of a female reference singer in her
20s and 56 pre-stored target singers including 28 males and
28 females in their 20s, 30s, 40s and 50s. In the training
of the gender-dependent MR-GMMs, we separately used a
female and male reference singer in their 20s and 28 male
or 28 female pre-stored target singers. Each singer sung
23 phrases, where the duration of each phrase was approxi-
mately 20 seconds. The number of mixture components of
each MR-GMM was 128 for the spectral feature and 64 for
the aperiodic components. We have developed the singer-
dependent MR-GMMs for 16 singers consisting of two male
and two female singers in each age group (20s, 30s, 40s,
and 50s), who were not included in the pre-stored target
singers, and conducted voice timbre control evaluations for
these singers. We used P039 as an evaluation phrase. The
perceived age score for each singer was determined as an av-
erage score of the singer rated by 8 subjects in their 20s [8].

4.2 Experimental Evaluation of Gender-Dependent Mod-
eling and Direct Waveform Modification

4.2.1 Experimental Conditions

To examine the effectiveness of two proposed techniques,
the gender-dependent modeling and the direct waveform
modification, singing voices converted by the following
three methods were evaluated:

• SVC (GI): converted with the gender-independent MR-
GMM
• SVC (GD): converted with the gender-dependent MR-

GMM
• DIFFSVC (GD): converted with the gender-dependent

DIFFMR-GMM and the direct waveform modification

The converted singing voice samples were generated by set-
tings of the perceived age score differential to -60, -30, 0,
30, and 60. The number of training phrases for the devel-
opment of the singer-dependent MR-GMM was 23 in each
singer. Figure 4 indicates a method of dividing 16 evalua-
tion singers into two groups. The 16 evaluation singers were
divided into two groups so that one group always included
one male singer and one female singer in each age group.
Each subject was assigned one evaluation singer group in
each evaluation in order to evaluate the evaluation singers
of both genders and all age groups.

Fig. 4 Method for dividing 16 evaluation singers into two groups.
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Fig. 5 Experimental result on perceived age controllability.

First, we evaluated perceived age controllability. The
number of converted singing voice of a evaluation singer
was 15. Each subject evaluated the converted singing
voices of 120 phrases from only one group of the evalua-
tion singers. Subjects were asked to assign the perceived
age to each converted singing voice sample by listening to it
in random order.

In the second experiment, we evaluated the quality of
the converted singing voice using a mean opinion score
(MOS). Each subject evaluated the natural and converted
singing voices of evaluation singers. The number of eval-
uation phrases in each subject is 128. The subjects rated the
quality of the converted singing voice using a 5–point scale:
“5” for excellent, “4” for good, “3” for fair, “2” for poor,
and “1” for bad.

In the final experiment, we conducted an XAB test on
the singer individuality to compare the conventional method
SVC (GI) and the proposed method DIFFSVC (GD). The
evaluation singers were separated into two groups and each
subject evaluated the converted singing voices from only
one group in the same manner as the first experiment. A pair
of singing voices converted by SVC (GI) and by DIFFSVC
(GD) for the same singer with the same setting of the per-
ceived age score differential was presented to the subjects
after presenting the natural singing voice as a reference.
Then, they were asked which singing voice sounded more
similar to the reference in terms of the singer individuality.
The number of evaluation pairs in each subject is 40.

4.2.2 Experimental Results

Figure 5 shows the relationship between the perceived age
differentials given to the system to generate the converted
singing voices and their perceived ages actually evaluated
by the listeners. We can see that using the proposed gender-
dependent models (SVC(GD) and DIFFSVC(GD)), the per-
ceived age varies more linearly according to a change of
the settings of the perceived age differential from -60 to
60 compared to the conventional gender-independent model
(SVC(GI)). Moreover, a range of the perceived age of the
converted singing voice becomes wider by using SVC (GD)

Fig. 6 Mean opinion score of speech quality.

and DIFFSVC (GD) compared to SVC (GI). These results
indicate that voice timbre variations caused by the perceived
age depend on the gender in singing voices and they are well
modeled by using the proposed gender-dependent modeling
technique.

Figure 6 indicates the results of the opinion test on the
quality. We can see that DIFFSVC (GD) tends to signifi-
cantly improve quality of the converted singing voices com-
pared to SVC (GI) and SVC (GD). Although the quality
is greatly degraded in the conventional method SVC (GI)
as the perceived age score differential is set to larger or
smaller values, this quality degradation is effectively alle-
viated by the proposed method DIFFSVC (GD) because the
DIFSVC (GD) method can avoid the errors caused by spec-
trum parameterization and excitation generation. In com-
parison between SVC (GD) and SVC (GI), the speech qual-
ity of SVC (GD) is improved compared with that of SVC
(GI) as the perceived age score differential is set to higher
values (+30,+60). On the other hand, in terms of setting
lower values (−60,−30), we can see that there is no signifi-
cant difference between these methods. As shown in Fig. 5,
the perceived age differential achieved by SVC (GI) tends
to be smaller than that by SVC (GD) when setting the per-
ceived age score differential to −60. This result implies that
the resulting acoustic changes by SVC (GI) are smaller than
those by SVC (GD) under such a setting, also making the
quality degradation in SVC (GI) smaller. Even in such an
unfair condition, SVC (GD) causes no quality degradation
compared to SVC (GI).

Figure 7 indicates the result of the XAB test on the
singer individuality. DIFFSVC (GD) better or equally re-
tains singer individuality in any perceived age setting com-
pared to the conventional method SVC (GI). We can see that
as a change of the perceived age differential setting is larger,
the difference between DIFFSVC (GD) and SVC (GI) be-
comes smaller. In particular, no difference is observed be-
tween them when setting the perceived age differential to
−60 while the significant difference is still observed when
setting it to 60. It is expected that this result is also caused
by the resulting acoustic changes by SVC (GI) is smaller
than SVC (GD) when setting the perceived age differential
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Fig. 7 Preference score on singer individuality.

to −60 as mentioned above.
These results suggest that 1) the gender-dependent

modeling technique is effective for improving the perceived
age controllability, and 2) the direct waveform modification
technique with spectral differential significantly improves
quality of the converted singing voice.

Although the proposed method DIFFSVC (GD) makes
it possible to control the perceived age with higher speech
quality compared to the conventional method SVC (GI) and
SVC (GD) in Figs. 6, 7, there still remains the speech qual-
ity degradation compared to the natural singing voice. It
is expected that this degradation is caused by insufficient
modeling accuracy of the perceived age variations using the
gender-dependent MR-GMM. Therefore, it is worthwhile to
further improve the modeling accuracy.

4.3 Experimental Evaluation of Unsupervised Adaptation

4.3.1 Experimental Conditions

In this evaluation, we varied the number of the adaptation
phrases as 1, 6, 12, and 22 in order to evaluate the effec-
tiveness of the proposed unsupervised adaptation technique.
The adaptation phrases are selected in order from the begin-
ning of the index of singing voice database. In this eval-
uation, the ML estimation with parallel phrases was used
as the supervised adaptation and the MAP estimation with
only phrases of each evaluation singer was used as the un-
supervised adaptation. The hyper-parameter τ for the MAP
adaptation was manually set to 3.0 in the subjective evalua-
tions.

First, we evaluated the modeling accuracy of the
singer-dependent MR-GMMs developed with the adaptation
approaches using Mahalanobis distance of their mean vec-
tors to those of the singer-dependent MR-GMMs developed
with the conventional supervised approach using 22 parallel
phrases in each singer, which is calculated as

D(i)

=
1
L

L∑
l=1

M∑
m=1

αm

(
μ(22)

m (l)−μ̂(i)
m (l)

)�
Σ(YY)−1

m

(
μ(22)

m (l)−μ̂(i)
m (l)

)
, (25)

where L denotes the number of evaluation singers. μ̂(i)
m (l) de-

notes the adapted singer-dependent MR-GMM for the eval-
uation singer l using his/her i phrases in the unsupervised
adaptation or i parallel phrases in the supervised adapta-
tion. Note that the mean vectors of the singer-dependent
MR-GMM used as a target μ(22)

m (l) in this distance calcula-
tion is equivalent to those determined using the supervised
ML adaptation using 22 parallel phrases.

In the second experiment, we evaluated the conversion
accuracy using the mel-cepstrum distortion as an evaluation
metric in the different settings of the hyper-parameter τ. The
mel-cepstrum distortion was calculated as follows:

Mel-CD(i) [dB] =
10

ln 10

√√√
2

24∑
d=1

(
mc(22)

d − m̂c(i)
d

)2
, (26)

where mc(22)
d denotes the mel-cepstrum coefficients analyzed

from the converted singing voice generated with the singer-
dependent MR-GMM developed with the supervised ML
adaptation using 22 parallel phrases, and m̂c(i)

d denotes those
developed with the unsupervised MAP adaptation using i
phrases. The setting of the hyper-parameter τ is varied from
0, 1, 3, 6, 12, to 24. Note that the setting of τ = 0 corre-
sponds to the unsupervised ML adaptation.

In the third experiment, we evaluated the perceived age
controllability. The number of adaptation phrases was set
to 1 and 6. The 16 evaluation singers were divided into
four groups. Each subject evaluated the converted singing
voices from only one group of the evaluation singers. Sub-
jects were asked to assign the perceived age to each con-
verted singing voice in one group of the evaluation singers
by listening to it in random order. The number of evaluation
samples in each subject was 48.

In the final experiment, we evaluated the quality of the
converted singing voice using a opinion test. The number
of subjects and evaluation singers were the same as in the
second experiment. The subjects evaluated quality of the
converted singing voices in the same manner as described in
4.2.1.

4.3.2 Experimental Results

Figure 8 indicates the Mahalanobis distances as a function
of the number of adaptation phrases. The distance when us-
ing 1 parallel phrase in the ML adaptation is very large. On
the other hand, the distance using 1 phrase in the MAP adap-
tation is significantly lower than it. In the ML adaptation, it
is necessary to use 6 or more parallel phrases to reduce the
distance as small as in the MAP adaptation.

Figure 9 shows the mel-cepstrum distortion as a func-
tion of the number of adaptation phrases in each hyper-
parameter setting. We can see that the unsupervised adapta-
tion using either ML or MAP is effective. The unsupervised
ML adaptation (τ = 0) causes significantly large degrada-
tion when using only one adaptation phrase. On the other
hand, such a degradation is effectively alleviated by using



KOBAYASHI et al.: IMPROVEMENTS OF VOICE TIMBRE CONTROL BASED ON PERCEIVED AGE IN SINGING VOICE CONVERSION
2775

Fig. 8 Mahalanobis distance as a function of the number of adaptation
phrases.

Fig. 9 Mel-cepstrum distortion as a function of the number of adaptation
phrases and hyper-parameters settings.

Fig. 10 Experimental result on perceived age controllability of the
adapted MR-GMMs.

the proposed MAP adaptation. We can also see that perfor-
mance of the proposed MAP adaptation is affected by the
hyper-parameter setting, and relatively good performance is
achieved by setting the hyper parameter to a small value.

Figure 10 shows the experimental result on the per-
ceived age controllability. We can see that the MAP adapta-

Fig. 11 Mean opinion score of speech quality depending on the number
of adaptation phrases.

tion using only 1 phrase has higher controllability compared
to the ML adaptation in 1 parallel phrase and its controllabil-
ity is similar to that of the MAP adaptation using 6 phrases
and that of the ML adaptation using 6 parallel phrases. This
tendency is consistent with that observed in the previous ob-
jective evaluation shown in Fig. 8. Moreover, comparing to
the result described in Fig. 5, we can see that the proposed
MAP adaptation method using only 1 phrase achieves simi-
lar controllability to the conventional method using 22 par-
allel phrases.

Figure 11 indicates the results of the opinion test on the
speech quality. We can see that there is no significantly large
quality difference between the MAP adaptation and the ML
adaptation. We can also see that the quality of the converted
singing voice tends to degrade if using only 1 phrase. This
quality degradation is alleviated by increasing the number
of adaptation phrases to 6 and the resulting quality reaches
to that of the conventional method using 22 parallel phrases.

These results suggest that 1) the MAP adaptation out-
performs the ML adaptation when a few phrases are avail-
able, and 2) the MAP adaptation by using only a small num-
ber of arbitrary phrases (e.g., 6 phrases) achieves almost
the same controllability and quality of the converted singing
voice as in the conventional method that needs a larger num-
ber of parallel phrases (e.g., 22 phrases).

5. Conclusions

To improve performance of our previously proposed per-
ceived age control technique based on multiple-regression
Gaussian mixture models (MR-GMM), we have success-
fully implemented the gender-dependent modeling tech-
nique, the direct waveform modification technique with
spectral differential, and the unsupervised adaptation tech-
nique based on maximum a posteriori (MAP) estimation.
The experimental results have demonstrated that 1) the pro-
posed methods can expand a range of the controllable per-
ceived age wider, 2) the proposed methods can significantly
improve quality of the converted singing voice, and 3) the
proposed methods needs only a small number of arbitrary
phrases from each user to develop the voice timbre con-
trol system for him/her. In future work, we will investigate
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singer individuality of prosodic features and develop a tech-
nique to control the prosodic features by manipulating the
perceived age while retaining the singer individuality.
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