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ABSTRACT

This paper addresses the segment boundary detection task
that is to detect boundaries between consecutive segments
in musical pieces. In the commonly used Self-Similarity
Matrix (SSM) for music structure analysis, we observe two
types of segment, homogeneous and repetitive segments
indicated by square blocks and diagonal stripes, respec-
tively. The standard SSM with frame-wise similarity is
suitable for detecting homogeneous segments. However, it
remains a challenge to effectively represent the intra-class
similarity for repetitive segments. To tackle this issue, we
propose two novel SSMs, RSSM_value and RSSM_index,
based on our observation that vertical column vectors dur-
ing diagonal stripes (repetitive segments) in the SSM are
similar to each other after shifting these vectors up or
down. For each pair of column vectors in SSM, we com-
pute their cosine similarity while shifting one column vec-
tor to find the shift index that yields the maximal sim-
ilarity value. We then define RSSM_value where each
element represents the maximal value and RSSM_index
where each element represents the shift index, resulting in
clear blocks for repetitive segments. We stack the standard
and proposed SSMs and apply a CNN model to detect the
segment boundaries. Experimental results show that our
method outperforms state-of-the-art methods on three test-
only datasets (RWC_pop, Beatles, and SALAMI).

1. INTRODUCTION

The task of Music Structure Analysis (MSA) consists of
detecting boundaries between consecutive segments and
grouping segments into relevant categories, referred to as
boundary detection and segment labelling, respectively.
This task has a long history in the field of Music Informa-
tion Retrieval (MIR) [1-4] and still gains attention [5—10]
because structures play an essential role in music under-
standing and composition. MSA has been used to facilitate
other music content analysis tasks such as music similarity
estimation [4], beat and downbeat tracking [11, 12], and
chord transcription [13]. Structural information has also
been used in music generation tasks [6, 14, 15].

Most of the existing MSA methods divide up musical
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pieces based on the homogeneity within a segment and the
repetition of different segments [6]. The Self-Similarity
Matrix (SSM) is a commonly used mid-level representa-
tion for MSA, and it is generated by computing the simi-
larity between two audio feature vectors for each matrix el-
ement. The SSM is considered as a standard tool in MSA
because it reveals two main types of segments: homoge-
neous segments and repetitive segments. A homogeneous
segment is indicated by a square block (i.e., a region where
matrix elements with high similarity values form a square
shape) in the SSM, indicating high similarities between
pairs of feature vectors within the segment. On the other
hand, the repetition of segments typically leads to diagonal
stripes in the SSM [16], with the stripes representing the
high sequential similarity between the repetitive segments.
In order to effectively divide a musical piece into mean-
ingful segments, an ideal SSM should have high values for
matrix elements in the shape of square blocks belonging to
the same class (high intra-class similarity) [9, 17].

This has motivated researchers to work on representing
the diagonal stripes with block-like structures for a bet-
ter presentation of intra-class similarity for repetitive seg-
ments. Previous work achieved block-enhanced SSMs by
converting the diagonal stripes in the SSM into blocks
by using eigenvalue decompositions [16], spectral clus-
tering [18], and non-negative matrix factor 2-D deconvo-
lution (NMF2D) [19]. Recent deep-learning-based meth-
ods first learned features from patches of spectral fea-
tures to enforce intra-class similarity by using the triplet
loss [9, 17,20, 21] or SSM-based loss [10]. They then
used methods based on (classical or trained [10]) checker-
boards or clustering to detect segment boundaries in the
block SSMs computed on the learned features.

In this paper, we address the segment boundary detec-
tion task in MSA. In contrast to the above deep-learning-
based methods, we first compute two hand-crafted novel
SSMs, RSSM_value and RSSM_index, by using the stan-
dard SSM, and then apply a CNN model for boundary
detection as shown in Figure 1. We observed that al-
though the vertical column vectors within each repetitive
segment are not similar to each other, similar vectors re-
peatedly appear across different repetitive segments in the
SSM, as depicted in the eight blue rectangles in Figure 2.
Moreover, a column vector within each repetitive segment
(i.e., within consecutive column vectors showing diagonal
stripes in each blue rectangle in Figure 2) can be similar
to another vector even within the same repetitive segment
after shifting the vector up or down thanks to the nature
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Figure 1: Overview of the proposed method.

of diagonal stripes. Our RSSM_value and RSSM_index
are computed from the standard SSM by leveraging these
findings and can have much clearer square blocks for repet-
itive segments. After stacking the proposed RSSMs with
the standard SSM, the CNN model for them is trained
with a model fusion technique that averages the weights of
the models at several smallest validation losses to achieve
more robust results. The model was trained and validated
on the Harmonix [22] dataset, and it was evaluated on the
RWC_pop [23], Beatles [24], and SALAMI [25] datasets.
The results showed that it outperformed state-of-the-art
methods [9,10,17,20,21,26-28].

2. PROPOSED METHOD

On the basis of the standard SSM described in Section 2.1,
we define two RSSMs in Section 2.2 to improve the intra-
class similarity for repetitive segments. As shown in Fig-
ure 1, we apply the CNN model for segment boundary de-
tection (Sections 2.3 and 2.4) to the standard SSM and two
RSSMs, followed by the post-processing (Section 2.5).

2.1 SSM Computation

We compute the standard SSM based on the mel-
spectrogram of musical pieces by using the Python library
librosa [29]. First, we load the audio with a sampling
rate of 22050 Hz and compute the mel-spectrogram with
128 mel bins and a hop size of 441 (20 ms). We convert the
mel-spectrogram into a log amplitude with log(1 + mel).

Then, we compute mean features at a rate of 0.5 s (we
call this a frame) with each feature obtained by averaging
the above mel-spectral features within 2 s. We obtain the
audio feature vector f; by stacking the mean features in
adjacent 6 frames (3 s) for each frame 7 [26], with f; €
R768x1 i ¢ [1,T)], where T = audio_length/0.5 is the the
number of frames in the sequence. Finally, we compute the
SSM based on the Euclidean distance between pairs of the
audio feature vectors:

SSM; ; = exp(—||fi — f;l|/b), )]
where b is the bandwidth parameter. We use the librosa

Proceedings of the 22™! Sound and Music Computing Conference (SMC2025), Graz, July 2025
ISBN 978-3-200-10642-0

function 1ibrosa.segment .recurrence_matrix
to compute the SSM, with mode=‘affinity’ and de-
fault setting for the bandwidth b.

To obtain a high contrast SSM, the above exp is com-
puted only when f; and f; are similar (close) enough,
which is judged by using k-nearest neighbors (see the
librosa implementation [29] for details), and we set
SSM; ; = 0 otherwise. We smooth the SSM by taking the
average of 7 frames along the diagonal direction to reduce
noisy short sequences.

An element SSM; ; of the SSM € R”7*T indicates the
similarity between f; and f;, with a value between 0 and
1. If SSM; ; is close to 1, f; is similar to f;. For homoge-
neous segments with frame-wise similarity, all pairs of f;
and f; within each segment are similar, forming a square
block in the SSM. For repetitive segments with sequence-
wise similarity, the first frame of a segment is similar to the
first frame of the repetitive segment, and this applies to the
second and subsequent frames, forming a diagonal stripe
in the SSM.

2.2 RSSMs: Novel SSMs for Repetitive Segments

As part of the preparation for computing two RSSMs from
the SSM, we denote a vertical column vector of the SSM
by s;, with s; = [SSMLI‘, SSMQJJ, R SSMT,Z*]T. The
column vector s; represents the similarities between the
feature vector f; and all the other feature vectors f;, j €
1..T'. Taking the eight repetitive segments (eight blue rect-
angles) in Figure 2, for example, the repetition is shown as
eight peaks (high similarity values) in each column vector
s; within each segment (blue rectangle). In each segment,
the eight peaks form the eight diagonal stripes. The col-
umn vectors s; and s; within the same segment are simi-
lar after matching the eight peaks by vertically shifting s;
by several elements (frames) upwards or downwards. The
maximal similarity between adjacent vectors s; and s,
within the same segment can be obtained by shifting all
elements of s;1 down by one element (i.e., shift index is
—1), and also the maximal similarity between s; and s; 2
can be obtained by shifting s;;2 down by two elements
(i.e., shift index is —2).
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Figure 2: The standard SSM. Eight blue rectangles are
added to highlight repetitive segments indicated by diago-
nal stripes. These repetitions are visible as eight high sim-
ilarity values in each vertical column vector.

By leveraging them, each element of the two RSSMs,
RSSM_value; ; and RSSM_index; ;, is computed by us-
ing s; and s; (two column vectors of the standard SSM).
By using the shift index m (m € [-T/2,T/2]), we verti-
cally shift the column vector s; by m elements upwards (or
downwards when m < 0) to generate sgn, which contains
T variations of s;. We then compute the cosine similarity
between s; and each of s}” to find the shift index m that
gives the maximal similarity value. By using that maximal
similarity value (max,,) and its shift index (argmax,,),
we define two matrices RSSM_value and RSSM_index as
follows:

RSSM_value; j = max,, cos(s;, s}'), 2)
RSSM_index; j = 1—|argmax,, cos(s;, s7")|/(1/2),(3)

where RSSM_value; ; € [0,1] and RSSM_index; ; €
[0, 1] since the shift index is normalized to the range of
0 to 1. RSSM_index represents the proximity of m to 0.

The differences between the proposed RSSMs and tradi-
tional SSM is that in RSSMs, each element is computed
based on the similarities between shifted SSM columns
with a computational cost of O(T?); while in SSM or Self-
Similarity Lag Matrix (SSLM) [30], each element is com-
puted based on the similarities between spectral features
with a computational cost of O(T' x T') and O(T x L),
where L is the lag time in the SSLM. Figure 3 shows
the RSSMs corresponding to the standard SSM in Fig-
ure 2. The advantage of RSSM_value is that, as shown
in Figure 3a, the repetitions represented by the diago-
nal stripes in the standard SSM are clearly indicated by
square blocks in RSSM_value. The reason for the emer-
gence of the square blocks is that if cos(s;, sijrll) is high,
then cos(s;i1,s;) is also high. The same applies to
cos(s;, Si_fz)’ cos(8i+1, s;lQ), and beyond.

However, the homogeneous segments shown as blocks in
the standard SSM are blurred in RSSM_value. The ad-
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Figure 3: Proposed RSSMs.

vantage of RSSM_index is that, as shown in Figure 3b,
both homogeneous and repetitive segments are indicated
by the square blocks in RSSM_index. All pairs of s; and
s? within each homogeneous segment are highly similar
to each other due to the homogeneity of their audio fea-
ture vectors. So, the shift index m giving the maximal
cos(s;, s}) must be 0, resulting in the high proximity of
m to 0. It thus forms high values of a square block in
RSSM_index. For each repetitive segment, also, the shift
index m giving the maximal cos(s;, s") also tends to be
close to 0 due to its locality, resulting in a square block.

Since the SSM and our original RSSMs have complemen-
tary advantages, we leverage all of them by stacking them
together. Note that the size of the three matrices is the
same.

2.3 CNN Model for Segment Boundary Detection

After stacking the standard SSM, RSSM_value, and
RSSM_index to make the three-channel input (each chan-
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network name (the right is larger in size than the left)

Alex 115 117 1111
layer name | filter size filter size filter size filter size
conv2d_0 11 x 11 11 x 11 11 x 11 11 x 11
conv2d_1 7TXT7 TxX7 7TXT7 11 x 11
conv2d_2 5x%X5 5%x5 7TxT7 TX7
conv2d_3 3x3 5%X5 5X%X5 TxT7
conv2d_4 3 x3 5%X5 5X%X5 5X%X5
conv2d_5 3 X3 3x3 3 X3 3x3

Table 1: Network architectures.

nel corresponds to one of the SSMs), we feed it to a
CNN model. The CNN model is adapted from the Alex-
net [31]', which consists of 6 convolutional layers with
filter numbers of 96, 128, 256, 384, 384, and 256, respec-
tively. We compare different filter sizes in the convolu-

tional layers as shown in Table 1.

There is a pooling layer after each of the first 5 convolu-
tional layers with a pooling size of (3, 1) and a stride of
(2,1). The output of the 6! convolutional layer has 4 di-
mensions: [batch, row, time, channel]. We add a pooling
layer after the 6" convolutional layer to pool along the row
dimension and obtain an output with 3 dimensions: [batch,
time, channel]. To find the best pooling method for the last
pooling layer, we compare three different types: “mean”
using an average pooling layer, “max” using a max pool-

ing layer, and “both” using (stacking) both of them.

There are 4 fully-connected layers after the convolutional
and pooling layers with the output dimensions of 1024,
1024, 256 and 1, respectively. All layers use the ‘ReL.U’
activation functions, except that the last fully-connected
layer uses a ‘sigmoid’ activation function with a dimen-
sion of 1 to predict the boundary probability at each time

frame (every 0.5 s).

In Section 3.3, we report our ablation study to compare

the above network configurations to find the best one.

2.4 Model Training and Fusion

We train the CNN model with annotated data in a super-
vised manner using the Adam optimiser with a learning
rate of 1074, In order to achieve efficient training with
more balanced data, the ground-truth segment boundaries
are extended by a range of 7 frames with a rectangular win-
dow after ignoring the first and last boundaries [10]. Since
the input sizes vary depending on the length of the musical

pieces, we use a batch size of 1 in the training.

It is common to select a model with the smallest valida-
tion loss to predict the output, as indicated by the star in
Figure 4a. However, the final results also depend on the
initialisation of the model training and the post-processing
on the model output. To make the results more robust,
we use a model fusion technique by averaging the weights
of the models at several smallest validation losses (as in
Figure 4b). This weight averaging can also improve the
performance and generalisation of the model without addi-
tional computational complexity or training processes [32].

! This architecture is simpler than other transformer-based architec-
tures in the recent literature. We chose it because we want to show that a
simple CNN is sufficient to produce good results with the novel structure
representation, RSSMs. Using more modern architectures may be of help

and would be interesting to explore in the future.
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Figure 4: Model fusion by averaging model weights.

In our preliminary experiment, we found that averaging the
models at the four smallest validation losses works best.

2.5 Post-Processing

We first apply a threshold to the model output, and then
pick the peaks as the segment boundaries by using the
python library scipy.signal.find_peaks. Be-
cause we ignore the first and last boundaries during the
training, we append O s and the last frame (audio length) to
the detected boundaries to obtain the final results.

3. EXPERIMENTS
3.1 Datasets

For training, we divided the Harmonix dataset [22] into
train, validation (vali), and test subsets (636, 184, and
92 songs, respectively). The model was trained with the
Harmonix-train subset and validated with the Harmonix-
vali subset. The ablation study was conducted on the
Harmonix-test subset.

For testing, we used three datasets: RWC_pop (100
tracks of the RWC_pop [23] with AIST annotations [33]),
Beatles (174 tracks of the Beatles [24] with TUT annota-
tions [34]), and SALAMI [25]. For the SALAMI dataset,
we considered the two annotations (Anl, An2) and the two
levels of flat annotations (Upper, Lower) corresponding to
the files “textfile{1,2}_{upper,lowercase}.txt” in the an-
notations. The uppercase annotations (‘Upper’) are in a
large scale (labelled with uppercase letters), mainly corre-
sponding to the segment functions, such as ’intro’, ’transi-
tion’, and ’chorus’. The lowercase annotations (‘Lower’)
are in a small scale (labelled with lowercase letters).
We made three SALAMI subsets as in [10]: SA_pop
(subset of SALAMI tracks with CLASS equal to Pop-
ular, with 237/148 songs for Anl/An2), SA_IA (subset
of SALAMI tracks with SOURCE equal to IA (Internet
Archive), with 379/220 songs for An1/An2), and SA_two
(subset of SALAMI tracks with at least two annotations,
with 762/762 songs for An1/An2).
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Figure 5: Ablation study on the Harmonix-test subset. ‘n_X_Y_Z’ indicates the network configuration, with ‘X’ referring
to the network name (filter size) as in Table 1, Y’ referring to the input channel number, and ‘Z’ referring to the type of

the last pooling layer.

3.2 Evaluation Metrics

We evaluated the performance of segment boundary de-
tection by using F-measure with a precision window of 3
s. We used the Python library mir_eval [35] with the
functionmir_eval.segment.detection.

3.3 Ablation Study (Finding the Best Configuration)

Figure 5 shows the violin plots for the ablation (com-
parative) study with the Harmonix-test subset. The label
‘n_X_Y_Z’ for each plot indicates the network configura-
tion as explained in the figure caption.

First, we confirm the effectiveness of the model fusion.
The short horizontal bars in the enlarged figure in Fig-
ure 5(c) indicate the average of the violin plots in (a) and
(b). By comparing the two horizontal bars in each network
configuration in (c), we can find that the orange averages
((b) with model fusion) are always higher than the blue av-
erages ((a) without model fusion) for all the network con-
figurations. This indicates that the use of the model fusion
can improve the performance and provide more robust re-
sults. If we compare the violin plots between Figure 5 (a)
and (b) for each configuration, the orange variances of (b)
tend to be smaller than the blue variances of (a). So, the
model fusion can help to achieve more stable results for
different songs.

Then, we find the best network configuration with the
model fusion by comparing the orange F-measure aver-
ages of eight different configurations (models) in Fig-
ure 5(c). We can see that model ‘n_115_3_mean’ with our
3-channel SSMs (SSM, RSSM_value, and RSSM_index)
worked better than ‘n_115_2_mean’ with SSM and
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RSSM_value, confirming the effectiveness of using all the
three SSMs. Since model ‘n_115_2_mean’ is not superior
to ‘n_115_1_mean’ using SSM only, adding RSSM_value
alone was not effective, but better generalization was ob-
tained by adding RSSM_value in our preliminary ex-
periments. Since the importance of using the 3 chan-
nels (all the three SSMs) is thus confirmed, we iden-
tify the best pooling method for the last pooling layer.
By comparing ‘n_115_3_mean’ with ‘n_115_3_max’ and
‘n_115_3_both’, we decide to use “mean” (average pool-
ing layer) since the max pooling did not help. Finally, we
find the best filter size (network name in Table 1) by com-
paring four configurations ‘n_*_3_mean’. We find that
the F-measure was improved by increasing the size from
‘n_Alex_3_mean’ to ‘n_115_3_mean’, but no significant
improvement observed by further increasing the size to
‘n_117_3_mean’ or ‘n_1111_3_mean’.

With all the results considered, we conclude that the con-
figuration ‘n_115_3_mean’ is the best and we call it the
proposed model ‘modelH.” We use ‘modelH’ for all other
experiments below.

3.4 Results (Comparison with Existing Methods)

We evaluated the proposed ‘modelH’ on three test-only
datasets and the results are shown in Table 2. Since the
SALAMI dataset has two levels of ground-truth annota-
tions, i.e., uppercase annotation with segments in large
scale (Upper) and lowercase annotation with segments in
small scale (Lower), we show results with three different
thresholds, 0.0, 0.2, and 0.4, for the post-processing. It
makes sense that the best results on the uppercase anno-
tation was achieved with ‘modelH_0.4" (with the largest
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Method RWC_pop | Beatles SA_pop SA_TA SA_two SALAMI Annotation
Proposed: modelH_0.0 0.650 0.592 0.554/0.549  0.443/0.434  0.453/0.462
Proposed: modelH_0.2 0.791 0.736 0.683/0.668  0.588/0.593  0.577/0.588 | Upper; Anl/An2
Proposed: modelH_0.4 0.757 0.756 0.695/0.672  0.600/0.615  0.608/0.618
Proposed: modelH_0.0 0.732/0.762  0.692/0.719  0.710/0.715
Proposed: modelH_0.2 0.578/0.589  0.510/0.569  0.571/0.578 | Lower; Anl/An2
Proposed: modelH_0.4 0.498/0.490  0.371/0.429  0.453/0.459
Serra [26] 0.791 0.752
Buisson [9] T 0.683 Upper; An*

Grill [27] GS1 0.715 0.623 Upper; An*

McCallum [20] § Unsynch. 0.597 0.497 Not specified in [20]

Beat-synch. 0.648 0.535

Salamon [28] DEF#H s H 0.564 Upper; An*

Wang [17] scluster/D/eu/mul 0.653 0.623 0.553 Upper; Anl+An2

Buisson [21T HEo/HE 0.681 0.718 0.597/0.595 | Upper; Anl/An2

0.611/0.600 | Lower; Anl/An2

Peeters [10] T 0.713 0.631/0.624  0.520/0.51T  0.521/0.530 | Upper; Anl/An2
0.570/0.610  0.547/0.612  0.589/0.589 | Lower; Anl/An2

Comparison: novelty curve from SSM 0.698 0.600

Comparison: novelty curve from RSSM_value 0.761 0.688

Comparison: novelty curve from RSSM_index 0.663 0.591

Table 2: Results (F-measures) on three test-only datasets. The ‘modelH_X indicates the proposed modelH with a threshold
of X in the post-processing step. 1 indicates the results obtained with the first and last boundaries trimmed. ‘Anl/An2’
means that two results, R1/R2, were obtained separately using two different annotations Anl and An2: R1 from Anl and
R2 from An2. ‘Anl+An2’ means that the result was obtained by averaging over (Anl+An2) annotated songs. ‘An*’ means

that the annotation number is not specified in the reference.

threshold of 0.4), and the best results on the lowercase an-
notation was achieved with ‘modelH_0.0".

Table 2 also shows the performances reported for the
eight existing methods [9,10,17,20,21,26-28] on the same
test-only datasets. On the RWC_pop and Beatles datasets,
we can see that our ‘modelH’ achieved start-of-the-art per-
formances in comparison to the other methods. On the
three SALAMI subsets, our ‘modelH’ similarly outper-
formed all other methods, except on the SALAMI_two
with the uppercase annotation, where the best performance
was achieved by the method Bussion [9]. We thus con-
firmed the effectiveness of the proposed method.

3.5 Comparison with Novelty Curve on RSSMs

Since the proposed RSSMs are so powerful as explained in
Section 2.2 and demonstrated in the experimental results
above, the simple traditional detection method based on
the checkerboard kernel [1] without using the CNN model
might be able to detect segment boundaries well if it is
applied to the RSSMs. We therefore applied a Gaussian
checkerboard kernel with a length of 30 frames to obtain
the novelty curve by using an existing implementation. 2
We smoothed the novelty curve by using a moving aver-
age filter of 9 frames, and then picked the peaks from the
smoothed novelty curve as boundaries.

At the bottom of Table 2 are the results of this detection
on the RWC_pop and Beatles datasets when it was ap-
plied to each of the SSM, RSSM_value, and RSSM_index.
Here, the novelty curve from the RSSM_value was
the best. Surprisingly, its F-measure of 0.761 on the
RWC_pop was better than those of several existing meth-
ods?, showing the advantage of RSSM_value having
clear square blocks. On the other hand, the results of

nttps://www.audiolabs—erlangen.de/resources/
MIR/FMP/C4/C4S4_NoveltySegmentation.html

3 Please note that in Serra [26] the novelty curve is calculated based on
the difference between successive structural features, which is different
from the checkerboard method used here.

RSSM_index were worse because its elements around the
diagonal of the matrix naturally tend to have high values, as
shown in Figure 3b, which is not suitable for the checker-
board kernel. However, it is certainly effective when used
with the CNN-based model, evidenced by the comparison
between ‘n_115_2 mean’ and ‘n_115_3_mean’ in the ab-
lation study (Figure 5).

3.6 A case study

To better understand the proposed method, we further ana-
lyze an example of the input SSMs and the output bound-
ary probability of the CNN model (modelH) in Figure 6.
As can be seen in Figure 6, high peaks of the boundary
probability correspond to the ground-truth segment bound-
aries. Since the boundary probability is predicted from the
input SSMs, if there are clear clues for boundaries, such as
edges of square blocks, in some SSMs, it is easier to detect
them, as shown by high peaks above 0.5 in Figure 6b. If
such clear clues cannot be seen, it is more difficult to de-
tect, as shown by peak “C” in SSM (Figure 6a top). We
expect that if future work could add different SSMs based
on other features, clearer clues could be obtained even for
such boundaries. Other difficult cases are the peaks “A”
and “B”. Although their heights are similar, “A” is a false
positive error, while “B” is the correct boundary. The am-
biguity between these peaks is not due to the input SSMs
and could be avoided by enforcing regularity on segment
duration [6, 36].

4. CONCLUSIONS

In this paper, we proposed the two novel RSSMs to high-
light repetitive segments for the segment boundary detec-
tion task. The contributions of this paper can be sum-
marized as follows. First, although the key idea behind
RSSMs is simple, to the best of our knowledge, this is
the first work to propose them. Second, we confirmed that
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Figure 6: Example of the input and output of the CNN
model ‘modelH’ (for a piece from the Harmonix-test sub-
set). The green curves overlaid at the bottom of each
SSM/RSSM in (a) and the curve in (b) are all the same
and represent the boundary probability. The vertical blue
lines indicate the ground-truth segment boundaries.

the proposed RSSMs help to improve the performance in
the ablation study. Third, we showed that the proposed
method based on RSSMs and CNN can achieve better F-
measures than the state-of-the-art methods on the three
test-only datasets, which have been conventionally used for
the evaluation of this task.

As we showed in Section 3.6, detecting a boundary be-
comes difficult when there are no clear clues in the SSMs.
In the future, we could address this issue by integrating
SSMs computed from different features such as chroma
features and learned features from deep models. In ad-
dition, since the RSSMs are so effective in the bound-
ary detection task, our future work will also include a
verification of their effectiveness in the segment labelling
task [10,17,19,21,26,28].
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