
CrossSong Puzzle: Generating and Unscrambling Music Mashups with
Real-time Interactivity

Jordan B. L. Smith, Graham Percival, Jun Kato, Masataka Goto, Satoru Fukayama
National Institute of Advanced Industrial Science and Technology (AIST), Japan

{ jordan.smith, graham-percival, jun.kato, m.goto, s.fukayama } @aist.go.jp

ABSTRACT

There is considerable interest in music-based games, as the
popularity of Rock Band and others can attest, as well as
puzzle games. However, these have rarely been combined.
Most music-based games fall into the category of rhythm
games, and in those games where music is incorporated
into a puzzle-like challenge, music usually serves as either
an accompaniment or reward. We set out to design a puz-
zle game where musical knowledge and analysis would be
essential to making deductions and solving the puzzle.

The result is the CrossSong Puzzle, a novel type of music-
based logic puzzle that truly integrates musical and logical
reasoning. The game presents a player with a grid of tiles,
each representing a mashup of measures from two different
songs. The goal is to rearrange the tiles so that each row
and column plays a continuous musical excerpt.

Automatically identifying a set of song fragments to fill
a grid such that each tile contains an acceptable mash-
up is our primary technical hurdle. We propose an algo-
rithm that analyses a corpus of music, searches the space of
possible fragments, and selects an arrangement that max-
imizes the “mashability” of the resulting grid. This algo-
rithm and the interaction design of the system are the main
contributions.

1. INTRODUCTION

Why is listening to music enjoyable? One hypothesis is
that a listener’s pleasure derives from their ability to de-
tect patterns in the music, thereby “compressing” it in their
mind [1]. There is some evidence that, compared to other
works, compositions widely regarded as musical master-
pieces may be more compressible, despite having a more
complex surface representation [2]. Whether or not this
is the only explanation, music shares an important trait
with puzzles: pattern identification is central to the enjoy-
ment of both. In the case of logic puzzles, such as sudoku,
discovering patterns helps the solver to make deductions
about how to complete the puzzle.

While being enjoyable for arguably similar reasons, there
are few activities that target those with an interest in both
music and puzzles. Devising a satisfying combination of

Copyright: c©2015 J. B. L. Smith et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Figure 1: CrossSong puzzle overview. Green tiles indi-
cate correct placement. The solver cannot see the labels
and must deduce the correct order by listening to the tiles.
Gameplay video:
https://www.youtube.com/watch?v=I_i0HXPybKM

active listening and puzzle-solving is a difficult task. Puz-
zles, including jigsaws and crosswords, are usually solved
at a leisurely pace—interruptions are no hindrance—while
music is defined by its happening in time, and interruptions
or sudden changes in rhythm or playback can be disturb-
ing. We have embraced the challenge of wedding these two
forms together and have made a real-time puzzle game in
which the solver listens to the audio “clues” without inter-
ruptions.

The result is the CrossSong Puzzle (Figure 1). The puzzle
consists of a 4x4 grid of tiles, where each row and column
represents a four-measure excerpt of a song. Each tile thus
represents one measure-long mashup of two songs. The
solver is presented with a scrambled grid, and the object
of the puzzle is to discover the correct arrangement of tiles
by listening to them. Each excerpt has been time stretched
to the same duration so that all beats match. Gameplay is
continuous, with each tile playing one after the other with a
constant tempo, to prevent the player from being distracted
by the interruptions.

The puzzle resembles a musical version of a 4x4 sliding-
tile puzzle, in which the goal is to reconstruct an image
given similar constraints. However, it more strongly re-
sembles a crossword puzzle in its construction. A cross-
word setter must find suitable words to fill a grid such that
wherever two words cross, the same letter is used. Like-
wise, to make a pleasing CrossSong puzzle, we must find
suitable song excerpts such that wherever two songs cross,
a pleasing mashup is made. Discovering a set of excerpts
where this is possible is a formidable but necessary chal-

mailto:jordan.smith
mailto:graham-percival@aist.go.jp
mailto:jun.kato@aist.go.jp
mailto:m.goto@aist.go.jp
mailto:s.fukayama@aist.go.jp
http://creativecommons.org/licenses/by/3.0/
https://www.youtube.com/watch?v=I_i0HXPybKM


lenge: if the mashups are dissonant or poorly matched
rhythmically, the resulting discord will make gameplay te-
dious. The algorithm we developed for doing this, based
on the work of [3], is one of our main contributions.

The other main contributions are the design of the puzzle
itself and the interface used to solve it. Both were refined
and tested iteratively, and the result is a puzzle that is chal-
lenging but accessible.

The rest of the paper is structured as follows. The next
section reviews existing combinations of music and puz-
zles, as well as previous work in mashability estimation.
Section 3 gives a formal overview of the proposed Cross-
Song Puzzle design, including gameplay and implementa-
tion. Section 4 describes the algorithm that answers the
technical challenge stated above. Section 5 discusses the
iterative testing, design principles, and possible improve-
ments to the system. We give concluding remarks in Sec-
tion 6.

2. RELATED WORK

In this section, we first review prior effort on using music
as part of interactive play, including examples in both pre
and postcomputer age. Second, we review existing soft-
ware for creating and estimating the quality of mashups.

2.1 Music as Part of Interactive Play

If we do not limit the scope to computer-aided puzzles,
there is one tradition of musical puzzles that dates at least
to the 15th century: puzzle canons. The puzzle consists of
a single monophonic melody, and the solver (usually a stu-
dent of composition or other expert) must discover how to
realize it as a canon. An early example of turning music-
making into a game is the musical dice game of Western
Europe, dating to the 1700s [4], in which random rolls of
the dice were used to choose a selection of score fragments
which were then performed for the amusement of the as-
sembled.

There are many web- and smartphone-based games today
which are based on music; however, a partial survey [5]
suggests that the market is dominated by sound banks, mul-
timedia players, instrument emulators, and music-creation
apps like synthesizers and sequencers. Among the music-
related puzzles we discovered, the link between the music
and the puzzle mechanics were not very strong; in most
cases, the logical reasoning is separate from the music,
which serves more as a progress indicator or as a reward
generated by the correct solution to the puzzle (e.g., Au-
ditorium 1 , Chime 2 , Lumines 3 ). Even when the music
is deeply integrated into the puzzle structure, such as with
FRACT OSC 4 , musical insight is not required to solve the
challenges. Other related music-based games include the
popular genre of rhythm games (e.g., Guitar Hero 5 , Hat-

1 http://www.cipherprime.com/games/auditorium/
2 http://www.chimegame.com/
3 http://lumines.jp/
4 http://fractgame.com/
5 http://www.guitarhero.com/

sune Miku: Project DIVA 6 , Idolmaster 7 )—but these are
better described as physical challenges than as logic puz-
zles.

We would like to see a puzzle where the music is the
source of information needed by the solver, and where care-
ful listening is required. To our knowledge, the only pre-
decessor with this feature is the puzzle game developed by
Hansen et al. [6], who developed a musical analogue of a
jigsaw puzzle. A 15-second excerpt of music is divided
into pieces and the solver’s goal is to arrange the pieces
from left to right in order to reconstruct the original ex-
cerpt, much like jigsaw pieces must be arranged in order
to reconstruct an image. As an added challenge, the audio
of several pieces has been randomly transposed; the solver
must detect and undo these transpositions in order to com-
plete the puzzle.

Their design has a certain limitation, which ours aims
to overcome. First, each musical excerpt is divided into
pieces at arbitrary timepoints, so the resulting pieces do
not sound like coherent fragments. Thus, when the pieces
are in incorrect order, the result will sound not only incor-
rect but also unmusical. It would be preferable to divide
the fragments only at beat or downbeat positions. In fact,
some music psychology experiments support the view that
rearranging parts of a piece of music at a sensible timescale
does not necessarily disrupt one’s enjoyment of the mu-
sic [7].

2.2 Automatic Level Creation for Music Games

Creating levels for music games could be done with man-
ual effort, but is cumbersome and makes it difficult to cus-
tomize the gaming experience based on the users’ needs.
For instance, matching the audio clips to beat boundaries
could be done with manual editing of the audio files, but
a better approach is to generate levels based on rhythmic
information extracted from the audio automatically. In this
way, users can create levels based on their music libraries.
Automatic methods of level creation have already been de-
veloped for music rhythm games such as Guitar Hero, Beat
the Beat [8] and AudioSurf 8 .

For the CrossSong puzzle, we require an algorithm that
can do two things: first, automatically align the beat of
two pieces with beat-tracking; and second, estimate the
quality of the resulting mashup at multiple shifts in pitch.
Many tools are capable of estimating beat locations to fa-
cilitate the creation of mashups, such as the Echo Nest
Remix API 9 . Beat-Sync-Mash-Coder [9] computes this
beat information and uses it to automatically synchronize
the playback of two clips, but the portion of each song to
use must be manually selected, and the system does not
attempt to match the pitch of the clips. The commercial
system Mixed In Key 10 estimates the mutual harmonic
compatibility of all songs in a collection, and can recom-
mend source material for users to create mashups on their

6 http://miku.sega.jp/arcade/en/
7 http://idolmaster.jp/
8 http://www.audio-surf.com/
9 http://echonest.github.io/remix/

10 http://mashup.mixedinkey.com/HowTo



A

B

Playback cursor

C

D

A1-E1

E F G H

A2-F1 A3-G1 A4-H1

B1-E2 B2-F2 B4-H2

C1-E3 C2-F3 C3-G3 C4-H3

D1-E4 D2-F4 D3-G4 D4-H4

Trigger row
or column
playback

Playing row

Figure 2: CrossSong Puzzle in its solved state, with labels
added to each tile to illustrate the arrangement of music
clips. Each tile contains a mashup of two clips; clip label
Xi indicates the ith measure of of song X . Solvers never
see the tile labels, and begin with the tiles in random order.

own. However, the compatibility estimate is on a song-to-
song basis with no timing information; this is too coarse
for our purpose, since the compatibility of two excerpts
can be greatly affected by the phase of the excerpts.

Among existing systems, AutoMashUpper [3] fulfills our
requirements best. First, it performs beat, downbeat, and
phrase-level boundary detection, since mashups between
phrases that are intact and aligned downbeat-to-downbeat
are understood to sound better. Second, it estimates the
harmonic, rhythmic and spectral compatibility of two phra-
ses at all possible shifts in pitch and time. The harmonic
compatibility of two segments is taken as the correlation
between chromagrams estimated from the audio. Rhyth-
mic compatibility is estimated in the same way, using a
rhythmic feature derived from the pattern of estimated kick
and snare onsets. Finally, the coarse spectra from each seg-
ment are compared; the flatter their sum, the more the two
excerpts are deemed to have complementary spectra, and
the greater their mashability. Details of this algorithm can
be found in [3]. In Section 4 we describe how the algo-
rithm was adapted for our needs.

3. CROSSSONG PUZZLE

The CrossSong Puzzle was described briefly in the intro-
duction. In this section, we explain the design and con-
struction of the puzzle in more detail. In the Section 5, we
explain how our design evolved over a series of user tests.

In its solved state, the puzzle contains excerpts from 8 dif-
ferent songs, labelled A–H , one for each row and column
of the grid. (See Figure 2.) Each excerpt X is 4 measures
long; each of these measures, X1–X4, is associated with a
different tile, and each tile is a mashup of measures from
two songs. The solver begins the puzzle with the tiles ar-

B2-F2

A3-G1

B3-G2

C3-G3

A4-H1

Horizontal
neighbours
B2-B3: ✓
A3-A3: ✗

Vertical
neighbours
G1-G2: ✓
G2-G3: ✓

(a) Illustration of relative cell correctness.

(b) Illustration of how clips are mixed depending on correctness.

Figure 3: Diagrams for how neighbour correctness is cal-
culated for a given tile, B3-G2, and the resulting balance
when played as part of a row or column.

ranged randomly and their task is to determine the correct
order by listening to the tiles. Audio playback is continu-
ous: the tiles are sounded in order from left to right, top to
bottom, and the tile currently being played is highlighted.
When the last column has finished playing, playback con-
tinues at the first row. All the tiles have the same duration
and tempo, so even in the initial random configuration of
tiles, the music has rhythmic coherence.

During gameplay, the solver can click on any two tiles to
swap their position. They may also click on arrows outside
the grid to choose which row or column to begin playing
after the current one has ended. A link to a gameplay video
is given in Figure 1. Solving a single puzzle takes roughly
10 minutes.

Normally, the two clips in each tile are played with equal
loudness. However, as a reward for partial progress, the
balance between the clips changes if the tile is positioned
correctly with respect to its neighbours. The more cor-
rect neighbours, the more the mixing is reduced. The con-
cept of “relative cell correctness” is illustrated in Figure 3a.
In this example, the tile B3-G2 has one correct horizon-
tal neighbour, since the tile B2-F2 belongs to its left in
the solved puzzle. The impact of this arrangement is seen
in Figure 3b. When B3-G2 is played as part of the cur-
rent row (“horizontal playback”), instead of the mix being
50/50, it will be 75% B3 and 25% G2. When played as part



of the current column (“vertical playback”), since both ver-
tical neighbours are correct, the mix will be 100% G2. It
does not matter if B3-G2 is in the correct place in the 4x4
grid; this audio clue is based only on relative correctness.

3.1 Platform

We chose to implement the game as a web-based applica-
tion. This has the advantage of making it instantly cross-
platform: we have played it successfully on a desktop with
a mouse, on a smartphone with a touchscreen, and even on
a large-format touchscreen with multiple users (as pictured
in Figure 6).

Once a puzzle has been generated (discussed in Section 4),
it is presented to the player in a JavaScript interface. We
used the Web Audio API, allowing us to leverage the in-
creasing capabilities of modern web browsers for interac-
tive audio applications [10]. This allows the solving por-
tion of the puzzle (as opposed to the generation phase) to
scale to many users, as the server need only provide the
html, css, javascript, and audio files to the user. The actual
gameplay logic, as well as the audio mixing and schedul-
ing, is performed on the local client computer.

Using a central server to generate and serve the audio has
advantages and disadvantages. The main advantage is that
we can perform audio analysis and generate puzzles using
any language of our choice, rather than being restricted to
javascript. Two disadvantages are that users are restricted
to audio which is available on the server (i.e. they cannot
use their own personal music collection), and if many users
were attempting to create puzzles at the same time, the
server could easily become overloaded. The latter problem
is mitigated by caching all generated puzzles, so re-using
an old puzzle has virtually no cost. Given that javascript
audio-processing libraries are relatively new, we chose to
use a central server.

4. PUZZLE CREATION ALGORITHM

As described in Section 2, AutoMashUpper estimates the
mashability of two excerpts as a function of their harmonic,
rhythmic and spectral compatibility, considering a range of
possible transpositions. AutoMashUpper finds, for a given
section of a song, the single best matching segment among
a list of other songs. Our goal is different: to find a set of 8
song excerpts, each divisible into 4 equal-sized measures,
such that, when arranged into a 4x4 grid, each combination
of measures forms a good mashup.

The problem is similar to generating a crossword puz-
zle grid: for that task, letters must be found which cre-
ate acceptable words in each direction. However, a strict
similarity function applies for letters— they are either the
same or not—but no binary measure of acceptableness is
available to us. The crossword generation problem, though
seemingly straightforward relative to our task, has been re-
searched for decades. It is a complex search problem that
is NP-complete [11].

Our primary obstacle is the incredibly large space of com-
binations to search. Each excerpt can begin on any down-
beat, meaning there are roughly 100 choices of excerpt in a

typical song (this is the case for a 120BPM song that lasts
3:20). For 8 songs, this gives 1008 = 1016 possible sets
of excerpts. For each set, there are 8!/2 = 20, 160 ways
of arranging them in the 4x4 grid. (The factor of 2 reduc-
tion recognizes that any arrangement and its transpose are
equivalent.) Finally, each excerpt may be transposed up to
3 semitones upwards or downwards, increasing the space
by a power of 7, approximately.

Before explaining how we reduced this search space, here
is the overall procedure for computing mashability, search-
ing for an optimal mashup, and processing the audio.

1. Compute audio features and detect phrase bound-
aries according to [3]

2. Compute mashability of all phrase-initial segments
at all different delays. Retain mashability of optimal
transposition of each.

3. Search loop:

(a) Select one random excerpt from each song.
(b) Find arrangement of these excerpts into grid

with maximum mashability.

4. Repeat loop for pre-determined amount of time, and
keep the best solution.

5. Process audio clips:

(a) Apply time-stretching and pitch shift to match
all excerpts using Rubberband library [12]

(b) Match perceptual loudness of all excerpts us-
ing Replay Gain method [13]

4.1 Search optimizations

We first reduced the search space by restricting ourselves
to excerpts that begin at one of the section boundaries es-
timated by AutoMashUpper. Doing so increases the odds
that each excerpt will be an intact phrase of a song.

Our next optimization is to, for a pair of excerpts, only
consider the transposition that gives the optimal mashabil-
ity. This reduces the search space by a power of 7, but it
can lead to problems: the final grid will require that all the
clips be transposed to match each other, but these optimal
transpositions can easily be infeasible. For example, sup-
pose we choose clips A,B,E and F on the basis of their
optimal mashability, disregarding the required transposi-
tions. We may then match E1 to A1, F1 to A2, and B1 to
E2. However, this fixes the transpositions of B2 and F2,
and the result may be dissonant.

In order to mitigate this, we compute mashability not be-
tween individual measures (such as A2 and F1), but be-
tween full excerpts (such as A and F with the latter offset
by one measure). This creates some mutual dependence
in the mashability values. In the previous example, we
can expect that B2 and F2 will match as long as B1 and
F1 match. Assuming all the mashability values were high,
we know that B1 matches E2, which matches A2, which
matches F1. Hence, to the extent that harmonic compati-
bility is transitive, we can use a greedy approach without
worrying too much about conflicts in transpositions.



4.2 Computation time and usability

Feature processing (step 1 in the list above) requires roughly
14 seconds to analyze each song (based on an average 3-
minute song). Step 2, computing the mashability, takes
roughly 0.5 seconds per pair of songs, or 14 seconds over-
all for an 8-song puzzle. For a given choice of 8 excerpts,
all possible grid arrangements can be searched in roughly
0.03 seconds (step 3b). The remaining bottleneck is in-
credible number of random sets of excerpts, so we simply
conduct a random search within a set time limit. In our
tests, acceptable solutions were found in less than a minute
of searching. Finally, the audio processing using Rubber-
band and Replay Gain takes about 10 seconds.

If the algorithm has access to the library beforehand, steps
1 and 2 of the algorithm can be executed in advance, in
which case a good puzzle can be created in around a minute.
Otherwise, an additional 2 minutes of pre-processing must
take place.

Lastly, it should be noted that the algorithm makes many
strong assumptions about the rhythmic regularity of the
piece: constant tempo, constant 4/4 meter, and for the most
part, phrases that are 2n measures long. While these as-
sumptions clearly do not apply to all music, they are pre-
requisites for our purpose. The user should be aware of
this constraint and avoid selecting music in different time
signatures. In the future, an automatic meter-detection step
could be developed to quickly warn users of incompatible
songs.

5. DESIGN DEVELOPMENT

A puzzle creator has two contradictory goals: first, to con-
front the solver with a problem that is very difficult to
solve; and second, to ensure that the solver is eventually
successful [14]. We iteratively tested a number of puzzle
designs in order to strike a balance between posing no chal-
lenge and posing an insurmountable one. We also kept in
mind some design criteria that are supported by the popular
concept of “flow” [15], which seeks to explain why certain
activities are more engaging than others. Namely, that the
player’s goals should be clear and manageable, and that
feedback should be frequent and useful. In this section,
we describe the sequence of puzzle designs we developed
and tested, including the pros and cons of each. Our iter-
ations primarily affected three aspects of the puzzle: first,
the balance of visual and auditory hints given; second, the
way that the puzzle confirmed the progress of the solver;
and third, how the listener’s familiarity with the musical
excerpts has handled.

Version 1: initial prototype

Our initial prototype worked as described in Section 3. All
of the basic gameplay elements of this version— the swap-
ping of tiles, the control of row and column playback, and
the fading audio hint based on row correctness illustrated
in Figure 3— were retained in future versions.

The puzzle was enjoyable to solve, but it was only solv-
able by those who knew the music beforehand. None of
those who tested this version without knowing any of the

music solved it; one user even spent 10 minutes without
being certain of the relative position of any tiles, and was
very discouraged.

Another problem is that we failed to realize that arranging
the tiles in the transpose of the correct solution was logi-
cally sound, but not recognized by the system as correct.

Version 2: adding hints

Our second interface included strong visual hints to sup-
port the audio: the relative correctness of every tile was
shown by displaying heart icons at the boundary with the
correct neighbour (see Figure 4a). Also, to resolve the am-
biguity of the solution, we added three fixed tiles in the
top-left of the grid.

On the plus side, with a few fixed tiles to get started,
solvers had an “in” to start the puzzle, and even solvers
who were unfamiliar with the music could make progress.
Unfortunately, the visual hints made progress far too rapid:
once a few tiles had been placed in the correct order, the
rest of the puzzle could be more easily as a visual pack-
ing problem, or simply by trial and error. Although we
agreed that some visual confirmation of one’s progress was
needed, this version took the focus of the logic away from
the audio, defeating the intent of the puzzle. The ideal vi-
sual hint would reinforce the auditory hint without adding
any new information.

Version 3: refining visual hints

Our solution was to animate the background of the cur-
rently playing tile: we added a textured background that
flows in the direction of the arrow in Figure 3b. For exam-
ple, if no neighbours are correct, the background flows in a
south-easterly direction; if both horizontal neighbours are
correct during horizontal playback, the background flows
east. Thus the solver gets a visual confirmation of the rel-
ative correctness of the tile, but without extra clues about
which neighbouring tiles are correct. Also, the visual clue
is only available when the solver listens to the tile, so trial
and error is too slow to be effective.

Those testing this version reported that the puzzle was
still too difficult, for two reasons. First, mentally keeping
track of the tiles was taxing, and it was easy to undo one’s
progress: for example, one might sort several similar tiles
into a single row, but then forget which row it is, or acci-
dentally swap a tile away and lose track of it. Second, the
puzzle was still very difficult for first-time listeners; many
of the mashups were effective enough that it was hard to
tell which parts of a tile belonged to which song!

Version 4: improving usability

We added two features to make the game more user-friendly.
First, following the example of [6], we added a welcome
screen (see 4b) where solvers were allowed to listen to each
of the 8 excerpts separately before solving the puzzle —
just like jigsaw puzzle solvers can look at the picture on
the box first.

Second, we added a row-confirmation feature (Figure 4c).
If all the tiles in a single row or column are placed in their



(a) Visual hints added to Version 2

(b) Welcome screen, added to Version 4

(c) Row confirmation screen, added to Version 4

Figure 4: Screenshots of development versions of Cross-
Song

correct position, a congratulatory message appears, and the
tiles become fixed in place— but only after the full row (or
column) is played, so that randomly shuffling tiles is still
a fruitless approach. Fixing the tiles in place prevents un-
doing one’s work but also serves as an encouraging con-
firmation of partial progress, which is a feature of many
engaging puzzles. A typical sequence of gameplay steps
leading up to this row confirmation event are depicted in
Figure 5.

This final version of the puzzle has most of the qualities
we sought: it combines a need for careful listening with
logical deduction, and although supported by visual hints,
the visual hints do not dominate the puzzle-solving expe-
rience. The puzzle sets up a series of rewards (the row
and column confirmations) that are achievable whether one
is playing with one’s favourite songs, or someone else’s.
Most of all, the game is fun. The game is available to play
online 11 .

11 https://staff.aist.go.jp/jun.kato/CrossSong/

Figure 5: Depiction of a typical gameplay sequence. In
the top part, the audio cues help the user identify which
tiles arranged incorrect. In the middle part, the user listens
to the new arrangement. The bottom part shows the visual
feedback provided to the user.

Future versions

This section has mostly discussed the development of the
core game mechanics, but there are other aspects of the
game that could be refined. For example, in order to sus-
tain one’s engagement in CrossSong puzzles for more than
a few levels, the layout of the initially fixed tiles should
change for the sake of variety. Experienced solvers may
wish to be able to turn off certain aids, such as the ability
to pre-audition the excerpts, or to have correct rows fixed in
place. Difficulty can also be increased by creating a larger
puzzle; it is trivial to modify our algorithm to generate 8x8
puzzles.

One alternative version that we have implemented is the
“multiplayer” mode. Two solvers each choose 4 songs,
with excerpts from one solver’s songs placed in the rows,
and the others in the columns. (This constraint actually
reduces the search space slightly for the algorithm in Sec-
tion 4, reducing the computation time of step 3(b) from
30 ms to roughly 0.8 ms per iteration.) The solvers then
work on the puzzle cooperatively on a large screen device
(Figure 6).

https://staff.aist.go.jp/jun.kato/CrossSong/


Figure 6: CrossSong Puzzle with two users working coop-
eratively.

6. CONCLUSION AND FUTURE WORK

We have proposed a novel type of puzzle, the CrossSong,
which aims to combine the pattern-learning and pattern-
seeking joys of music and puzzles. We have developed
an algorithm for generating puzzles from music provided
by a user, and an interface for solving them. The software
allows (and solving the puzzle requires) the user to explore,
in real time, a set of original mashups.

The design was iteratively refined to focus the solver on
the musical rather than the visual content, and to provide
them with enough confirmation to make this task feasible.
We would like to test the system on a larger scale to de-
termine what parameter settings are preferred by a larger
set of people. By tracking how fast each puzzle is solved,
and the strategies used to solve them, we could refine the
design so that the puzzle is rarely solved too quickly or too
slowly. Both are outcomes that may reduce the enjoyabil-
ity of the game.

The algorithm presented in Section 4 could be improved
in several ways. For example, in pop songs, most sections
are repetitions of other sections; if we detected these rep-
etitions, we could ignore redundant sections and further
reduce the search space. Second, the search space could
be traversed more efficiently using probabilistic methods
such as simulated annealing. Mashability could also be ar-
bitrarily increased by treating the excerpts with harmonic-
percussive source separation: this way, we could attempt
to pair the drums from one song with the harmonies of an-
other, reducing the severity of any harmonic or rhythmic
incompatibility. Testing the usefulness of these improve-
ments, as well as conducting larger-scale user testing, re-
main our future work.

Acknowledgement

We would like to thank Matthew Davies for his original
implementation of AutoMashUpper [3]. This work was
supported in part by OngaCREST, CREST, JST.

7. REFERENCES

[1] J. Schmidhuber, “Driven by compression progress: A
simple principle explains essential aspects of subjec-
tive beauty, novelty, surprise, interestingness, atten-
tion, curiosity, creativity, art, science, music, jokes,” in

Anticipatory Behavior in Adaptive Learning Systems.
Springer, 2009.

[2] N. J. Hudson, “Musical beauty and information com-
pression: Complex to the ear but simple to the mind?”
BMC research notes, vol. 4, no. 1, 2011.

[3] M. E. P. Davies, P. Hamel, K. Yoshii, and M. Goto,
“AutoMashUpper: Automatic creation of multi-song
music mashups,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 22, no. 12, 2014.

[4] S. A. Hedges, “Dice music in the eighteenth century,”
Music & Letters, 1978.

[5] G. Dubus, K. F. Hansen, and R. Bresin, “An overview
of sound and music applications for Android available
on the market,” in 9th Sound and Music Computing
Conference, SMC 2012, 2012.

[6] K. F. Hansen, R. Hiraga, Z. Li, and H. Wang, “Music
puzzle: An audio-based computer game that inspires to
train listening abilities,” in Advances in Computer En-
tertainment, ser. Lecture Notes in Comp. Sci. Springer
International Publishing, 2013, vol. 8253, pp. 540–543.

[7] F. Upham and M. Farbood, “Coordination in musical
tension and liking ratings of scrambled music,” in Pre-
sented at the Society for Music Perception and Cogni-
tion Conference, 2013, p. 148.

[8] A. Jordan, D. Scheftelowitsch, J. Lahni, J. Hartwecker,
M. Kuchem, M. Walter-Huber, N. Vortmeier, T. Del-
brugger, U. Guler, I. Vatolkin, and M. Preuss,
“BeatTheBeat: Music-based procedural content gener-
ation in a mobile game,” in Computational Intelligence
and Games (CIG), 2012.

[9] G. Griffin, Y. E. Kim, and D. Turnbull, “Beat-sync-
mash-coder: A web application for real-time creation
of beat-synchronous music mashups,” in Acoustics
Speech and Signal Processing (ICASSP), 2010.

[10] L. Wyse and S. Subramanian, “The viability of the web
browser as a computer music platform,” Computer Mu-
sic Journal, vol. 37, no. 4, 2013.

[11] M. L. Ginsberg, M. Frank, M. P. Halpin, and M. C.
Torrance, “Search lessons learned from crossword puz-
zles,” in Proc. of the Eighth National Conference on
Artificial Intelligence - Volume 1. AAAI Press, 1990.

[12] C. Cannam, “Rubber band library,”
http://break-fastquay.com/rubberband.

[13] D. J. Robinson, “Perceptual model for assessment of
coded audio.” Ph.D. dissertation, University of Essex,
2002.

[14] M. L. Gottlieb, “Secrets of the MIT Mystery Hunt: An
exploration of the theory underlying the construction
of a multi-puzzle contest,” 1998, Bachelor’s thesis.

[15] M. Csikszentmihalyi, Flow: The Psychology of Opti-
mal Experience. New York, NY, USA: Harper and
Row, 1990.

http://break-fastquay.com/rubberband

	 1. Introduction
	 2. Related work
	2.1 Music as Part of Interactive Play
	2.2 Automatic Level Creation for Music Games

	 3. CrossSong Puzzle
	3.1 Platform

	 4. Puzzle creation algorithm
	4.1 Search optimizations
	4.2 Computation time and usability

	 5. Design development
	 6. Conclusion and future work
	 7. References

