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ABSTRACT

We propose a novel method for generating choreographies
driven by music content analysis. Although a consider-
able amount of research has been conducted in this field,
a way to leverage various music features or music content
in automated choreography has not been proposed. Pre-
vious methods suffer from a limitation in which they of-
ten generate motions giving the impression of randomness
and lacking context. In this research, we first discuss what
types of music content information can be used in auto-
mated choreography and then argue that creating choreog-
raphy that reflects this music content requires novel beat-
wise motion connectivity constraints. Finally, we propose
a probabilistic framework for generating choreography that
satisfies both music content and motion connectivity con-
straints. The evaluation indicates that the choreographies
generated by our proposed method were chosen as having
more realistic dance motion than those generated without
the constraints.

1. INTRODUCTION

Motion capture systems are widely used to create chore-
ographies for dancing robots or computer animated char-
acters. However, this methodology does not provide flexi-
bility in creating choreographies with various types of mu-
sic since the choreography needs to be manually created
from scratch for every change in the accompanying mu-
sic. Motion capture systems are often unavailable to those
who create dance motion video clips and upload them to
video sharing services on the Internet. They usually de-
sign choreographies by setting each pose on key frames,
which requires a considerable amount of time. We aim
to achieve automated choreography to generate dance mo-
tions of computer animated characters accompanied by an
arbitrary music.

We define automated choreography as a task to automat-
ically generate choreography by leveraging the music con-
tent. Previous approaches to generating choreography tried
to find dance motion that mostly match the music segment
from the viewpoint of various music features. Music fea-
tures such as tempo [1, 2], beats [3–5], combinations of
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Figure 1. Overview of this research. Various music fea-
tures are leveraged to generate choreography by concate-
nating the dance motions. To maintain quality of chore-
ography, motion connectivity constraints are introduced.
Generating process is implemented in probabilistic frame-
work. Generated sample of choreographies can be found
at https://staff.aist.go.jp/s.fukayama/SMC2015/.

acoustic features [6], music structures [7], pitches [8], and
melodic contours [9] have been used to analyze the rela-
tionships between music and dance.

However, the following three issues have not yet been
addressed. First, which music features are useful in gener-
ating choreography has not been investigated. Second, the
connectivity constraints of dance motions have not been
considered when the length of the motions are short to re-
flect the constraints based on the music. Finally, the way
to combine music constraints and motion connectivity con-
straints by using the limited amount of data is not clear.

We propose a novel framework for solving these prob-
lems. First, we investigate which music content gives the
most useful constraints for choreography based on a data
driven approach. Second, we propose a novel method for
considering the physical constraints of choreography, such
as avoiding unnatural motions and encouraging repetitions.
Third, we discuss a probabilistic framework that can simul-
taneously consider both music constraints and motion con-
nectivity constraints even when there is a limited amount
of motion data.

In our probabilistic framework, there are two technical
novelties. First, training the probabilistic model that repre-
sents the relationship between the music content and dance
motion often suffers from data sparseness. We solve this by
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using the linear combination of probabilistic models where
every model holds information about the relationship be-
tween each musical feature and the dance motion. Second,
calculating the probability of concatenating the dance mo-
tion is difficult, since most of the dance motions only ap-
pears once in the data and it is impossible to observe vari-
ous transitions from the same dance motion. We therefore
perform the interpolation of probabilistic values by lever-
aging the distance between dance motions and calculating
the transition probabilities.

2. MUSICAL CONSTRAINTS

What kind of musical features are useful for choreogra-
phy? Our research aims to give a tentative answer in a data
driven approach.

Our method is leveraged by various music analysis tech-
niques. Although there has been previous research in au-
tomated choreography that is leveraged by acoustic analy-
sis [6] and structural analysis [7] of pieces of music, we are
not aware of research that tried to utilize musical features
such as chord labels or up/down-beats, which is one of our
research contributions.

2.1 Acoustic feature (MFCCs)

Mel-frequency cepstral coefficients (MFCCs) and their
first- and second-order frame-to-frame differences (delta
MFCCs and delta-delta MFCCs, respectively) are used to
change the choreography through the auditory differences
of the music. MFCCs and the deltas are widely used in
acoustical analysis of music as they are said to approx-
imate the human auditory system’s response. We chose
16 as the dimension of the coefficients, which led us to
calculate vectors with 48 dimensions consisting of 16 di-
mensions for each MFCCs, delta MFCCs, and delta-delta
MFCCs vector.

As the supply of choreographies and music training sam-
ples are limited, and to avoid overfitting between choreog-
raphy and the musical features, we do not use the values
of MFCCs themselves but instead use an index of a feature
cluster. The feature clusters are obtained by conducting
k-means clustering with a fixed number of clusters (500).
The clustering is done after dimension reduction by per-
forming principal component analysis (PCA) on the data
to avoid insufficient clustering caused by the high dimen-
sionality of the data. It reduced the number of dimensions
from 48 to 16.

2.2 Musical structure

Analysis results of music structural segmentation are used
to create structure and highlight segments in choreogra-
phy. Structural segmentation detects and labels similar
segments in a piece of music. It can be used in choreog-
raphy to generate similar dances among segments with the
same label. Segments labeled as chorus sections, which
are the most highlighted segments, can be used to generate
relatively active motions compared to the other parts.

Structural segmentation can be conducted by analyzing
the self-similarity matrix (SSM) of frame-by-frame acous-

tic features such as MFCCs or chroma vectors. We used
an SSM-based approach, analyzed the hierarchical struc-
ture of the music, and simultaneously detected the chorus
section.

The results of the hierarchical structural segmentation
were encoded into vectors, for example as [1, 0, 0, 1, 0],
containing binary values that each indicated whether the
segment belonged to the nth hierarchical structure. The
dimension of this encoded vector was set to the maximum
number of hierarchical structures observed in the music we
used. When the segment was detected as a chorus sec-
tion, the first component of the vector was replace with 2
as [2, 0, 0, 1, 0].

2.3 Beat locations and measure boundaries

The information regarding beat locations and measure
boundaries is useful for aligning choreography to music.
Since choreography is usually described for every beat or
“count”, it is natural to consider beats when creating chore-
ography. Furthermore, the up-beat and down-beat infor-
mation that can be obtained from the measure boundaries
and the beat locations is useful in differentiating the moves
depending on the strength of each beat.

The beat locations and measure boundaries were first an-
alyzed with the beat detection module based on the calcu-
lation of the beat salience function. The analysis results
obtained from the module were manually corrected after-
wards. All the beats were labeled with integers indicating
the beat order in a measure and the number of beats in a
measure, such as “1/4”, “2/4”, “3/4”, and “4/4” for a mea-
sure with 4 beats.

2.4 Chord sequence

The chord sequences bring us similarity information for
the beats while the hierarchical structure gives us more
global similarity information for the sections. Although
the chords, especially the chord labels, do not seem to be
helpful in creating dances, their information can be used as
supplementary queues for creating local structure in chore-
ography. Even though we can not uniquely determine what
kind of choreography should be aligned to a specific chord
label, we can generate similar motions for segments with
the same chord labels.

Chord sequences were analyzed with the automatic chord
recognition module based on chroma features and Hidden
Markov Models (HMM). The information described in a
chord label included the root note, chord type, and base
note if the root note was not the base note.

3. MOTION CONNECTIVITY CONSTRAINTS

When we try concatenating the fragments of dance mo-
tions (motion fragments) to generate choreography, con-
catenating fragments with long lengths seems to be a rea-
sonable strategy to ensure the quality. This is because the
generated results contain more motions which match those
in the choreography database. Setting a shorter segment
length increases the risk of generating motion that seems
to be random and lacking context.



However, because of the limited size of the choreography
database, there is a trade-off between finding longer seg-
ments and satisfying more musical constraints. A longer
segment contains more beats than shorter segments, so the
number of beat-wise musical constraints increase, and this
make it difficult to find a long segment that satisfies those
constraints.

Thus, we concatenate the fragments with a short length
that can satisfy the beat-wise musical constraints. The
motion connectivity constraints are simultaneously consid-
ered to avoid randomness in the choreography.

3.1 Smoothness of fragment transition

To avoid generating discrete moves when concatenating
the fragments, the smoothness between two adjacent frag-
ments should be considered. Previous research into chore-
ography with concatenation approach has tended to check
the smoothness by calculating only the similarity between
the end of the first fragment and the beginning of the
following fragment [3]. As this approach does not take
smoothness between the connection points into account,
the degree of success largely depends on what kind of in-
terpolation (linear, spline and so forth) is used. Therefore,
we calculate the distance between two fragments by sum-
ming up the distances among all the points between the
connection points.

3.2 Repetitions

Repetitive moves are often observed in choreography. We
created a hypothesis for preferred and not-preferred types
of repetitions and imposed constraints on the concatenation
of motion fragments.

Too much repetition affects the naturalness of the dance
especially when the repetitions are within a few beats. To
avoid this, we set a constraint to prohibit using fragments
that appeared in the past 4 beats.

On the other hand, repetition of segments of 4 beats or
8 beats is popular. Thus, we impose constraints on the
motion to encourage this kind of repetition. The way to
constrain the motion in this manner is described in the next
section.

3.3 Phrasing of dances

Without proper constraints, concatenation of motion frag-
ments tends to generate motions without phrasing. Here,
the phrasing is the segmented structure of continuous
movements, not having a sudden halt in the middle of a
segment.

Therefore, we monitor the “activeness” value of each mo-
tion fragment, which is calculated by taking the squared
sum of the frame-to-frame differential of the body move-
ments. Constraints are imposed on the sequence of frag-
ments to prevent a drastic change in activeness between
adjacent fragments.

3.4 Parallel shift

Even though we impose constraints to ensure a smooth
change between fragments as described above, smooth

Figure 2. 28 bones (on the left) are used in our formula-
tion to simulate the movements of a dancer (on the right).
5 bones are inverse kinematic bones (IK bones), which
jointly move other bones, and movements of each bone are
described with 7 values (3 values for position, and 4 values
for rotation). Movements of other 21 bones are described
with 4 values for rotation.

movements, such as the parallel shift of the dancer, look
strange and are hard to recognize as human movements.
This is because the legs are usually used to move a body
horizontally; however, some concatenation that considers
only the smoothness between the fragments may gener-
ate motions of shifting horizontally without moving the
dancers legs.

From our observation, these strange moves often occur
when there is a position change of the body center with-
out changes in the rotation angles of the legs. We impose
constraints to avoid these kinds of movement.

4. MATHEMATICAL FORMULATION OF
AUTOMATED CHOREOGRAPHY

4.1 Data structure for poses

Choreography can be represented with frame-by-frame se-
quential values of positions and rotations of “bones”. Here,
bones are the structures embedded in the 3D model of a
dancer that approximately correspond to the real bones in
a human. Each bone is connected to the other bone to
construct a human body. We chose 26 bones to simulate
the dancer’s movements. The chosen bones are shown in
Fig. 2.

The chosen bones consist of 5 inverse kinematic (IK)
bones and 21 ordinary bones. The IK bones jointly move
the other bones that are connected to the IK bones to avoid
unrealistic gestures such as disjointed toes. The IK bones
consist of “body center”, “left toe”, “right toe”, “left leg”,
and “right leg”. The moves of these IK bones are repre-
sented with position and rotation from the original posi-
tion, which is shown in Fig. 2. The bones are described
with 3 values for the three dimensional position of a dancer
on the stage and 4 values for the rotation represented with
a quaternion. To summarize, 7 values represent the state of
an IK bone. The other ordinary bones are represented with
only rotation, which requires 4 values since the position
of these bones are calculated from the position of the IK
bones. In total, 119 values describe a pose at each frame,
although our proposed framework can cope with different



settings of bones and values.

4.2 Concatenation approach

We aim to use the relationship between the musical con-
straints and the choreography to generate dance motion
from music. We chose the concatenation approach that
firstly extracts motion fragments from the dance motion
database, then analyzes the relationships between the frag-
ments and the corresponding music constraints, and finally
concatenates them to generate a new choreography.

Since the musical constraints can change at every beat,
motion fragments should include the pose at (or closest
to) the time of the beat onset. The fragment also needs
to include the motion behind the current beat and the one
towards the next beat since the connectivity between the
fragments should be analyzed.

The fragments are cut out in lengths of 2 beats, locating
the beat onset in the center of each fragment. Let bi be
the frame index of the ith beat onset. Let x [n] be the pose
vector consisting of 119 values for the positions and rota-
tions of the bones at frame index n. The motion fragment
extracted from the neighborhood of bi is:

X = {x [bi−1] , · · · ,x [bi] , · · · ,x [bi+1]} (1)

where X denotes the set of pose vectors of the fragment.
We can concatenate the adjacent motion fragments

through linear interpolation. For instance, the concatena-
tion of X(i) and X(j) is

x [n] =


x(i) [n] bi−1 ≤ n ≤ bi
bj−n
bj−bix

(i) [n] + n−bi
bj−bix

(j) [n] bi ≤ n ≤ bj .
x(j) [n] bj ≤ n ≤ bj+1

(2)
Following the discussion in Section 3.1, the smoothness S
for concatenation of X(i) and X(j) can be defined with the
distance between portions of two motion fragments where
these two are interpolated:

S
(
X(i),X(j)

)
=

bj∑
n=bi

∣∣∣x(i) [n]− x(j) [n]
∣∣∣2 (3)

4.3 Probabilistic models for choreography

To generate choreography that is as human-like as possi-
ble, we use the tendencies of how the motion fragments
appear corresponding to the musical constraints in the mo-
tion database. In our method, we capture these tendencies
by using probabilistic modeling.

Let Ak, Sk, Bk, and Ck be the labels of musi-
cal constraints (acoustic feature, musical structure, beat,
and chord, respectively) described in Section 2, which
are aligned to the kth motion fragment in the database.
The probability for observing X(i) at the kth frame
is the conditional probability, which is represented as
P
(
X(i)|Ak, Sk, Bk, Ck

)
.

When we try to train this model, it is difficult to exhaus-
tively observe all the combinations of the musical con-

straints. Therefore we factorize the probability into sub-
models holding information for each musical constraint as:

P
(
X(i)|Ak, Sk, Bk, Ck

)
= λ0P

(
X(i)

)
+ λ1P

(
X(i)|Ak

)
+ λ2P

(
X(i)|Sk

)
+ λ3P

(
X(i)|Bk

)
+ λ4P

(
X(i)|Ck

)
+ λ5U (4)

where λm (m = 0, . . . , 5) are the interpolation coefficients
satisfying

∑
m λm = 1 and ∀m,λm > 0, and U is the

uniform distribution to conduct smoothing. These coeffi-
cients are tuned by splitting the training data into two por-
tions, training the sub-models with the first portion, and
then maximizing the log-likelihood of the second portion
with respect to λm.

Since the frequency of the appearance of fragment X
given the condition Y ∈ {A,S,B,C} is sparse, we
revise the frequencies using a kernel function and then
calculate the conditional probabilities using the revised
frequencies. This method introduce kernel functions
φm (X) (m = 1, · · · ,M), which returns the similarity be-
tween an arbitrary X and X(m) in the training data, where
M is the number of fragments extracted from the database.
Let c (X, Y ) be the frequency of the appearance of frag-
ment X when the condition value is Y , and let ĉ (X, Y )
be the revised frequency. The revised frequency and the
conditional probability can be obtained by

ĉ (X, Y ) =

M∑
m=1

φm (X) c
(
X(m), Y

)
, (5)

P
(
X(i)|Y

)
=

ĉ
(
X(i), Y

)∑M
m=1 ĉ

(
X(m), Y

) . (6)

P
(
X(i)

)
can also be inferred in this manner. We

set the kernel function to be the Gaussian distribu-
tion as φm (X) = 1√

2π
exp

(
− 1

2D
(
X,X(m)

))
where

D
(
X,X(m)

)
=
∑
n

∣∣x [n]− x(m) [n]
∣∣2.

The transition probability between fragments can be cal-
culated by using the smoothness measure S defined in
Equation (3). The probability for transitioning from X(i)

to X(j) is calculated by

P
(
X(j)|X(i)

)
=

exp
(
− 1

2S
(
X(i),X(j)

))∑M
m=1 exp

(
− 1

2S
(
X(i),X(m)

)) .
(7)

Now we can define the automated choreography in a
probabilistic formulation. Given the musical constraints
on beats (k = 1, · · · ,K), generating the concatenation
of fragments is performed by maximizing the probability
P
(
X1 · · ·XK |{Ak}Kk=1, {Sk}Kk=1, {Bk}Kk=1, {Ck}Kk=1

)
with respect to X1 · · ·XK . By taking the logarithm of this
probability with first-order Markov assumption, we can
derive that this is equivalent to maximizing the objective
function

J (X1 · · ·XK) =

K∑
k=1

lnP (Xk|Ak, Sk, Bk, Ck)

+

K∑
k=1

lnP (Xk|Xk−1) (8)



with respect to X1 · · ·XK . Note that we calculated
P (X1|X0) as P (X1). The motion fragments that max-
imize J can be calculated by using dynamic programming.
Since the search space for concatenating fragments is huge
(MK possibilities), we used pruning methods to limit the
search space and to make the problem computationally fea-
sible.

4.4 Applying motion connectivity constraints

To impose motion connectivity constraints (described in
Section 3), the probability distributions and the search
space for generating choreographies are revised. Note that
the smoothness constraints are already considered in the
transition probability of fragments as described in Sec-
tion 4.3.

Generating repetition of fragments can be implemented
by sharing the musical constraints and revising the prob-
ability. For instance, if we expect similar fragments at
k and k′, then probabilities P (X|Ak, Sk, Bk, Ck) and
P (X|Ak′ , Sk′ , Bk′ , Ck′) are both renewed to the linear in-
terpolation of these distributions i.e. in accordance with
1
2{P (X|Ak, Sk, Bk, Ck) + P (X|Ak′ , Sk′ , Bk′ , Ck′)}.
Phrasings of choreography are generated by monitor-

ing the “activeness” E (X), which is the squared sum
of the frame-to-frame differential of the motion frag-
ment. We can calculate this measure as E (X) =∑
n |x [n]− x [n− 1]|2. In particular, we reject concate-

nating Xk and Xk+1 when |lnE (Xk+1)− lnE (Xk)| >
2.0.

Parallel shift of body center can be checked by monitor-
ing the difference of the “center bone” position per beat
and the “activeness measure” with respect to only the “leg
bones”. We prohibit parallel shift when the difference of
the “center bone” position is large but the small “active-
ness measure” of the “leg bones” is small, which means
the dancer is moving without using his/her legs.

5. EVALUATIONS

5.1 Effect of each musical constraint

We conducted an evaluation to verify which musical con-
straint (among acoustic feature, musical structure, beat,
and chord) was “useful” in automated choreography. The
verification was performed with an information theoretical
method. That is, the “usefulness” of the music constraint
Y in choreography was verified when the choreography
became more predictable with the probabilistic model us-
ing Y than the model without using Y .

The predictability can be compared with the values of
cross-entropy between various combinations of musical
constraints. In our situation the cross-entropy can be ob-
tained with

H (X|Y ) = − 1

K

K∑
k=1

log2 P (Xk|Yk) , (9)

where k = 1, . . . ,K are the indices of motion fragments
in the database. Yk is the musical constraint at the kth frag-
ment. The predictability is high when the value of cross-
entropy is low.

Evaluator 1 2 3 4 5
Accuracy 8 /10 10/10 10/10 10 /10 9 /10

Table 1. Results of subjective evaluation. Five evalua-
tors were asked to choose more natural choreography out
of two choreographies: one generated with motion con-
nectivity constraints and other generated without them ac-
companied by 10 different pieces of music. The number of
chosen choreographies which were generated with the pro-
posed method is shown above (Accuracy). Mean accuracy
for choosing the motion-connectivity constrained choreog-
raphy was 0.94 with 95% confidence interval ±0.11 (Stu-
dent’s t-test).

In our experiment, we prepared 20 different combi-
nations of musical constraints. For every combina-
tion of constraints, first we split the motion database
into three portions and then trained the five sub-models
P (X) , P (X|A) , P (X|B) , P (X|C) , P (X|S) by using
the first portion of the database. Second, we optimized
the combination weights λm in Eq. (4) using the second
portion of the database. The optimized λms are the contri-
bution ratio of musical constraints in predicting the motion
fragments. Finally, we calculated the cross-entropy by us-
ing the third portion of the database. The motion database
consisted of 24, 527 motion fragments accompanied with
music. 22, 527 motion fragments were used to train the
sub-models, 1, 000 fragments were used to optimize the
combination weights, and 1, 000 fragments were used to
calculate the cross-entropy.

To obtain the music constraints, the music tracks were
first automatically analyzed by using our web service
called Songle (http://songle.jp) [10] and then corrected
manually using the Songle’s error correction interface.
Songle leverages various music content analysis tech-
niques to automatically analyze songs publicly available
on the web and is open to the public.

The result of the evaluation is shown in Figure 3. We con-
firmed that the cross-entropy decreased when several musi-
cal constraints were taken into account (H (X) = 7.643 >
H (X|A,B,C, S) = 7.383). This indicated that the pre-
dictability of dance motion had been increased by using the
combination of several music constraints. Optimized re-
sults of λm (m = 0, . . . 4) are represented as stacked bars
in Figure 3. The length of each color in a bar is calcu-
lated by H × λm∑4

m=0 λm
. Note that we did not use λ5 for

calculating the ratio, since the uniform distribution did not
hold information from the motion dataset or the musical
constraints. The optimized λm indicated that the structure
label was the most valuable information for predicting a
motion fragment.

5.2 Effect of motion connectivity constraints

We conducted a subjective evaluation to confirm that the
motion connectivity constraints were effective in maintain-
ing the naturalness of the choreography. The excerpts of
choreography we used in this experiment are uploaded at
https://staff.aist.go.jp/s.fukayama/SMC2015/. The screen-

http://songle.jp
https://staff.aist.go.jp/s.fukayama/SMC2015/


Figure 3. Cross-entropies of motion dataset calculated with probabilistic models with different combinations of music
constraints. Height of each bar represents value of cross-entropy, and height of each stacked colored bar indicates ratio of
contribution in predicting motion from the music content. Each M, A, B, C and S in the horizontal axis represents motion
fragment, acoustic feature, beat, chord and structure, respectively. The cross-entropy decreased by combining several
musical constraints (H (X) = 7.643 > H (X|A,B,C, S) = 7.383), which means the predictability of motion fragments
was increased. The contribution of structure label tends to be larger than other musical constraints.

shots of the generated choreographies are shown in Fig-
ure. 4.

Ten music excerpts were used in the experiment. The
music excerpts were sampled from a song (RWC-MDB-P-
2001 No. 07) in the RWC Music Database [11]. For ev-
ery music excerpt, two different 20-second choreographies
were shown to the evaluators. They were asked to choose
the one which they felt was more natural. One choreog-
raphy was generated with motion connectivity constraints,
which we proposed in this paper, and the other one was
generated without them. The order of showing the two dif-
ferent choreographies was randomized per piece of music.

Five evaluators participated in the experiment. The eval-
uators did not have any particular knowledge of rules that
affect the quality of dancing motions. Therefore, we asked
them to intuitively choose a more natural choreography
from each pair.

The numbers of chosen choreographies which were gen-
erated with the proposed method are shown in Table 1. The
evaluators found more than 8 choreographies with motion
connectivity constraints to be more natural than the other.
The mean accuracy for choosing the motion-connectivity
constrained choreography was 0.94 ± 0.11 where 0.11 is
the 95% confidence interval by the Student’s t-test.

6. DISCUSSION

The objective evaluation in Section 5.1 indicates that com-
bining various musical constraints are useful in automated
choreography. The structure label is the most valuable in-
formation for predicting the dance motion. Features, such
as beat labels and chord labels, also contribute in generat-
ing choreography. The subjective evaluation in Section 5.2
indicates that the motion connectivity constraints are effec-
tive in maintaining the naturalness of the choreography.

We confirmed that the probabilistic modeling is useful
in combining several different constraints driven by differ-
ent music content analysis modules. It can also generate
choreographies by maximizing the probability of the con-
catenated motion fragments.

To improve the quality of the choreography, we are plan-
ning to consider various types of audio features such as
spectral flux and chroma vectors. These features can be
used to reflect detailed information of music content in
the choreography. For instance, spectral flux holds infor-
mation of acoustic events, such as note onsets, and can
be used to make the choreography aligned to the melody
notes. Chroma vectors might be useful especially when us-
ing delta-chromas to capture the chord changes and when
reflecting those changes in the choreography.

Another promising direction for improving the quality is
to increase the amount of dance motion data. As our ap-
proach is data driven, we expect more variety in generating



Figure 4. Example of generated choreography with the proposed method.

choreography leveraged by the various dance motions in a
larger database. Furthermore, the subjective evaluation can
provide more statistical evidence by using a larger dataset.

Finally, we plan to tune the parameters of the probabilis-
tic models. For now, the variance of the Gaussian distri-
bution used as a kernel function is fixed to 1.0, and this
value can be tuned with the maximum likelihood frame-
work by using the training data. The value of the variance
corresponds to how the motion fragments are roughly cat-
egorized as motions with the same character. This may
affect the quality of predicting the motion fragment from
the music content and therefore needs to be investigated.

7. CONCLUSION

We investigated how to generate choreography automati-
cally by leveraging music content. The proposed method
used various music features, not only low-level features
such as MFCCs but also features such as structure labels
and chord labels to generate choreography. Furthermore,
we proposed a set of motion connectivity constraints to
ensure the naturalness of the dance motion. These two
types of constraints, musical constraints and motion con-
nectivity constraints, were taken into account in a novel
probabilistic modeling framework that enabled generating
natural music-content driven choreography. Our future
work includes more improvements in automated chore-
ography by leveraging more music content analysis tech-
niques that have been considerably developed in the sound
and music computing community. The generated sample
of our automated choreographies can be found at https:
//staff.aist.go.jp/s.fukayama/SMC2015/.
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