QueryShare: Working Together to Facilitate Exploratory
Multimedia Searches without Skill in Creating

Masahiro Hamasaki

National Institute of Advanced Industrial Science

and Technology (AIST)
Tsukuba, Ibaraki, Japan
masahiro.hamasaki@aist.go.jp

ABSTRACT

This paper describes a music exploratory search interface
called QueryShare, which provides query searching and rec-
ommendation functions for query sharing among users. Most
people are not expert users who know how to use various
music metadata that include automatically estimated musical
features to represent their own information needs as a query.
Therefore, it is difficult for them to enter a complex query for
music content retrieval. The original feature of our proposed
interface is to make users share every query as a public web
page. This feature enables users to use search queries, find
recommended queries, and revise existing queries. Beginners
can use an applicable query, which is more complicated than
they might create on their own. Experts can readily reuse a
query (web page) of their own making. The interface assists
users in finding results for interesting queries and in perform-
ing music exploratory search without skills to create complex
queries. We developed a prototype system as a web appli-
cation for music videos on the most popular Japanese video
sharing service. Users can search for over 360,000 music
videos using our system. Results of a preliminary user study
demonstrated that users found the query creation interesting
and that they were interested in seeing and using queries cre-
ated by other users, although some users hesitated to share
their queries.

ACM Classification Keywords
H.3.3 Information Search and Retrieval: Query formulation;
H.3.5 Online Information Services: Web-based services

Author Keywords
Search interface; Query sharing; Multimedia Content
Retrieval; Collective intelligence; User-generated content;

INTRODUCTION
A “query” is an intellectual resource among many on the vast
web of multimedia content. This study explores a method

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

OpenSym 17 August 23-5, 2017, Galway, Ireland
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5187-4/17/08. . . $15.00
DOI: 10.1145/3125433.3125463

Masataka Goto
National Institute of Advanced Industrial Science
and Technology (AIST)
Tsukuba, Ibaraki, Japan
m.goto @aist.go.jp

(A) General search interaction
People search content individually.

Query
creatlon

Query
Query Content
refinement search

| Search results | | Search results

(B) Proposed search interaction
People search content with loosely-linked collaboration.

A A
|

Query ol sharmg Query
creatlon reusing

Collaborative Query surfing
query refinement

Asynchronous
collaborative
editing

Search results Search results

Figure 1. General search interaction compared to proposed search in-
teraction.

used to perform exploratory multimedia searches using open
collaboration with query sharing. It is difficult for most peo-
ple to generate applicable queries for multimedia content re-
trieval because they have no particular knowledge about these
retrieval systems. Many do not even know how to create
applicable but complex queries using various metadata and
low-level features extracted from multimedia contents. With
the growing phenomenon of User Generated Content (UGC),
we have become surrounded by unfamiliar but potentially in-
teresting creators and music content (e.g., music videos on
video sharing services). To discover these hidden musical
talents, it is important to search for music content actively.
However, creating queries for such active search is not easy
for most people because most users have no particular knowl-
edge about music retrieval systems: they might be unaware of

various metadata or automatically estimated musical features
to which systems have access. We propose that sharing user-
generated queries can resolve many of the diverse difficulties
that people confront.

Many existing technologies can assist users in finding mu-
sic content without demanding much effort on the part of the
user to generate a complex query. For example, some studies
use humming [11, 42] or a fragment of music content [26, 5]
as a user query. Query-by-Example [40, 21] also uses music
content as a query. Music recommendation [35, 39, 28] pre-
dicts users’ favorable music content based on user profiles or
user’s listening history. Music visualization with an interac-
tive interface [34, 14] helps users to discover music content.
However, no such method assists users in generating queries
using rich metadata. Moreover, user needs are often more
complex than “I want music I would like” or “I want to track
down this specific song.”

Figure 1(a) depicts a general search interaction. Into a search
interface, a user submits a query that represents the user’s
own information needs. The search engine outputs search re-
sults including content related to the query. Users who are not
satisfied with the results or who have no clear goal must mod-
ify queries and search again (exploratory search [30]). Query
refinement is just as important as query creation; most users
do it [22].

We propose a new search interface that enables users to cre-
ate and share queries, and to explore and reuse the queries
of others: QueryShare,. The system allows beginners to find
an applicable query that is more complicated than one they
would be able to create on their own. Similarly, experts can
find useful queries created by other experts. Moreover, they
can refine queries collaboratively (Fig. 1b). QueryShare pro-
vides a new search interaction, which we designate as Query
Surfing: browsing queries through query searching and query
recommendation.

We developed a prototype system with the QueryShare in-
terface as a web application for music videos on Niconico,
the most popular Japanese video sharing service. Users can
search through more than 360,000 music videos and share
user-generated queries using our prototype system. Query
recommendation is implemented with a query-similarity-
based approach and a content-similarity-based approach.

We also conducted a user study to gain user feedback. The
participants accepted query sharing and strove to create more
queries despite the use of many search parameters. Results
showed that QueryShare helped users to create queries and to
perform exploratory searching for music.

This paper is organized as follows. Section 2 reviews existing
works. Section 3 explains the concept of QueryShare and our
proposed method of search interaction. Section 4 presents a
description of implementation of the prototype system with
the proposed method. Section 5 presents an explanation of
a preliminary user study conducted using the prototype sys-
tem. Section 6 discusses the importance of sharing queries
explicitly. Section 7 presents a summary of this paper’s con-
tributions.

10.1145/3125433.3125463

RELATED WORK

In this section, we discuss existing work related to the assis-
tance of query creation and query refinement. As described
in the previous section, query refinement is a crucial part of
the search process. Query suggestion supports query refine-
ment by recommending additional queries or terms. For in-
stance, in the case of a text query, an assistance system finds
spelling errors [7, 29], complementary queries [4, 44], or sub-
stitute queries [23, 10, 27, 1], or suggests expanded queries
[8]. Users can create more complex queries using these sug-
gestions, but most users use them for the replacement of ap-
plicable queries.

Some systems support database exploration by recommend-
ing complex queries, such as an SQL query [6, 12, 2]. Some
such systems are designed to help non-expert users of target
databases. Therefore, the purpose of such systems is similar
to ours. However, they specifically examine prediction of the
intent of users and find acceptable queries from query logs in-
cluding queries that other users have created. In contrast, we
examine sharing of queries among users. Our system treats
queries as valuable web content. Zhang reported results of a
pilot study of query sharing [45]. Their results indicate that
query sharing is valuable in difficult search tasks.

There are some researches related to collaboration in infor-
mation retrieval [41, 32, 13]. SearchTogeter is an interface
for collaborative web search and it aims to assist a search in
tandem [33]. It mainly assists communications among users
in search processes. It is not designed to help users to create
complex queries directly. Additionally, users should have a
partner who shares a common goal of searching before start-
ing collaborative search.

Faceted navigation can guide a user to input query parame-
ters step-by-step [3, 31, 24]. It is helpful for general users;
it reduces burdens not only on general users but also on ex-
perts. However, it does not help users to use unknown facets
and their parameters. The proposed system can recommend a
user such queries including unknown facets for the user (see
Section 4.4 and Figure 6). A user can learn a meaning of a
facet through these queries. This function is similar to Query-
by-Example (QbE), but our approach is useful for obtaining
search results and for learning query parameters.

As explained above, many existing works are not designed
to assist users in creating complex queries because the main
purpose of information retrieval is to find facts or to gather in-
formation. Its requirements are to find targeted items or some
good items with short queries, and to burden the user as little
as possible. Regarded from this perspective, important is-
sues include personalization, context-awareness, and privacy.
No importance is assigned to the creation of complex queries
and their reuse. However, from the perspective of exploratory
multimedia searches, it is useful to share and reuse various
complex queries because they can facilitate retrieval of di-
verse multimedia content. Kamalzadeh reports that 50% of
active music listeners would like to choose songs one after
another [25]. Furthermore, just 9% use online recommenda-
tions; 10% use shuffle when listening to a collection. These
results indicate that active music listeners enjoy listening to

[Gnchas Sl I

Male vocals with a song that should be viewed

more! Atitle of this query and description,
tags, in-use search parameters

(SIS IR

Search results Related queries

AR Query-based

. "'l The search results

- Results of query-based
d of this query. .

recommendation. It
shows common in-use
parameters.

[eens [s s

Content-based

i
y ﬂ Results of content-based

—
' « " = recommendation. It
i v) EE shows common content

E‘" in search results.

Figure 2. Screenshot of the “Querypage” in QueryShare.

songs and that they enjoy choosing songs. Regarded from this
perspective, creating complex queries and reusing them are
important compared to existing information gathering. They
can provide new ways of choosing songs for active music lis-
teners.

QUERYSHARE
We introduce three key features of QueryShare.

1. Contentification: turning queries into content that can be
shared (web pages)

2. Query Surfing: browsing queries using query searching
and recommendation

3. Asynchronous collaborative editing for query refinement

Contentification

QueryShare transforms each user-generated query into a pub-
lic web page called a querypage to facilitate the sharing of
queries among users. This transformation from machine-
readable to human-readable content is designated as con-
tentification. Figure 2 portrays a querypage in the prototype
system. Each querypage includes the query’s search param-
eters as well as its metadata and search results. The creator
who makes the query describes the metadata. The search re-
sults from the query are returned from a search engine. All
of these data help other users to discover and understand the
query. If the creator would like to reuse their query, then they
merely revisit the web page.

Query Surfing

Users without the skill necessary to create a suitable query
must discover other queries that meet their needs and which
are registered in the system. QueryShare provides two meth-
ods to find queries: query searching and query recommen-
dation. Users can search queries using keywords, tags, or
content titles. Additionally, each querypage shows related
queries as results of query recommendation. Using these

10.1145/3125433.3125463

links, users can explore the network of related queries. We
designate such user activity as query surfing.

Asynchronous collaborative editing for query refinement

A querypage can be edited by users at any time. Users who
would like to update or improve the query merely access a
querypage and click the “Edit” button. The system enables
users to edit all data in the query. The original creator of the
query and other users can edit the edit parameters collabora-
tively, as they can with a wiki or Wikipedia. Through such
continual and collaborative editing, shared queries can be re-
fined.

The original creator of a querypage can set a password for
editing if the user would not like to have their own query
edited by others. They can create a branch of the query if
other users would like to edit such locked queries. It is a copy
of the source query. A user who creates this branch can also
set a password if necessary. This is another style of collabo-
rative editing.

Proposed search interaction

We assume that QueryShare users are broadly divisible into
two groups: experts who can refine complex queries with
many search parameters, and general users who cannot easily
do so. In this section, we introduce user behaviors for both
groups in a new search interaction based on sharing queries.

Presuming that a user would like to listen to new songs, they
might create a query “sort by date published.” The search re-
sults are too numerous: they must be narrowed down. How-
ever, the user does not know how to form a query for such
information using the available search parameters. To sup-
port such a user, the system recommends other queries based
on the similarity between search parameters. One suggestion
might include “sort by date published” and other well-chosen
parameters (e.g., a lower limit of the play counts) to select
the most popular from among numerous new songs. The user
listens to songs in the search results and finds some favorites
among them. If this querypage is exactly what the user wants,
then the user can continue to use this.

Queries might also be recommended based on similarity
among their search results. In the previous scenario, pre-
suming that another recommended query uses a parameter
that denotes the proportion of male-like or female-like voices,
and that the user notices some of their favorite songs among
the query’s results. The user might conclude that the male—
female voice parameter is important for representing their in-
terests. The user can immediately make a new query to in-
corporate this additional parameter. As explained earlier, an
imperfect query has become a starting point to find more rele-
vant, suitable queries. Moreover, from the recommendations,
users can learn to make better queries. These are incentives
for general users.

Experts can create suitable queries without the system aids.
Therefore, they might have less need to share the queries of
others, but they can still benefit from doing so. Using com-
plex queries developed by other experts saves them time and
trouble. Furthermore, it is not always true that experts know
everything about a subject; they can learn from other experts’

Listening to music content m Gathering & Analyzing
y content

»
Search Search ["search |Indexing['songrium
........... M QueryShare Engine +Songle

Users — - =

Figure 3. System architecture.

queries and use them as a basis to formulate new queries.
These are incentives for experts. In addition, as demonstrated
by the cases of open source software (OSS) and user gener-
ated content (UGC), using and reviewing queries by others
motivates people to create better queries.

PROTOTYPE IMPLEMENTATION

We developed a prototype system as a web application with
which users can search music videos and share queries. Fig-
ure 3 presents a system overview. QueryShare is a search
interface, but it does not manage music videos. QueryShare
uses them through the public web services: Songrium ! [18]
and Songle % [15]. Songrium gathers music videos and their
metadata from which Songle can calculate musical features.
In the next two subsections, we introduce the target dataset
and its search parameters. Later, we explain how queries are
created and recommended within the system.

Datasets

In the prototype system, users can search and watch music
video clips uploaded to Niconico 3. Particularly, “Singing a
VOCALOID song” is a target content category of our pro-
totype system; it is currently an extremely popular cate-
gory of music-related user-generated content on Niconico.
A VOCALOQOID song is an original song composed for the
singing synthesizer named VOCALOID [19]. Over two thou-
sand VOCALOID songs and ten thousand singing videos are
uploaded every month [17]. It is a good and rich environment
to enjoy music, but it is difficult to encounter unfamiliar but
potentially interesting songs. As described above, this dataset
is a good target for use with QueryShare.

In this prototype system, users can search 363,518 singing
videos, which consist of 64,774 singers, 13,138 songs, and
3,514 composers. Such contents have metadata including
page views and release date, which are openly available on
Niconico. Our system also uses some content analysis results
as metadata. Figure 4 shows that our target music content is
described using the Music Ontology [37]; as might be readily
apparent, the relation between the fields is complex. Green
objects are classes. Orange squares are property values. In
the prototype system, all of these values are used as search
parameters to find a targeted content “Singing video.” This
picture depicts sources of various metadata. “Social tags” and
“Release date” are metadata on Niconico. “Audio feature”
and “Voice feature” are calculated from the sound signal. The

Thitp://songrium.jp
Zhttp://songle.jp
3http://www.nicovideo.jp

10.1145/3125433.3125463

Table 1. Example of query: “Hit songs of jazz in 2011 with a nice, but
not popular male-like voice”., Each user should judge the query correct-
ness. If users think these search parameters are incorrect, then they can
update them or create a new query based on them.

Compatibility
condition

Song’s social tag = "Jazz’ or "Fusion’
Song’s release date > ’2011-01-01"
Song’s release date < ’2011-12-31°
Page views < 10000, # of mylists > 500
Voice feature < 0.25

Sort criterion Song’s views (descending order)
Aggregation rule | the same song

the same singer

former is compressed audio feature vectors using learned la-
tent representations [20]. The latter are the estimated male
and female singing voice characteristics [18].

Search parameters

The prototype system has search parameters of three cate-
gories. (1) Compatibility Condition: used to extract only con-
tents that meet a specified criterion, e.g., “with a social tag of
ballad” or “number of views is greater than 100,000.” (2)
Sort Criterion: used to order search results, e.g., “sort by date
published” or “sort in ascending order of views.” (3) Aggre-
gation Rule: used to exclude content that partially duplicates
other search results, e.g., “exclude same singer’s videos” or
“exclude same song videos.”

Table 1 presents examples of search parameters in a query.
With the prototype system, users can use metadata for com-
patibility conditions. For example, users can set an upper
limit and a lower limit of page views as a compatibility con-
dition. For sort criteria, users can use metadata of an interval
scale, e.g., page views and release date. Aggregation rules
support three conditions to exclude videos: the same song,
the same singer, and the same composer.

In general web search methods, such as those presented by
Google, Bing, and Yahoo, users must input a keyword query
only. From the keyword query, the search engine extracts
web pages and sorts them by mutual relevance. Furthermore,
it aggregates web pages in the same web site. In fact, the web
search engine extracts, sorts, and aggregates contents with-
out explicit user requests. This search interaction is designed
to reduce a user’s burden. Our research is aimed at help-
ing users to formulate various applicable queries and to share
them among users. Then, QueryShare allows users to edit all
search parameters in Figure 4. In section 6, we present discus-
sion of the importance of using complex queries by people.

Query creation

As the previous example shows, QueryShare supports many
search parameters. For that reason, it is difficult for beginners
and even for experts to coordinate the numerous parameters
necessary to identify relevant content. Therefore, QueryShare
has two functions to support query editing.

(A) Query preview of each condition: A query consists of
multiple conditions. Finding an appropriate balance can be
difficult: if results are overly broad, then the search must be
refined; but if the range of the conditions is too narrow, then
the user receives zero results. In a complex search, a user

Songr’ s page views
Songr’ s # of mylists
Songr’ s # of comments

Song’ s release data

nal song

mo:published_as

rdfs:description

mo:Signal

mozrecorded_as

mo:singer
g mo:Performance)

foaf:Agent

foaf:name

VOCALOID’ s name

mo:performance_of

mo:composed_in .
mo:MusicalWork

0g:site_name

mo:performance_of

_# of mylists

Release date

og:site_name

Singing video

mo:Record
(targeted content)

og:video:release_date
mo:published_as

mo:Signal rdfs:description

morecorded_as

mo:singer foaf:name

mo:Performance

Singer’ s name

foaf:Person

foaf:Person

Composer

@prefix mo: <http://purl.org/ontology/mo/>.
@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix foaf: <http://xmins.com/foaf/0.1/>.

@prefix 0g: <http://og.me/ns#>.
@prefix sioc: <http://rdfs.org/sioc/ns#>.
@prefix scv: <http://purl.org/NET/scovoit>.

Figure 4. Illustration of all the metadata fields handled by QueryShare (in the style of the Music Ontology).

T C
Query Editor

Input form of title, description,
and tags for this querypage.
(These metadata are optional)

Buscngpnen of Th geary

Cor—r |

4 Input form of compatibility conditions to

narrow down content in search results.

The number of hits by
each single condition.

= avar 19,008 hits (1008 vty

Figure 5. Screenshot of the editor of querypage showing many forms to
input various search parameters.

might not know which of the conditions are too restrictive
and which are too broad.

QueryShare presents the number of hits of each condition
separately (query previews [16]). Additionally, it shows the
number of hits of the entire query after the removal of each
condition. Using this information, users can easily identify
overly strict conditions or overly loose conditions that do not
contribute to the search results (Fig. 5).

(B) Generating initial parameters from a content list: When
users have playlists or lists of favorite songs, QueryShare can
create initial parameters automatically from them. Users can
then create new queries by modifying the values of the search
parameters generated by the system.

QueryShare turns a playlist into a query by finding the full
range for each search parameter. For numerical fields, it finds
the minimum and maximum value: for example, if all the
items in the playlist were published during 2008-2011, then
this becomes the acceptable date range of the query. For nom-
inal fields, it takes the union: for example, all the genre labels
that appear in the playlist will be a part of the query.

10.1145/3125433.3125463

and similar search results

with different search results

B LT T

o :
L O @ @~
w1 L}
O H
5! (2 (p2)—~(2) i
E: :
7. :
§E c) Similar search parameters d) Similar search parameters E
d: H

Figure 6. Four types of a pair of queries, where ¢, denotes a query,
pn denotes a set of search parameters for ¢,, and r, represents search
results of p,. (a) ¢; and ¢, have no similar parts. They are mutually
unrelated. (b) The queries have similar results that were sought using
different search parameters. In this case, the content-based one can rec-
ommend ¢ for g;. (¢c) The queries have similar search parameters with
different search results. In this case, query-based one can recommend
q> for g;. (d) The queries have similar search parameters and similar
search results. Both content-based ones and query-based ones can rec-
ommend this pair of queries.

Query recommendation

The system recommends queries to users as related queries
when they access a querypage. QueryShare has recommen-
dations of two types: query-based and content-based.

In query-based recommendation, the system recommends
queries with search parameters that are similar to the origi-
nal query (Figs. 6¢ and 6d). In the case of Fig. 6c, query
q»> can find parallel-hierarchical contents of s;. For exam-
ple, “Hit jazz songs with a male-like voice from 2011” and
“Hit jazz songs with a male-like voice from 2012” are simi-
lar from the viewpoint of search parameters, but their search
results include no overlaps.

In content-based recommendation, the system recommends
queries based on the similarity of search results (Figs. 6b
and 6d), which means that users can obtain similar search
results through recommended queries, but users can also ob-
tain search parameters to obtain similar search results. In the
case of Fig. 6b, query g> shows a different aspect of these
search results for query g;. For example, “Hit jazz songs
with a male-like vocal from 2011 and “Cool songs with my
favorite 10 singers” do not overlap in terms of search parame-
ters, but their search results might include common contents.
Such recommended queries help users to improve or expand
a query.

PRELIMINARY USER STUDY

Overviews

We conducted a study to gain user feedback on the
QueryShare interface and to investigate the capabilities, limi-
tations, and potential of our proposed search interaction. Five
participants who were 20-30 years old took part in the study:
P1 is a computer science researcher; P2 is a musician; P3 and
P4 are programmers; and P5 is an office worker. P1, who was
familiar with the music in the prototype system, very often
listens to the music in Niconico. P2 and P3 sometimes listen
to Niconico music. P4 and P5 were familiar with the music,
but were not regular listeners.

Each participant was given a 5—15 min introduction to the
prototype system by the instructor, the first author. The in-
structor then demonstrated query creation, search queries,
and query surfing with query recommendations using the pro-
totype system. Each participant was given 30 min maximum
to view, create, and edit queries and listen to music in the
search results. The prototype system was pre-loaded with
about 100 queries by the instructor. However, this was found
to be insufficient for users to appreciate the benefits of shar-
ing queries. P2 reported that he hoped to use this system again
after it had more queries.

During this open-ended task, the participants were free to ask
any question about the usage of the system. They were al-
lowed to end the study when they felt satisfied using the sys-
tem. Each participant was asked to fill out a form with seven
questions about the system, with responses given according
to a seven-point Likert scale.

Results and Lessons Learned

We had four research questions. First, to test the fundamental
motivation of our system, we asked (RQ1) Would users like to
create complex queries for content retrieval? Next, regarding
the feasibility of sharing queries, we wanted to know: (RQ2)
Are users interested in others’ queries, and (RQ3) Would
users likely to share their queries with others? Finally, to es-
tablish the usefulness of the query surfing provided, we asked
(RQ4) Can query recommendation support exploratory music
search?

All participants were able to use the prototype system suc-
cessfully. Only P5 did not create a query: she merely prac-
ticed query surfing. Results of the post-experiment question-
naire, consisting of the mean, standard deviation, and fraction

10.1145/3125433.3125463

Table 2. Results of the post-experiment questionnaire. Mean’ repre-
sents the average on a seven-point Likert scale. ’SD’ denotes the stan-
dard deviation. ’Positive’ denotes the fraction of positive responses (> 4
on a seven-point).

Question Mean SD Positive
1. I’d like to reuse my queries. 45 1.73 3/4
2. Id like to create queries more. 5.5 0.57 4/4
3. I’d like to use QueryShare again. 4.8 1.64 4/5
4. I"d like to use QueryShare 5.8 1.30 4/5

for other domains.

5. I’d like to share others’ queries. 4.75 1.89 3/5
6. I’d like to share my queries. 34 1.14 1/5
7. I encountered unexpected but 4.6 0.89 2/5

potentially interesting songs.

of positive responses are presented in Table 2. The first four
questions (Q1—4) pertain to the first research question (RQ1);
the remaining questions (Q5-7) pertain to the other research
questions (RQ2—4).

RQI: Would users like to create complex queries? The Ql
and Q2 results excluded the answer of P5 because she did not
create queries. Only P3 reported negative impressions related
to reusing personal queries (Q1). He responded that he had
clear needs, but he was unable to represent such needs using
search parameters. This response underscores the importance
of assistance in creating queries. Although it is burdensome
for people to create queries that include numerous search pa-
rameters, all respondents were positive about creating queries
(Q2). Both P2 and P4 responded that creating queries was
fun. In addition, each participant hoped either to use the pro-
totype system again (Q3) or to use QueryShare in other do-
mains (Q4). These results emphasize the remaining matter
of assistance to create queries, but people accepted content
searching with complex queries including many search pa-
rameters and hoped to use QueryShare. The response to RQ1
was strongly “Yes.”

RQ?2: Are users interested in others’ queries? Two partic-
ipants reported negative impressions to sharing of others’
queries (Q5). However, both said that they were interested
in queries created by people with similar musical interests.
The other three participants were positive. They were asked
a follow-up question “With what kind of people would you
like to share?”” They answered: my favorite creators (P1), ea-
ger listeners (P2), and people with similar taste (P5). In this
experiment, we were unable to prepare a sufficient number of
queries, but we found that everyone was interested in using
others’ queries. Based on these results, the answer to RQ2
was “Yes.”

RQ3: Would users like to share their queries? Many partic-
ipants reported negative impressions related to sharing their
own queries (Q6). However, no one responded, “I refuse to
share my queries.” Both P1 and P2 responded that “T accept
sharing of my queries, but I do not want to do that proac-
tively.” Some hoped to distinguish shared queries and private
queries (P1, P4, P5) or to choose members to share them with
(P1, P2). In contrast, P3 said that he does not care about
any such matters. Even more noteworthy is that, P4 expected
collaborative editing and reported that query sharing moti-
vates him to formulate better queries. The answer to RQ3 is

a somewhat divided “Yes”: opinion is divided, but most are
willing to share some of their queries.

RQA4: Is query recommendation useful? Three participants
gave neutral answers, but two other participants had encoun-
tered unexpected but potentially interesting songs (Q7). Ev-
eryone said that they would like to discover a query that
yields search results that include unknown content. Those re-
sults demonstrate that they expected to encounter interesting
content through query recommendation. Results show some
potential for query recommendation for exploratory content
search, but it is insufficient to show proof of the utility of
query recommendation. The answer of RQ4 remains unclear.
We need additional results from long-term experiments.

Limitations

The following presents a discussion of the limitations of this
preliminary experiment. The current user study used a small
test dataset for use in a small amount of time. We can discuss
the possibilities of the proposed approach from this experi-
ment, but we are unable to discuss the effectiveness of the
proposed approach. For example, query recommendation has
only a slight effect on query browsing because it often hap-
pens that the dataset has no applicable queries for recommen-
dation. A user must use query recommendation to do query
browsing if the system has many queries. Then, we can eval-
uate a performance of query recommendation and investigate
the effect of a query recommendation. Therefore, future stud-
ies should use a larger dataset for testing.

Gathering data presents important difficulties for an open col-
laboration system. The proposed system can generate queries
automatically from a list of items (see Section 4.3). It means
that the system can get many queries automatically with
crawling playlists that are published on the web. The qual-
ity of such automatically generated queries might be lower
than human generated queries. However, people can refine
such queries. Therefore, we think this function is a powerful
way to solve a cold start problem of the proposed system.

DISCUSSION

Sharing playlists versus sharing queries

Many services, e.g., video sharing services and music stream-
ing services, have a function that enables sharing of mylists
in which users save favorites. Sharing queries include shar-
ing of the search results, which are collections of contents.
From this perspective, sharing queries is similar to sharing
playlists because both share user-generated content collec-
tions. The most important difference is the mode of creation
by users. Users create mylists by listing contents. Conse-
quently, a mylist represents favorite or interesting contents
with an extensional definition. However, users create queries
by setting search parameters in QueryShare. Other users can
see not only a collection of contents but also their search pa-
rameters. Therefore, a query represents a favorite or interest-
ing content with an intentional definition.

This difference affects (1) the readiness for numerous con-
tents that are growing day-by-day, and (2) the evolution of
the growth of users’ ability to discover contents. Mylists can-
not adapt to new contents without the owner’s maintenance.

10.1145/3125433.3125463

However, queries apply new contents automatically without
the owner’s effort. Sharing queries is a kind of sharing of tiny
codes [9].

Folk + Query = Folkquery

Weinberger pointed to the future of information categoriza-
tion with folksonomy, which is organized by people rather
than by experts [43]. To a great degree, only knowledge orga-
nized by experts was distributed to people before the emer-
gence of the internet. Those circumstances have changed
drastically. Currently it is difficult for us to obtain informa-
tion without some search or recommendation because vast
amounts of information exist in front of us and in various
locations worldwide. Can one truly encounter vast amounts
of information and annotate them for subsequent categoriza-
tion?

Pariser reported that personalization enables a person to be
holed up in a small bubble called a “Filter Bubble” [36, 38].
Consequently, users become separated from information that
disagrees with their viewpoints, effectively isolating them in
their own small bubbles of opinion and information. From
the beginning, searching is an original means to obtain in-
formation that lies within someone’s grasp. Nevertheless,
people will be in a small bubble generated by search engines
if queries are not elaborated and are simply entrusted to the
search engines and their managers.

We proposed sharing queries, which are working together to
produce queries to obtain increasing amounts of information.
This practice might be called “Folkquery”. Folkquery solves
the missing part of folksonomy in an age of searching.

CONCLUSION

As described in this paper, we propose an exploratory mu-
sic search interface called QueryShare, which has three key
features: contentification, query surfing, and asynchronous
collaborative editing. We developed the prototype system as
a web application for music videos on Niconico. Results of
a preliminary user study with the prototype system revealed
that users found the query creation interesting and that they
were interested in seeing and using queries by other users.
On the other hand, many users reported negative impressions
related to sharing their own queries. It is necessary to design
a more appropriate, powerful and clear incentive for users to
create queries and share them. Furthermore, we discuss the
importance of people’s use of complex queries.

Open collaboration creates large amounts of user-generated
content. Organizing this content to be searchable is an im-
portant issue. Within QueryShare, our proposed solution al-
lows users to query creation, query reusing, query surfing,
and query refinement. These search interactions contribute to
facilitate exploratory music searches without skills in creating
queries. We consider QuerySharing to be a simple yet power-
ful means of searching any type of content. QuerySharing can
bring more complex queries to users and content. Therefore,
they can evolve to provide a rich environment for understand-
ing music content.

As future work, we expect to open the prototype system to
the public and to improve it based on user feedback. Further-
more, we would like to analyze user behaviors in the proposed
search interaction.

ACKNOWLEDGMENTS

We thank Keisuke Ishida for web service implementation.
We thank Tomoyasu Nakano and Graham Percival for helpful
comments on earlier drafts of this paper. This work was sup-
ported in part by JST ACCEL Grant Number JPMJAC1602,
JSPS KAKENHI Grant Number JP15H02781 Japan.

REFERENCES

1.

10.

1.

12.

Ibrahim Adepoju Adeyanju, Dawei Song, M-Dyaa
Albakour, Udo Kruschwitz, Anne De Roeck, and Maria
Fasli. 2012. Adaptation of the Concept Hierarchy Model
with Search Logs for Query Recommendation on
Intranets. In Proc. SIGIR "12. 5-14.

. Javad Akbarnejad, Gloria Chatzopoulou, Magdalini

Eirinaki, Suju Koshy, Sarika Mittal, Duc On, Neoklis
Polyzotis, and Jothi Swarubini Vindhiya Varman. 2010.
The QueRIE system for Personalized Query
Recommendations. In Proc. the VLDB Endowment,
Vol. 3.

. Senjuti Basu Roy, Haidong Wang, Gautam Das, Ullas

Nambiar, and Mukesh Mohania. Minimum-effort Driven
Dynamic Faceted Search in Structured Databases.

. Sumit Bhatia, Debapriyo Majumdar, and Prasenjit

Mitra. 2011. Query Suggestions in the Absence of
Query Logs. In Proc. SIGIR ’11.795-804.

. Vijay Chandrasekhar, Matt Sharifi, and David A. Ross.

2011. Survey and Evaluation of Audio Fingerprinting
Schemes for Mobile Query-by-Example Applications.
In Proc. ISMIR 2011. 801-806.

. Gloria Chatzopoulou, Magdalini Eirinaki, and Neoklis

Polyzotis. 2009. Query Recommendations for
Interactive Database Exploration. In Proc. SSDBM *09.
3-18.

. S. Cucerzan and E. Brill. 2004. Spelling correction as an

iterative process that exploits the collective knowledge
of web users. In Proc. EMNLP 2004. 293-300.

. Hang Cui, Ji-Rong Wen, Jian-Yun Nie, and Wei-Ying

Ma. 2002. Probabilistic query expansion using query
logs. In Proc. WWW 2002. 325-332.

. Koichiro Eto, Masahiro Hamasaki, and Hideaki Takeda.

2012. Wedata: a wiki system for service oriented tiny
code sharing. In Proc. of WikiSym ’12. 30:1-30:4.

Henry Feild and James Allan. 2013. Task-aware query
recommendation. In Proc. SIGIR ’13. 83-92.

Asif Ghias, Jonathan Logan, David Chamberlin, and
Brian C. Smith. 1995. Query by humming: musical
information retrieval in an audio database. In Proc. ACM
Multimedia ’95. 231-236.

Arnaud Giacometti, Patrick Marcel, Elsa Negre, and
Arnaud Soulet. 2009. Query recommendations for
OLAP discovery driven analysis. In Proc. DOLAP ’09.
81-88.

10.1145/3125433.3125463

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Gene Golovchinsky, Abdigani Diriye, and Jeremy
Pickens. 2011. Designing for Collaboration in
Information Seeking. In Proc. of HCIR ’11.

Masataka Goto and Takayuki Goto. 2009. Musicream:
Integrated Music-Listening Interface for Active,

Flexible, and Unexpected Encounters with Musical
Pieces. IPSJ Journal 50, 12 (2009), 2923-2936.

Masataka Goto, Kazuyoshi Yoshii, Hiromasa Fujihara,
Matthias Mauch, and Tomoyasu Nakano. 2011. Songle:
A Web Service for Active Music Listening Improved by
User Contributions. In Proc. ISMIR 2011.311-316.

Stephan Greene, Egemen Tanin, Catherine Plaisant, Ben
Shneiderman, Lola Olsen, Gene Major, and Steve Johns.
1999. The end of zero-hit queries: query previews for
NASA'’s Global Change Master Directory. International
Journal on Digital Libraries 2, 2-3 (1999), 79-90.

Masahiro Hamasaki and Masataka Goto. 2013.
Songrium: a music browsing assistance service based on
visualization of massive open collaboration within

music content creation community. In Proc. WikiSym
’13.4:1-4:10.

Masahiro Hamasaki, Masataka Goto, and Tomoyasu
Nakano. 2014. Songrium: A Music Browsing Assistance
Service with Interactive Visualization and Exploration
of a Web of Music. In Proc. WWW 2014. 523-528.

Masahiro Hamasaki, Hideaki Takeda, and Takuichi
Nishimura. 2008. Network Analysis of Massively
Collaborative Creation of Multimedia Contents - Case
Study of Hatsune Miku videos on Nico Nico Douga -. In
Proc. of uxTV ’08. 165-168.

Philippe Hamel, Matthew E. P. Davies, Kazuyoshi
Yoshii, and Masataka Goto. 2013. Transfer Learning In
MIR: Sharing Learned Latent Representations For
Music Audio Classification And Similarity. In Proc. of
ISMIR 2013.9-14.

Katsutoshi Itoyama, Masataka Goto, Kazunori
Komatani, Tetsuya Ogata, and Hiroshi G. Okuno. 2008.
Instrument Equalizer for Query-by-Example Retrieval:
Improving Sound Source Separation Based on
Integrated Harmonic and Inharmonic Models. In Proc.
ISMIR 2008. 133-138.

Bernard J. Jansen, Amanda Spink, and Jan Pedersen.
2005. A temporal comparison of AltaVista Web
searching: Research Articles. J. Am. Soc. Inf. Sci.
Technol. 56, 6 (2005), 559-570.

Rosie Jones, Benjamin Rey, Omid Madani, and Wiley
Greiner. 2006. Generating Query Substitutions. In Proc.
WWW ’06. 387-396.

Tomoko Kajiyama and Shin’ichi Satoh. 2013. A Video
Navigation Interface Using Multi-faceted Search
Hierarchies. In Proc. of MMSys ’13. 136—140.

25.

26.

27.

28.

29.

30.

31.

32.

34.

35.

Mohsen Kamalzadeh, Dominikus Baur, and Torsten
Moller. 2012. A Survey on Music Listening and
Management Behaviors. In Proc. of ISMIR 2012.
373-378.

Kunio Kashino, Takayuki Kurozumi, and Hiroshi
Murase. 2003. A quick search method for audio and
video signals based on histogram pruning. IEEE Trans.
on Multimedia 5, 3 (2003), 348-357.

Youngho Kim and W. Bruce Croft. 2014. Diversifying
Query Suggestions Based on Query Documents. In
Proc. SIGIR ’14. 891-894.

P. Knees and M. Schedl. 2013. A Survey of Music
Similarity and Recommendation from Music Context
Data. ACM TOMM 10, 1 (2013), 1-21.

Mu Li, Muhua Zhu, Yang Zhang, and Ming Zhou. 2006.
Exploring Distributional Similarity Based Models for
Query Spelling Correction. In Proc. ACL 2006.
1025-1032.

Gray Marchionini. 2006. Exploratory search: from
finding to understanding. Communications of the ACM,
Vol. 49. ACM, 41-46.

Yevgeniy Medynskiy, Mira Dontcheva, and Steven M.
Drucker. 2009. Exploring Websites Through Contextual
Facets. In Proc. of CHI ’09. 2013-2022.

Meredith Ringel Morris. 2008. A survey of collaborative
web search practices. In Proc. of CHI "08. 1657-1660.

Meredith Ringel Morris and Eric Horvitz. 2007.
SearchTogether: an interface for collaborative web
search. In Proc. of UIST ’07. 3-12.

Elias Pampalk, Andreas Rauber, and Dieter Merkl.
2002. Content-based Organization and Visualization of
Music Archives. In Proc. ACM Multimedia 2002.
570-579.

Bryan Pardo (Ed.). 2006. Special issue: Music
information retrieval. Communications of the ACM,
Vol. 49. ACM, 28-58.

10.1145/3125433.3125463

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Eli Pariser. 2011. The Filter Bubble: What The Internet
Is Hiding From You. Penguin.

Yves Raimond, Samer Abdallah, Mark Sandler, and
Frederick Giasson. 2007. The Music Ontology. In Proc.
of ISMIR "07. 417-422.

Paul Resnick, Joseph Konstan, and Anthony Jameson.
2011. Panel: Recommender Systems and the ‘Filter
Bubble’. In RecSys '11.
http://recsys.acm.org/recsysll/panel/

Yading Song, Simon Dixon, and Marcus Pearce. 2012.
Survey of Music Recommendation Systems and Future
Perspectives. In Proc. CMMR 2012. 395-410.

Wei Ho Tsai, Hung Ming Yu, and Hsin Min Wang.
2005. A Query-by-Example Technique for Retrieving
Cover Versions of Popular Songs with Similar Melodies.
In Proc. ISMIR 2005. 183—190.

Michael B Twidale and David M Nichols. 1997.
Designing interfaces to support collaboration in
information retrieval. Interacting with Computers 10, 2
(1997), 177-193.

Chung-Che Wang, Jyh-Shing Roger, and Jang Wennen
Wang. 2010. An Improved Query by Singing/Humming
System Using Melody and Lyrics Information. In Proc.
ISMIR 2010. 45-50.

David Weinberger. 2007. Everything Is Miscellaneous:
The Power of the New Digital Disorder. Times Books.

Stewart Whiting and Joemon M. Jose. 2014. Recent and
Robust Query Auto-Completion. In Proc. WWW 2014.
971-981.

Xiangmin Zhang and Yuelin Li. 2005. An Exploratory
Study on Knowledge Sharing in Information Retrieval.
In Proc. HICSS "05. 245¢-245c.

