
2017 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 25–28, 2017, TOKYO, JAPAN

INFINITE PROBABILISTIC LATENT COMPONENT ANALYSIS
FOR AUDIO SOURCE SEPARATION

Kazuyoshi Yoshii1,2 Eita Nakamura1 Katsutoshi Itoyama1 Masataka Goto3

1Kyoto University 2RIKEN 3National Institute of Advanced Industrial Science and Technology (AIST)
{yoshii, enakamura, itoyama}@sap.ist.i.kyoto-u.ac.jp m.goto@aist.go.jp

ABSTRACT
This paper presents a statistical method of audio source separation
based on a nonparametric Bayesian extension of probabilistic latent
component analysis (PLCA). A major approach to audio source sep-
aration is to use nonnegative matrix factorization (NMF) that ap-
proximates the magnitude spectrum of a mixture signal at each frame
as the weighted sum of fewer source spectra. Another approach
is to use PLCA that regards the magnitude spectrogram as a two-
dimensional histogram of “sound quanta” and classifies each quan-
tum into one of sources. While NMF has a physically-natural inter-
pretation, PLCA has been used successfully for music signal analy-
sis. To enable PLCA to estimate the number of sources, we propose
Dirichlet process PLCA (DP-PLCA) and derive two kinds of learn-
ing methods based on variational Bayes and collapsed Gibbs sam-
pling. Unlike existing learning methods for nonparametric Bayesian
NMF based on the beta or gamma processes (BP-NMF and GaP-
NMF), our sampling method can efficiently search for the optimal
number of sources without truncating the number of sources to be
considered. Experimental results showed that DP-PLCA is superior
to GaP-NMF in terms of source number estimation.

Index Terms— Source separation, nonparametric Bayes, prob-
abilistic latent component analysis, Dirichlet process, Gibbs sam-
pling, variational Bayes.

1. INTRODUCTION

Statistical matrix factorization forms the basis of modern signal pro-
cessing. Given a matrix X ∈ R

M×N , the typical goal of factor-
ization is to estimate two matrices A ∈ R

M×K and B ∈ R
K×N

such that X ≈ AB, where K � M,N . Such low-rank representa-
tion with a limited degree of freedom enables us to extract essential
information from the original redundant data X . To perform ma-
trix factorization, it is important to carefully examine the statistical
characteristics of X , A, and B and define an appropriate likelihood
function of A and B for X to be maximized. In principal compo-
nent analysis (PCA), for example, X is a set of observed variables,
B is a set of the corresponding latent variables that are Gaussian dis-
tributed, A is an orthogonal transformation matrix, and A and B are
obtained by maximizing the Gaussian likelihood for X . In indepen-
dent component analysis (ICA) [1], X is a set of mixture signals,
B is a set of source signals that are independently super-Gaussian
(e.g., Laplacian) distributed, A is a mixing matrix, and A and B are
obtained by maximizing the Gaussian likelihood for X .

In the field of music signal processing, nonnegative matrix fac-
torization (NMF) [2] and probabilistic latent component analysis

This work was partly supported by JST ACCEL No. JPMJAC1602 and
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Fig. 1. A comparison of NMF and PLCA. NMF is a factor model
based on the sum of random variables (values of magnitude) gener-
ated from probability distributions (e.g., Poisson distributions) and
PLCA is a mixture model based on the sum of probability distribu-
tions (i.e., categorical distribution) used for generating random vari-
ables (sound quanta).

(PLCA) [3], which restrict X , A, and B to nonnegative matrices,
have been widely used for source separation of music audio signals.
Note that PLCA has often been mistakenly understood as a proba-
bilistic version of NMF. More precisely and technically, the proba-
bilistic models underlying NMF and PLCA are a factor model and
a mixture model, respectively. This makes a clear difference in how
to model the observed data X (Fig. 1). A factor model represents
each “sample” in X as a weighted sum of all sources and can be
used for solving a decomposition problem. A mixture model, on the
other hand, assumes each “sample” to exclusively belong to one of
the sources and can be used for solving a clustering problem.

When NMF is used for source separation, the magnitude spec-
trum of each frame in an observed mixture spectrogram is regarded
as a “sample” and is approximated as the sum of source spectra.
Various probabilistic models of NMF can be formulated by speci-
fying a probability distribution that generates the sample. Among
others, Euclidean NMF (EU-NMF) based on the Gaussian distribu-
tion, Kullback-Leibler NMF (KL-NMF) based on the Poisson distri-
bution [4], and Itakura-Saito NMF (IS-NMF) based on the complex
Gaussian distribution [5] are popular variants of NMF. Although IS-
NMF can be theoretically justified, KL-NMF has been empirically
known to work best for source separation. In KL-NMF, the magni-
tude is assumed to be Poisson distributed and must take an integer
value (can take real value in practice). This implies a deep connec-
tion between KL-NMF and PLCA.

When PLCA is used for source separation, the magnitude spec-
trogram in the time-frequency plane is regarded as a two-dimensional
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histogram of “sound quanta,” each of which is assumed to be a
sample generated from one of the sources. If each time-frequency
bin is regarded as a single sample as in NMF, it cannot belong to
multiple sources. Instead, each bin is considered to include multi-
ple sources by collecting the sound quanta generated from multiple
sources. This idea was inspired by topic models proposed for natural
language processing. While each word in a document is generated
from one of the topics, the document can be considered to include
multiple topics. PLCA was named after a basic topic model called
probabilistic latent semantic analysis (PLSA) [6].

Considering the difference between NMF and PLCA, we pro-
pose nonparametric Bayesian PLCA based on the Dirichlet process
(DP) called DP-PLCA that can estimate the number of sources. The
beta or gamma process (BP or GaP), on the other hand, has been
used for formulating nonparametric Bayesian factor models such as
BP-NMF [7, 8] and GaP-NMF [9]. While in theory infinitely many
sources are supposed to exist, only a limited number of them are ef-
fectively used for representing the finite observed data. We derive
two kinds of learning methods for DP-PLCA. One is a determinis-
tic method based on variational Bayes and the other is a stochastic
method based on collapsed Gibbs sampling. Unlike existing learning
methods for BP-NMF and GaP-NMF, our sampling method can effi-
ciently search for the optimal number of sources without truncating
the number of sources to be considered. In this paper, we examine
the capability of DP-PLCA for estimating the number of sources.

2. PRIOR ART

This section reviews nonparametric Bayesian infinite mixture and
factor models of matrix factorization based on the Dirichlet, gamma,
and beta processes (DP, GaP, and BP).

2.1. Infinite mixture models

An infinite mixture model (e.g., Gaussian mixture model) for N
observations X = {xn}Nn=1 is defined by an infinite number of
component distributions (e.g., Gaussian distribution) {p(x|φk)}∞k=1

with mixing ratios π = {πk}∞k=1 as follows:

p(xn|Θ) =

∞∑
k=1

πkp(xn|φk), (1)

where φ = {φk}∞k=1 is a set of component parameters (e.g., mean
and covariance matrix) and Θ = {π,φ} is a set of all parameters.
Using a Dirichlet process (DP) prior DP(G0, α) with a base measure
G0 (e.g., Gaussian-Wishart distribution) and a concentration param-
eter α, the generative process of xn is represented as follows:

G ∼ DP(G0, α), (2)

φ̂n ∼ G, xn ∼ p(xn|φ̂n), (3)

where φ̂n ∈ φ is the parameter of a component distribution used for
generating xn and G can be explicitly written as the sum of infinitely
many Dirac measures as follows (Fig. 2):

φk ∼ G0, G =
∞∑

k=1

πkδφk , (4)

2.1.1. Stick-breaking process

A popular constructive interpretations of the DP is a stick-breaking
process (SBP) [10] that generates the mixing ratios π by recursively
breaking off a stick with a unit length such that the lengths of the
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Fig. 2. A probability measure G drawn from a DP with a base mea-
sure G0 and a concentration parameter α.
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Fig. 3. A stick-breaking process for recursively generating infinitely
many weights π that sum to unity.

fragments, π, sum to unity. This process is governed by the concen-
tration parameter α as follows (Fig. 3):

ηk ∼ Beta(1, α), πk = ηk

k−1∑
k′=1

(1− ηk′). (5)

More simply, the SBP is often written as follows:

π ∼ SBP(α). (6)

Using the SBP, Blei and Jordan [11] proposed a deterministic
learning method based on variational Bayes (VB) that approximates
the complicated true posterior of the parameters Θ as a tractable
factorized distribution that can be iteratively optimized. Another
approximation required in practice is that the number of compo-
nents considered should be truncated at a sufficiently large level be-
cause infinitely many parameters cannot be dealt with in reality. The
method is thus initialized with sufficiently many components and
unnecessary components are gradually removed in each iteration to
estimate the appropriate number of components, K+

2.1.2. Chinese restaurant process

Another constructive interpretation of the DP is known as a Chinese
restaurant process (CRP) [12] that sequentially generates component
parameters φ̂ = {φ̂n}Nn=1 (φ̂n ∈ φ) used for generating X =
{xn}Nn=1 as follows:

φ̂n+1|φ̂1, · · · , φ̂n ∼ 1

α+ n

n∑
n′=1

δφ̂n′ +
α

α+ n
G0

=
1

α+ n

Kn∑
k=1

nkδφk +
α

α+ n
G0, (7)

where Kn is the number of different components (classes) used for
generating {xn′}nn′=1 and nk is the number of samples generated
from class k. More simply, we often say

φ̂ ∼ CRP(G0, α) or Z ∼ CRP(α), (8)

where Z = {zn}Nn=1 is a set of latent variables (class indicators)
and each zn is represented as a one-hot vector. If xn is generated
from component k, i.e., φ̂n = φk, the k-th dimension of zn takes 1
and the other dimentions take 0.



A key advantage of this representation involving only φ̂ is that
it is unnecessary to deal with the infinite-dimensional vector π by
marginalizing out G from Eq. (2) and Eq. (3). Instead, we consider
at most a finite number of components φ̂ actually used for generating
a finite amount of observed data X .

Using the CRP, Neal [13] proposed a stochastic learning method
based on Gibbs sampling (GS) that is used for generating samples
(values of Θ) from the complicated posterior of Θ without calcu-
lating its intractable normalizing factor. Unlike the VB method, the
effective number of component K+ used for representing X can be
stochastically estimated in each iteration and finally the posterior of
K is obtained. Although the convergence is often hard to judge, in
general the GS method is more efficient (more iterations are needed,
but each iteration can be performed much faster) and more robust to
local maxima than the VB method.

2.1.3. Topic models

Topic models are an important family of mixture models originally
used for natural language processing. The most basic model is prob-
abilistic latent semantic analysis (PLSA) [6]. Let M be the number
of different words in a dictionary. Given a set of N documents as
observed data X , PLSA aims to estimate K topics (i.e., unigram
probabilities of M words), {{p(m|k)}Mm=1}Kk=1, and the mixing ra-
tios of those topics {{p(k|n)}Kk=1}Nn=1 in an unsupervised manner.
The probabilistic model of PLSA is often written as follows:

p(n,m) =

K∑
k=1

p(m|k)p(k|n)p(n) (9)

=

K∑
k=1

p(m|k)p(n|k)p(k), (10)

where p(n,m) is a joint probability distribution used for generating
X , i.e., a two-dimensional histogram of word counts over N doc-
uments and M words and p(n) is a probability distribution over N
documents, which is set to the empirical ratios of word counts over
N documents. Eq. (9) is usually converted to an equivalent represen-
tation given by Eq. (10) for mathematical convenience. The parame-
ters, Θ, of all the three categorical distributions p(m|k), p(n|k), and
p(k) can be estimated by using the expectation-maximization (EM)
algorithm such that the likelihood of Θ for X given by Eq. (10) is
maximized (maximum likelihood estimation).

To deal with new documents that are not included in X , i.e.,
to formulate a complete generative model of documents, a Bayesian
extension of PLSA called latent Dirichlet allocation (LDA) was pro-
posed [14]. LDA is based on Eq. (9) and assumes that p(n) is a uni-
form distribution. Putting Dirichlet priors on p(m|k) and p(k|n),
respectively, a topic distribution p(k|n′) for a new document n′ can
be generated.

To estimate the effective number of topics K+, Teh et al. [15]
proposed nonparametric Bayesian LDA that puts a hierarchical DP
(HDP) prior on a set of infinitely many topic distributions (mixing ra-
tios) {{p(k|n)}∞k=1}Nn=1 and word distributions (component distri-
butions) {{p(m|k)}Mm=1}∞k=1. If an independent DP prior is put for
each document n, a document-specific topic distribution {p(k|n)}∞k=1

and word distributions {{p(m|k, n)}Mm=1}∞k=1 are generated. To
avoid this, a higher-level DP prior is put on document-wise DP priors
for sharing {{p(m|k)}Mm=1}∞k=1 over all documents.

2.1.4. Probabilistic latent component analysis

Probabilistic latent component analysis (PLCA) [3] is a generaliza-
tion of PLSA for D-dimensional data (D ≥ 1). The probabilistic
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Fig. 4. The overview of PLCA. The magnitude spectrogram is as-
sumed to follow a two-dimensional categorical mixture distribution.

model of PLCA is given by

p(x1, · · · , xD) =
K∑

k=1

p(k)p(x1, · · · , xD|k)

=

K∑
k=1

p(k)

D∏
d=1

p(xd|k), (11)

where xd is a random variable of any type in dimension d (1 ≤ d ≤
D) and a sample generated from Eq. (11) is represented by a tuple
(x1, · · · , xD). When d = 2 and x1 and x2 are discrete random
variables, PLCA reduces to PLSA (x1 and x2 correspond to n and
m, respectively, as shown in Fig. 4).

PLCA have successfully been used for audio source separation
by regarding n and m as time and frequency indices, respectively
[3, 16, 17]. A pair (n,m) denotes the time-frequency position of a
“sound quantum” generated from Eq. (11) or Eq. (10). Given the
magnitude spectrogram of a music signal, i.e., a two-dimensional
histogram of sound quanta, in the time-frequency plane withN frames
and M frequency bins, the frequency distributions of K sources,
{{p(m|k)}Mm=1}Kk=1, and their mixing ratios, {{p(k|n)}Kk=1}Nn=1,
can be estimated by the EM algorithm as in PLSA. The frequency
distributions can be trained from isolated musical instrument sounds
in advance [16,17]. Although HDP-PLCA could be formulated as in
HDP-LDA, in this paper we show that a simpler and more easy-to-
implement extension called DP-PLCA is feasible by using Eq. (11)
(Eq. (10) instead of Eq. (9)) and a DP prior for efficient Bayesian
inference based on VB or GS.

2.2. Infinite factor models

A finite factor model (e.g., KL-NMF) for N observations X =
{xn}Nn=1 is defined by a particular probability distribution (e.g.,
Poisson distribution) that is specified by the sum of basis parameters
(factors) φ = {φk}Kk=1 with their local weights ωn = {ωnk}Kk=1

specific to sample n as follows:

p(xn|Θ) = p

(
xn

∣∣∣∣∣
K∑

k=1

ωnkφk

)
. (12)



The gamma process (GaP) [9] or beta process (BP) [7, 8] can
be used for formulating an infinite factor model by taking the limit
of Eq. (12) when K goes to infinity. A key feature of infinite factor
models is that although in theory infinitely many factors are assumed
to exist, at most a finite number of factors are effectively used for
representing X . The BP was also used for estimating the number of
basis patterns (atoms) in dictionary learning from images [18,19].

2.2.1. Gamma process

Introducing a K-dimensional nonnegative vector π = {πk}Kk=1 into
Eq. (12) and taking the infinite limit when K → ∞, an infinite factor
model based on the GaP is given by

p(xn|Θ) = p

(
xn

∣∣∣∣∣
∞∑

k=1

πkωnkφk

)
, (13)

where πk is a global weight of factor k and π does not need to sum
to unity. To make π sparse, i.e., to make fewer factors effective,
a GaP prior GaP(G0, α) with a base measure G0 over a space Ω
(G0(Ω) = γ is the total mass of G0 over Ω) and a concentration
parameter α can be used as follows:

G ∼ GaP(G0, α), (14)

where G consists of infinitely many atom as follows:

ωk,φk ∼ 1

γ
G0, G =

∞∑
k=1

πkδωk,φk , (15)

While a SBP for generating π was recently derived [20], a CRP
representation has not been proposed yet. Although a VB method
based on the SBP representation was proposed for estimating the
effective number of factors K+ in matrix factorization [20], it has
scarcely been used in practice due to its complexity. Another sim-
pler representation of the GaP is weak-limit approximation that in-
dependently puts an extremely sparse gamma prior on each πk as
follows:

πk ∼ Gamma
(αγ
K

,α
)
. (16)

Since the GaP is obtained as the limit of Eq. (16) when K → ∞,
K is set to a sufficiently large number in practice in exchange for
unnecessarily increase of computational cost.

A VB method based on Eq. (16) was proposed for GaP-NMF
and applied to music signal analysis [9]. It is, however, often difficult
to determine a threshold for gradually removing ineffective factors
to estimate K+. In addition, the results obtained by the weak-limit
approximation tend to be sensitive to the truncation level.

2.2.2. Beta process

Introducing a binary matrix Z = {znk}N,K
n=1,k=1 into Eq. (12) and

taking the infinite limit when K → ∞, an infinite factor model
based on the BP is given by

p(xn|Θ) = p

(
xn

∣∣∣∣∣
∞∑

k=1

znkωnkφk

)
, (17)

where znk is a latent binary variable that indicates the presence or
absence of factor k in sample n. To make Z sparse, a BP prior
BP(G0, α) with a base measure G0 over a space Ω (G0(Ω) = γ)
and a concentration parameter α is used with a Bernoulli process
BeP(H) with a base measure H as follows:

H ∼ BP(G0, α), Gn ∼ BeP(H), (18)

where G and H over Ω can be explicitly written as

ωk,φk ∼ 1

γ
G0, (19)

H =

∞∑
k=1

πkδωk,φk , Gn =

∞∑
k=1

znkδωk,φk , (20)

where πk ∈ [0, 1] indicates the probability of activating factor k
and znk ∼ Ber(πk). Since the infinite-dimensional vector π =
{πk}∞k=1 is extremely sparse, only a limited number of different fac-
tors are activated in Z.

Several kinds of SBPs have been proposed for explicitly rep-
resenting π. Teh et al. [21], for example, proposed a SBP similar
to Eq. (5) and derived a GS method that can estimate Θ without
truncated approximation by using slice sampling. Gupta et al. [22]
proposed BP-NMF based on the same SBP representation. Paisley
et al. [23, 24] proposed another SBP as the infinite limit of a finite
model and derived a VB method. Another simpler representation
of the BP is weak-limit approximation that independently puts an
extremely sparse beta prior on each πk as follows:

πk ∼ Beta
(αγ
K

,α
(
1− γ

K

))
, (21)

where K is set to a sufficiently large number as in the GaP. Liang et
al. [7,8] proposed BP-NMF based on this representation and derived
VB and GS methods with truncated approximation. A CRP-like rep-
resentation of the BP is known as an Indian buffet process (IBP) [25].

3. DIRICHLET PROCESS PLCA

This section describes a nonparametric Bayesian extension of PLCA
based on the Dirichlet process (DP) for audio source separation and
then derives two kinds of learning methods based on VB and col-
lapsed GS.

3.1. Data preparation

To use PLCA for audio source separation, the magnitude spectro-
gram of a mixture signal is regarded as a two-dimensional histogram
of “sound quanta” in the time-frequency plane with N frames and
M frequecy bins, as explained in Section 2.1.4. We redefine X =
{xi}Ii=1 as a set of observed variables and let Z = {zi}Ii=1 be a set
of the corresponding latent variables, where I is the total number of
sound quanta, i.e., the sum of the values of magnitude over the time-
frequency plane. Since each quantum i is located at a time-frequency
bin, xi is represented as an NM -dimensional one-hot vector that
takes 1 in a dimension corresponding to the time-frequency loca-
tion and 0 in the other dimensions. In addition, each quantum i is
assumed to be generated from one of K sources (K → ∞), zi is
represented as a K-dimensional one-hot vector.

To make the observed data X , we need to quantize the value
of magnitude at each time-frequency bin according to an appropriate
resolution. In practice, PLCA is found to work by scaling and round-
ing the magnitude spectrogram such that the average of magnitude
is around 1. If the average of magnitude is set to a larger value, the
number of observations I takes a larger value, which affects the pos-
terior uncertanty of the parameters of PLCA in Bayesian estimation.
This is more problematic for nonparametric Bayesian PLCA because
the effective number of sources, K+, is considered to increase log-
arithmically according to the increase of observed data. To solve
this problem, we could use a method of optimizing the resolution of
magnitude quantization that was originally proposed for KL-NMF
based on the discrete Poisson distribution [26].



3.2. Model formulation

The probabilistic model of PLCA for two-dimensional data is given
by Eq. (10), where p(k) represents the mixing ratios of K sources,
and p(n|k) and p(m|k) represent the time and frequency distribu-
tions of source k, respectively. The parameters of these categorical
distributions are given by π = {πk}Kk=1, φk = {φkn}Nn=1, and
θk = {θkm}Mm=1. The probabilistic generative model of Z and X
(the complete likelihood function of π, φ, and θ for Z and X) is
thus defined as follows:

p(Z|π) =
I∏

i=1

K∏
k=1

π
zik
k , (22)

p(X|Z,φ,θ) =

I∏
i=1

N∏
n=1

M∏
m=1

K∏
k=1

(φknθkm)xinmzik . (23)

To let K go to infinity, we use a DP prior. There are two major
constructions of the DP (see Sections 2.1.1 and 2.1.2). Using a SBP
and conjugate Dirichlet priors, a nonparametric Baysian model can
be formulated as follows:

π ∼ SBP(α), φk ∼ Dir(β), θk ∼ Dir(γ), (24)

where α, β, and γ are hyperparameters. The SBP representation is
convenient for deriving the VB method.

Using a CRP, i.e., marginalizing π out analytically, we obtain
another representation as follows:

Z ∼ CRP(α), φk ∼ Dir(β), θk ∼ Dir(γ). (25)

Note that φ and θ can also be marginalized out for efficient Bayesian
inference (only Z is considered). The CRP representation is conve-
nient when the (collapsed) GS method is used.

3.3. Variational Bayes

Using a Bayesian model specified by Eqs. (22), (23), and (24), we
aim to calculate the posterior distribution p(Z,η,φ,θ|X), where η
is considered instead of π based on Eq. (5). Since the true posterior
is analytically intractable, it is approximated as a factorizable vari-
ational posterior distribution q(Z,η,φ,θ) = q(Z)q(η)q(φ)q(θ)
such that the KL divergence from q(Z,η,φ,θ) to p(Z,η,φ,θ|X)
is minimized, i.e., the lower bound of the log-evidence p(X) is max-
imized. In each iteration, q(Z) is updated as follows:

q(Z) ∝ exp(Eq(η,φ,θ)[log p(X,Z,η,φ,θ)]). (26)

Similarly, q(η), q(φ), and q(θ) can also be updated alternately.
Each posterior is found to be the same type of the prior distribution
because of the conjugacy.

First, q(Z) is given by a categorical distribution as follows:

q(zi) = Categorical(ζi), (27)

where ζik = ρik∑K
k′=1

ρik′
and ρik is given by

log ρik = E[log ηk] +

k−1∑
k′=1

E[log(1− ηk′)]

+
∑
nm

xinmE[logφkn] +
∑
nm

xinmE[log θkm]. (28)

Then, q(η) is given by

q(ηk) = Beta

⎛
⎝1 +

∑
i

E[zik], α+
∑
i

K∑
k′=k+1

E[zik′ ]

⎞
⎠ , (29)

Finally, q(φ) and q(θ) are given by

q(φk) = Dir(λk), q(θk) = Dir(ωk), (30)

where λk and ωk are given by

λkn = β +
∑
im

xinmE[zik], ωkm = γ +
∑
in

xinmE[zik]. (31)

As in GaP-NMF, K is initialized as a sufficiently large number and
uneffective sources are gradually removed in each iteration.

3.4. Collapsed Gibbs sampling

Formulating a Bayesian model given by Eqs. (22), (23), and (25)
and marginalizing out φ and θ by leveraging the conjugacy between
the Dirichlet and categorical distributions, we aim to draw samples
from the posterior distribution p(Z|X) because at most N different
classes appear in Z (the number of different classes K+ is usually
much fewer than N ). This enables us to avoid dealing with infinitely
many parameters on computers. We use collapsed Gibbs sampling
for updating each zi in a random order according to the following
conditional distribution:

p(zi|Z¬i,X) ∝ p(zi,xi|Z¬i,X¬i), (32)

where X¬x indicates a set of parameters X except for x. When zi

is updated, K+ might be decremented, incremented, or unchanged.
More specifically, the probability that zi is generated from “exist-
ing” source k (zik = 1) and xi is then located at time n and fre-
quency bin m (xinm = 1) is given by

p(zik = 1, xinm = 1|Z¬i,X¬i) ∝
∑

i′ �=i zi′k

I − 1 + α∑
m

∑
i′ �=i xi′nmzi′k + β∑
i′ �=i zi′k + βN

∑
n

∑
i′ �=i xi′nmzi′k + γ∑
i′ �=i zi′k + γM

. (33)

On the other hand, the probability that zi is generated from a new
source knew (ziknew = 1) and xi is located at time n and frequency
bin m (xinm = 1) is given by

p(ziknew = 1, xinm= 1|Z¬i,X¬i) ∝ α

I − 1 + α

1

MN
. (34)

4. EVALUATION

This section reports a comparative experiment evaluatining the ca-
pability of DP-PLCA in estimation of the number of sources K+.

4.1. Experimental conditions

We used three mixture signals each of which was synthesized using
the sounds of piano (011PFNOM), electric guitar (131EGLPM), or
clarinet (311CLNOM) recorded in the RWC Music Database: Mu-
sical Instrument Sound [27]. Each signal (14 s) was made by con-
catenating seven 2-s isolated or mixture sounds (C4, E4, G4, C4+E4,
C4+G4, E4+G4, and C4+E4+G4). The sampling rate was 16 kHz.
Each mixture signal was expected to be separated into three sources
corresponding to C4, E4, and G4 (K+ = 3). The short-time Fourier
transform (STFT) with a Gaussian window was performed with a
window length of 512 pts and a shifting interval of 160 pts. The
magnitude spectrogram of each signal was represented as a nonneg-
ative matrix with N = 1400 and M = 257 and scaled such that the
average value of magnitude over the time-frequency plane, μ, was
equal to 1 or 10. We tested the VB and GS methods for learning the
DP-PLCA model. For comparison, we tested GaP-NMF based on
the Poisson distribution (GaP extension of KL-NMF, Section 2.2.1)
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Fig. 5. Experimental results of K+ estimation.

based on the VB method. The truncation level of the VB methods
was set to 30 and the GS method started from 30 sources. The per-
formance of each method was evaluated in terms of accuracy of K+

estimation. When K+ = 3, these methods achieved comaprable
source separation performance.

4.2. Experimental results

Fig. 5 shows the experimental results. When μ = 1 (i.e., the total
number of sound quanta was I = NM ), all methods converged to
a reasonable solution around K+ = 4, where an extra source rep-
resents a noise spectrum (atack sound). When μ = 10, all methods
tended to overestimate K+. Although this is a natural behavior of
nonparametric Bayesian models, the essential complexity of X re-
mains the same. DP-PLCA based on the VB method was found to be
less sensitive to the apparent data size. The computational cost of the
VB method for DP-PLCA was much smaller than that for GaP-NMF.
Note that the computational costs of the VB methods are indepen-
dent from the data size I , that of the GS method is linearly increased.
One solution is to use non-collapsed GS that can adaptively truncate
π without any approximation by using slice sampling. This enables
parall computation as in the VB methods.

5. CONCLUSION

This paper presented a nonparametric Bayesian extension of PLCA
called DP-PLCA to estimate the number of sources in audio source
separation. One of the major contributions of this paper is to clar-
ify the essential difference between two major matrix factorization
techniques, NMF (factor model) and PLCA (mixture model), which
are often mistakenly considered to be always identical, in terms of
probabilistic modeling. This is a reason why the DP is used with
PLCA while the GaP or BP is used with NMF. We derived the learn-
ing methods based on VB and GS and confirmed that these methods
outperformed GaP-NMF in terms of the capability of autonomous
model complexity control.
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