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Abstract. Previously, we proposed an Auto-Regressive Hidden
Markov Model (AR-HMM) and an accompanying parameter es-
timation method. An AR-HMM was obtained by combining an
AR process with an HMM introduced as a non-stationary excita-
tion model. We demonstrated that the AR-HMM can accurately
estimate the characteristics of both articulatory systems and ex-
citation signals from high-pitched speech. As the parameter es-
timation method iteratively executes learning processes of HMM
parameters, the proposed method was calculation-intensive. Here,
we propose two novel kinds of auto-regressive, non-stationary ex-
cited signal parameter estimation methods to reduce the amount
of calculation required.

INTRODUCTION

The linear prediction (LP) method is widely used for the analysis of speech
signals [1, 2]. However, several problems remain to be resolved. For ex-
ample, (1) local peaks of LP spectral estimates are strongly biased toward
harmonics, especially for high-pitched speech [3], and (2) addition of white
noise to the Auto-Regressive (AR) process markedly alters the spectral esti-
mate [4]. These phenomena result in deterioration of the perceived quality
of re-synthesized speech and can also cause speech recognition errors.

LP methods assume that the excitation signal conforms to an Identically
Independent Distributed (IID) normal distribution. However, the actual ex-
citation signal indicates non-stationary properties especially in the case of
high fundamental frequency. As a result, local peaks in the LP spectral
envelope estimated from high-pitched speech are strongly biased toward har-
monics. To correct this, we proposed an Auto-Regressive Hidden Markov



Model (AR-HMM) and an accompanying parameter estimation method [5]
in which the HMM was introduced as a non-stationary excitation model.
We also demonstrated that the proposed method can accurately estimate
the characteristics of both articulatory systems and excitation signals from
high-pitched speech.

As learning processes of HMM parameters are executed iteratively, the
parameter estimation method proposed in our previous study is calculation-
intensive. Here, we propose two novel auto-regressive, non-stationary excited
signal parameter estimation methods to reduce the amounts of calculation
required.

AUTO-REGRESSIVE HIDDEN MARKOV MODEL

Previously, we proposed an AR-HMM that was obtained by combining an AR
process with an HMM introduced as a non-stationary excitation model. Fig-
ure 1 shows examples of this AR-HMM. The output probability distribution
of each node in the excitation HMM is assumed to be a single normal dis-
tribution. The nodes of the first AR-HMM are concatenated in a ring state,
so the state transition occurs in order. Therefore, this type of AR-HMM
can be used to represent periodically excited signals. An ergodic HMM, as
shown in the lower part of Fig. 1, can be used to represent an aperiodically
excited signal. The AR-HMM can represent various types of signals through
appropriate design of the network topology. The number of nodes and the
prediction order are determined according to the signal. Usually, an Akaike
Information Criterion (AIC) is employed to determine the model [6].

AR(p)
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Figure 1: Examples of AR-HMMs.

ITERATIVE PARAMETER ESTIMATION METHOD USING
VITERBI ALIGNMENT

The AR-HMM parameters are the AR coefficients and the parameters of the
HMM. Previously, we presented an algorithm that iteratively estimates these



parameters from a signal x(t), t = 0, · · · , T−1 [5]. In the following, P denotes
the prediction order of the AR process. Let a(i) = [a(i)(1), · · · , a(i)(P )]T

represent the ith estimate of the AR coefficients. The ith estimate of the
excitation signal e(i)(t), t = P, · · · , T − 1 is given by:

e(i)
P = xP −Ωa(i) (1)

where
e(i)

P = [e(i)(P ) e(i)(P + 1) · · · e(i)(T − 1)]T ∈ RT−P ,

xt = [x(t) x(t + 1) · · · x(t + T − P − 1)]T ∈ RT−P ,

Ω = [xP−1 xP−2 · · · x0] ∈ R(T−P )×P

We allocate a unique number from S = {1, · · · , N} to each node of the exci-
tation HMM to distinguish them from other nodes, where N is the number
of nodes. Let µ

(i)
n , σ

2 (i)
n , n ∈ S represent the ith estimates of the output

distribution population parameters in each node. Given a state-transition
sequence s(t) ∈ S, t = P, · · · , T − 1, the population parameters of an excita-
tion signal at time t are given by m(i)(t) = µ

(i)
s(t), v

(i)(t) = σ
2 (i)
s(t) . Hence, the

expectation vector of the excitation signal vector is represented by:

m(i)
P = [m(i)(P ) m(i)(P + 1) · · · m(i)(T − 1)]T (2)

Based on the assumption that the samples of the excitation signal at different
instants are mutually independent, the covariance matrix of the excitation
signal vector is defined as a diagonal matrix given by:

Σ(i)
P = diag(v(i)(P ), v(i)(P + 1), · · · , v(i)(T − 1)) (3)

The algorithm for parameter estimation consists of the following pro-
cesses.

1. The initial population parameters of the excitation signal are prepared
as m(0)

P = 0, Σ(0)
P = I. Repeat the following processes from i = 0.

2. The AR coefficients a(i+1) and the excitation signal e(i+1)
P are estimated

by maximizing the likelihood given by L(e(i+1)
P ;m(i)

P , Σ(i)
P ).

3. The population parameters m(i+1)
p , Σ(i+1)

p of the excitation signal vec-
tor are estimated by maximizing the likelihood given by L(e(i+1)

P ;m(i+1)
P ,

Σ(i+1)
p ).

4. If the likelihood has converged, the algorithm stops. Otherwise, repeat
the above processes for i← i + 1 from step 2.

By repeating the above processes, the likelihood increases almost monoton-
ically in practical situations and converges to the optimum or to a local
optimum value.



The details of each step are as follows. In step 2, the AR coefficient vector
can be obtained by solving

∂

∂a
log L(xP − Ωa;m(i)

P , Σ(i)
P )

∣∣∣∣
a=a(i+1)

= 0.

The solution is given by:

a(i+1) = [ΩT (Σ(i)
P )−1Ω]−1ΩT (Σ(i)

P )−1(xP −m(i)
P ). (4)

The excitation signal vector e(i+1)
P is derived from (1).

In step 3, the population parameters of the excitation signal vector are
estimated according to the following processes.

3.1 The Baum-Welch algorithm [7] estimates the population parameters
µ

(i+1)
m , σ

2 (i+1)
m , m ∈ S of each output distribution using e(i+1)

P .

3.2 The Viterbi algorithm [8] estimates a state transition sequence s(t), t =
P, P + 1, · · · , T − 1.

3.3 The expectation vector m(i+1)
P and the diagonal covariance matrix

Σ(i+1)
P of the excitation signal vector are estimated using (2) and (3).

PARAMETER ESTIMATION METHOD BASED ON
THE EXPECTATION-MAXIMIZATION ALGORITHM

The method described in the previous section estimates AR coefficients and
HMM parameters separately and iteratively; HMM parameter estimation
requires the largest amount of calculation in the algorithm. When the method
is applied to real-time processing, it is necessary to reduce the number of
HMM parameter estimation iterations. To do this, we adopt an expectation-
maximization (EM) algorithm. That is, using an EM algorithm, the AR
coefficient estimation process can be embedded into the HMM parameter
estimation process, and all the parameters can be estimated during a single
HMM parameter estimation.

In the following, we describe the EM-based parameter estimation method
for generalized situations where several signals are available for learning and
the output distribution of each node is a Gaussian mixture. Let xn(t), n =
1, . . . , N, t = 0, . . . , Tn − 1 and a(k), k = 1, . . . , P represent observed signals
and AR coefficients, respectively. The excitation signal en(t) emitted from
the HMM is given by:

en(t) = xn(t) +
P∑

k=1

a(k)xn(t− k). (5)

The output probability distribution os(e) of the node s is a Gaussian mixture
given by:

os(e) =
M∑

m=1

λs,mN (e; µs,m, σ2
s,m),

M∑
m=1

λs,m = 1. (6)



If we let πs and qs1,s2 represent initial probabilities and transition probabil-
ities, respectively, AR-HMM parameter θ is given by θ = {a, π, q, λ, µ, σ2}.
When observed signals xn(t), state-transition sequence sn(t) and Gaussian-
distribution sequence mn(t) are given, the likelihood L(θ) of parameter θ is
given by:

L(θ | xn, sn,mn) = πsn(0)

Tn−1∏
t=0

qsn(t),sn(t+1)λsn(t),mn(t)

×N (en(t); µsn(t),mn(t), σ
2
sn(t),mn(t)). (7)

In the above equation, because the variables sn(t) and mn(t) are actually
unobservable, it is necessary to estimate parameter θ from incomplete data
xn(t). This can be achieved using an EM algorithm, which consists of two
steps as follows.

• E-Step

We represent the probability of the unobservable variables sn,mn us-
ing the currently estimated parameter θ, then evaluate the expectation
Q(θ̂ | θ) of logarithmic likelihood log(L( θ̂)) with respect to the un-
observable variables, where θ̂ represents the updated parameter. This
expectation is given according to the following equation:

Q(θ̂ | θ) =
1
N

N∑
n=1

Tn−1∑
t=0

∑
i∈S

∑
j∈S

M∑
m=1

γn(t, i, j, m) log(L(θ̂)) (8)

where the parameter γn(t, i, j, m) represents the probability that the
mth Gaussian of the ith node emitted the excitation signal en(t) and a
transition from the ith node to the jth node occurred. This parameter
is evaluated by:

γn(t, i, j, m) =
α(i, t− 1)qi,jλi,mN (en(t); µi,m, σ2

i,m)β(j, t)
L(θ | xn)

(9)

where α and β are obtained by applying a Forward-Backward algorithm
to the excitation signal.

• M-Step

In the M-step, the expectation Q(θ̂ | θ) is maximized with respect to θ̂.
The updated AR coefficients â(k) are given as a solution of ∂Q/∂â(k) =
0, k = 1, . . . , P . The solution is represented by the following equation:

ck,l =
N∑

n=1

Tn−1∑
t=0

∑
i∈S

∑
j∈S

M∑
m=1

γn(t, i, j, m)

×xn(t − k)xn(t− l)/σ2
i,m

dk =
N∑

n=1

Tn−1∑
t=0

∑
i∈S

∑
j∈S

M∑
m=1

γn(t, i, j, m) (10)



×{xn(t)− µi,m}xn(t− l)/σ2
i,m

[â(1), · · · , â(P )]T = −C−1d

where C = (ck,l)k,l=1,···,P and d = [d1, · · · , dP ]T .

The updated HMM parameters are given according to the following
equations:

π̂s =

∑N
n=1

∑
j∈S

∑M
m=1 γn(0, s, j, m)

∑N
n=1

∑
i∈S

∑
j∈S

∑M
m=1 γn(0, i, j, m)

(11)

q̂s1,s2 =
∑N

n=1

∑Tn−1
t=0

∑M
m=1 γn(t, s1, s2, m)∑N

n=1

∑Tn−1
t=0

∑
j∈S

∑M
m=1 γn(t, s1, j, m)

(12)

λ̂s,m =

∑N
n=1

∑Tn−1
t=0

∑
j∈S γn(t, s, j, m)

∑N
n=1

∑Tn−1
t=0

∑
j∈S

∑M
m′=1 γn(t, s, j, m′)

(13)

µ̂s,m =

∑N
n=1

∑Tn−1
t=0

∑
j∈S γn(t, s, j, m)en(t)

∑N
n=1

∑Tn−1
t=0

∑
j∈S γn(t, s, j, m)

(14)

σ̂2
s,m =

∑N
n=1

∑Tn−1
t=0

∑
j∈S γn(t, s, j, m) (en(t)− µs,m)2

∑N
n=1

∑Tn−1
t=0

∑
j∈S γn(t, s, j, m)

(15)

The above two steps are iterated while replacing the current parameter θ
with the updated parameter θ̂ until the likelihood converges.

POPULATION PARAMETER ESTIMATION BASED ON SAM-
PLE AVERAGE AND SAMPLE VARIANCE

The method described above can reduce the HMM parameter estimation iter-
ations by adopting the EM algorithm. However, even if the HMM parameter
estimation is executed only once, the estimation process still requires a large
number of calculations. In this section, we propose a simplified method that
does not use the HMM to estimate the population parameter of the excitation
signal. In this method, the AR coefficients and the population parameters
of the excitation signal are estimated separately and iteratively as in the
method described in section 3, but the population parameters are evaluated
with only the sample average and sample variance of the excitation signal.

The processes of this method are the same as processes 1 to 4 described
in section 3. The difference is that the excitation signal vector population
parameters m(i+1)

p , Σ(i+1)
p are estimated as follows. First, the sample aver-

age m(i+1)(t) and sample variance v(i+1)(t) are estimated with the following
equations:

m(i+1)(t) =
1

2Ts + 1

Ts∑
k=−Ts

e(i+1)(t + k) (16)



v(i+1)(t) =
1

2Ts

Ts∑
k=−Ts

(
e(i+1)(t + k)−m(i+1)(t)

)2

(17)

where e(i+1)(t) is the (i+1)th estimate of the excitation signal obtained from
(1) and Ts is a parameter that determines the number of samples used for
sample average and variance evaluations. The population parameters m(i+1)

p ,
Σ(i+1)

p are then obtained by substituting the evaluated sample average and
variance into (2) and (3).

EXPERIMENTS

We conducted an experiment with synthetic speech to compare the estima-
tion accuracy of the three proposed methods with the conventional auto-
correlation linear prediction (ALP) method. In the following, we refer to the
proposed methods described in Sections 3 to 5 as Method-1, Method-2, and
Method-3, respectively. Speech was synthesized using the excitation signals
of an impulse train and AR coefficients of order 16 extracted from a male’s
vowel /a/. The excitation signals were generated by adding white Gaussian
noise N (0, 0.1) to impulse trains of amplitude 50 in fundamental frequencies
ranging from 100 Hz to 900 Hz. The sampling frequency was set to 16 kHz,
the analysis frame length was set to 30 ms, and the prediction order was set
to 16. The excitation HMM used for Method-1 and Method-2 consisted of
two nodes: one representing an impulse, and another representing a noise seg-
ment. Both methods iterate the respective algorithm until the following con-
dition is satisfied during 5 successive iterations: | log(L(θ̂))−log(L(θ))

log(L(θ)) | < 1.0e−7.

The parameter Ts used for Method-3 was set to 5. The estimated AR co-
efficients were transformed to LPC Mel-Cepstrum coefficients, which play a
very important role in applications such as speech recognition. The estima-
tion accuracy of each method was then evaluated by the Euclidean distance
between the original LPC Mel-Cepstrum coefficients and those obtained by
this method.

Figure 2 shows the vocal tract spectra estimated by Method-1, Method-2,
Method-3, and the ALP method. The original vocal tract spectrum that was
used for synthesizing speech signals is shown at the top of each figure. Figure
3 shows the evaluated Mel-Cepstrum distances of all of the methods. As
shown in these figures, the estimation accuracy of the ALP tended to degrade
as the fundamental frequency increased. In contrast, Method-1 can extract
speech features in the widest range of fundamental frequency; its estimation
accuracy was also the highest of all of the methods examined. The estimation
accuracy of Method-2 up to a fundamental frequency of 550 Hz was almost
equivalent to that of Method-1. In the fundamental frequency range above
600 Hz, however, the estimation accuracy of Method-2 deteriorated markedly
as compared to the other methods. In Method-3, the estimation accuracy
tended to asymptotically approach that of the ALP when the fundamental
frequency exceeded 600 Hz. However, the estimation accuracy was very close



to those of Method-1 and Method-2 up to a fundamental frequency of 550
Hz. Figure 4 shows the processing times required by each method given as
values relative to the processing time of Method-1.

These results indicated that all of the proposed methods are capable of ex-
tracting features when analyzing speech signals with fundamental frequencies
below 550 Hz. In addition, Method-3 can be applied to real-time processing
because it does not use the HMM to estimate the population parameter of the
excitation signal. However, Method-1 is still the best method if maximum
estimation accuracy is necessary and there is sufficient time.

CONCLUSIONS

Here, we proposed two novel auto-regressive, non-stationary excited signal
parameter estimation methods, in addition to the method proposed previ-
ously. We are currently planning to construct a singing voice recognition
system and apply the proposed method to feature extraction at the front-
end of the system.
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Figure 2: Vocal tract spectra estimated by (a)Method-1, (b)Method-2, (c)Method-3
and (d)Auto-Correlation LP
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