
Abstract

This paper describes a real-time beat tracking system that
recognizes a hierarchical beat structure comprising the
quarter-note, half-note, and measure levels in real-world
audio signals sampled from popular-music compact discs.
Most previous beat-tracking systems dealt with MIDI signals
and had difficulty in processing, in real time, audio signals
containing sounds of various instruments and in tracking
beats above the quarter-note level. The system described here
can process music with drums and music without drums 
and can recognize the hierarchical beat structure by using
three kinds of musical knowledge: of onset times, of chord
changes, and of drum patterns. This paper also describes
several applications of beat tracking, such as beat-driven
real-time computer graphics and lighting control.

1 Introduction

The goal of this study is to build a real-time system that can
track musical beats in real-world audio signals, such as those
sampled from compact discs. I think that building such a sys-
tem that even in its preliminary implementation can work in
real-world environments is an important initial step in the com-
putational modeling of music understanding. This is because,
as known from the scaling-up problem (Kitano, 1993) in the
domain of artificial intelligence, it is hard to scale-up a system
whose preliminary implementation works only in laboratory
(toy-world) environments. This real-world oriented approach
also facilitates the implementation of various practical appli-
cations in which music synchronization is necessary.

Most previous beat-tracking related systems had difficulty
working in real-world acoustic environments. Most of them
(Dannenberg & Mont-Reynaud, 1987; Desain & Honing,
1989, 1994;Allen & Dannenberg, 1990; Driesse,1991; Rosen-

thal,1992a,1992b;Rowe,1993;Large,1995)usedas their input
MIDI-like representations, and their applications are limited
because it is not easy to obtain complete MIDI representations
from real-world audio signals. Some systems (Schloss, 1985;
Katayose, Kato, Imai, & Inokuchi, 1989; Vercoe, 1994; Todd,
1994; Todd & Brown, 1996; Scheirer, 1998) dealt with audio
signals, but they either did not consider the higher-level beat
structureabovethequarter-notelevelor did not process popular
music sampled from compact discs in real time. Although I
developed two beat-tracking systems for real-world audio
signals, one for music with drums (Goto & Muraoka, 1994,
1995, 1998) and the other for music without drums (Goto &
Muraoka, 1996, 1999), they were separate systems and the
former was not able to recognize the measure level.

This paper describes a beat-tracking system that can deal
with the audio signals of popular-music compact discs in real
time regardless of whether or not those signals contain drum
sounds. The system can recognize the hierarchical beat
structure comprising the quarter-note level (almost regularly
spaced beat times), the half-note level, and the measure level
(bar-lines).1 This structure is shown in Figure 1. It assumes
that the time-signature of an input song is 4/4 and that the
tempo is roughly constant and is either between 61M.M.2 and
185M.M. (for music with drums) or between 61M.M. and
120M.M. (for music without drums). These assumptions fit
a large class of popular music.
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1 Although this system does not rely on score representation, for con-
venience this paper uses score-representing terminology like that
used by Rosenthal (1992a, 1992b). In this formulation the quarter-
note level indicates the temporal basic unit that a human feels in
music and that usually corresponds to a quarter note is scores.
2 Mälzel’s Metronome: the number of quarter notes per minute.
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The main issues in recognizing the beat structure in real-
world musical acoustic signals are (1) detecting beat-tracking
cues in audio signals, (2) interpreting the cues to infer the beat
structure, and (3) dealing with the ambiguity of interpreta-
tion. First, it is necessary to develop methods for detecting
effective musical cues in audio signals. Although various cues
– such as onset times, notes, melodies, chords, and repetitive
note patterns – were used in previous score-based or MIDI-
based systems (Dannenberg & Mont-Reynaud, 1987; Desain
& Honing, 1989, 1994; Allen & Dannenberg, 1990; Driesse,
1991; Rosenthal, 1992a, 1992b; Rowe, 1993; Large, 1995),
most of those cues are hard to detect in complex audio signals.
Second, higher-level processing using musical knowledge is
indispensable for inferring each level of the hierarchical beat
structure from the detected cues. It is not easy, however, to
make musical decisions about audio signals, and the previous
audio-based systems (Schloss, 1985; Katayose et al., 1989;
Vercoe, 1994; Todd, 1994; Todd & Brown, 1996; Scheirer,
1998) did not use such musical-knowledge-based processing
for inferring the hierarchical beat structure. Although some 
of the above-mentioned MIDI-based systems used musical
knowledge, the processing they used cannot be used in audio-
based systems because the available cues are different. Third,
it must be taken into account that multiple interpretations of
beats are possible at any given time. Because there is not nec-
essarily a single specific sound that directly indicates the beat
position, there are various ambiguous situations. Two exam-
ples are those in which several detected cues may correspond
to a beat and those in which different inter-beat intervals (the
difference between the times of two successive beats) seem
plausible.

The following sections introduce a new approach to the
beat-tracking problem and describe a beat-tracking model that
addresses the issues mentioned above. Experimental results
obtained with a system based on that model are then shown,
and several of its beat-tracking applications are described.

2 Beat-tracking problem (inverse problem)

In my formulation the beat-tracking problem is defined as a
process that organizes musical audio signals into the hierar-
chical beat structure. As shown in Figure 2, this problem can

be considered the inverse problem of the following three
forward processes by music performers: the process of indi-
cating or implying the beat structure in musical elements
when performing music, the process of producing musical
sounds (singing or playing musical instruments), and the
process of acoustic transmission of those sounds. Although
in the brains of performers music is temporally organized
according to its hierarchical beat structure, this structure is
not explicitly expressed in music; it is implied in the rela-
tions among various musical elements which are not fixed
and which are dependent on musical genres or pieces. All the
musical elements constituting music are then transformed
into audio signals through the processes of musical sound
production and acoustic transmission.

The principal reason that beat tracking is intrinsically dif-
ficult is that it is the problem of inferring an original beat
structure that is not expressed explicitly. The degree of beat-
tracking difficulty is therefore not determined simply by the
number of musical instruments performing a musical piece;
it depends on how explicitly the beat structure is expressed
in the piece. For example, it is very easy to track beats in a
piece that has only a regular pulse sequence with a constant
interval. The main reason that different musical genres and
instruments have different tendencies with regard to beat-
tracking difficulty is that they have different customary ten-
dencies with regard to the explicitness with which their beat
structure is indicated.

In audio-based beat tracking, furthermore, it is also diffi-
cult to detect the musical elements that are beat-tracking
cues. In that case, the more musical instruments played
simultaneously and the more complex the audio signal, the
more difficult is the detection of those cues.

3 Beat-tracking model (inverse model)

To solve this inverse problem, I developed a beat-tracking
model that consists of two component models: the model of
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extractingmusicalelementsfromaudiosignals,andthe inverse
model of indicating the beat structure (Fig. 3). The three issues
raised in the Introduction are addressed in this beat-tracking
model as described in the following three sections.

3.1 Model of extracting musical elements: detecting 
beat-tracking cues in audio signals

In the model of extracting musical elements, the following
three kinds of musical elements are detected as the beat-
tracking cues:

1. Onset times
2. Chord changes
3. Drum patterns

As described in Section 3.2, these elements are useful when
the hierarchical beat structure is inferred. In this model, onset
times are represented by an onset-time vector whose dimen-
sions correspond to the onset times of different frequency
ranges. A chord change is represented by a chord-change pos-
sibility that indicates how much the dominant frequency com-
ponents included in chord tones and their harmonic overtones
change in a frequency spectrum. A drum pattern is represented
by the temporal pattern of a bass drum and a snare drum.

These elements are extracted from the frequency spec-
trum calculated with the FFT (1024 samples) of the input 
(16 bit/22.05 kHz) using the Hanning window. Since the
window is shifted by 256 samples, the frequency resolution
is consequently 21.53Hz and the discrete time step (1 frame-
time3) is 11.61ms. Hereafter p(t, f ) is the power of the spec-
trum of frequency f at time t.

3.1.1 Onset-time vector

The onset-time vectors are obtained by an onset-time vec-
torizer that transforms the onset times of seven frequency

ranges (0–125Hz, 125–250Hz, 250–500Hz, 0.5–1kHz, 1–
2kHz, 2–4kHz, and 4–11kHz) into seven-dimensional
onset-time vectors (Fig. 4). This representation makes it pos-
sible to consider onset times of all the frequency ranges at
the same time. The onset times can be detected by a fre-
quency analysis process that takes into account such factors
as the rapidity of an increase in power and the power present
in nearby time-frequency regions as shown in Figure 5 (Goto
& Muraoka, 1999). Each onset time is given by the peak time
found by peak-picking4 in a degree-of-onset function D(t) =
Sfd(t, f ) where
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Fig. 3. Beat-tracking model.

3 The frame-time is the unit of time used in this system, and the 
term time in this paper is the time measured in units of the frame-
time.

Fig. 4. Examples of a frequency spectrum and an onset-time
vector sequence.
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4 D(t) is linearly smoothed with a convolution kernel before its peak
time is calculated.
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Because PrevPow considers p(t - 1, f ± 1), a false non-onset
power increase from p(t - 1, f ) to p(t, f ) is not picked up
even if there is a rising frequency component holding high
power on both p(t - 1, f - 1) and p(t, f ). The onset times in
the different frequency ranges are found by limiting the fre-
quency range of Sf.

3.1.2 Chord-change possibility

Because it is difficult to detect chord changes when using
only a bottom-up frequency analysis, I developed a method
for detecting them by making use of top-down information,
provisional beat times (Goto & Muraoka, 1996, 1999). The
provisional beat times are a hypothesis of the quarter-note
level and are inferred from the onset times as described in
Section 3.2.1. Possibilities of chord changes in a frequency
spectrum are examined without identifying musical notes or
chords by name. The idea for this method came from the
observation that a listener who cannot identify chord names
can nevertheless perceive chord changes. When all frequency
components included in chord tones and their harmonic over-
tones are considered, they are found to tend to change sig-
nificantly when a chord is changed and to be relatively stable
when a chord is not changed. Although it is generally diffi-
cult to extract all frequency components from audio signals
correctly, the frequency components dominant during a
certain period of time can be roughly identified by using a
histogram of frequency components. The frequency spec-
trum is therefore sliced into strips at the provisional beat
times and the dominant frequencies of each strip are esti-
mated by using a histogram of frequency components in the
strip (Fig. 6). Chord-change possibilities are then obtained
by comparing dominant frequencies between adjacent strips.

Because the method takes advantage of not requiring musical
notes to be identified, it can detect chord changes in real-
world audio signals, where chord identification is generally
difficult.

For different purposes, the model uses two kinds of pos-
sibilities of chord changes, one at the quarter-note level and
the other at the eighth-note level, by slicing the frequency
spectrum into strips at the provisional beat times and by
slicing it at the interpolatd eighth-note times. The one
obtained by slicing at the provisional beat times is called the
quarter-note chord-change possibility and the one obtained
by slicing at the eighth-note times is called the eighth-note
chord-change possibility. They respectively represent how
likely a chord is, under the current beat-position hypothesis,
to change on each quarter-note position and on each eighth-
note position. The detailed equations used in this method are
described in a paper focusing on beat tracking for music
without drum-sounds (Goto & Muraoka, 1999).

3.1.3 Drum pattern

A drum-sound finder detects the onset time of a bass drum
(BD) by using onset components and the onset time of a
snare drum (SD) by using noise components. Those onset
times are then formed into the drum patterns by making use
of the provisional beat times (top-down information) (Fig. 7).

[Detecting BD onset times]

Because the sound of a BD is not known in advance, the
drum-sound finder learns the characteristic frequency of a
BD by examining the extracted onset components d(t, f )

(a) Frequency spectrum

(b) Histograms of frequency components in spectrum strips sliced at provisional beat times

(c) Quarter-note chord-change possibilities

Fig. 6. Example of obtaining a chord-change possibility on the basis of provisional beat times.
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(Equation (1)). For times at which onset components are
found, the finder picks peaks along the frequency axis and
makes a histogram of them (Fig. 8). The finder then judges
that a BD has sounded at times when an onset’s peak fre-
quency coincides with the characteristic frequency that is
given by the lowest-frequency peak of the histogram.

[Detecting SD onset times]

Since the sound of a SD typically has noise components
widely distributed along the frequency axis, the finder needs
to detect such components. First, the noise components 
n(t, f ) are given by the following equations:
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where HighFreqAve and LowFreqAve respectively represent
the local averages of the power in higher and lower regions
of p(t, f ). When the surrounding High Freq Ave and Low Freq
Ave are both larger than half of p(t, f ), the component p(t, f )
is not considered a peaked component but a noise compo-
nent distributed almost uniformly. As shown in Figure 8, the
noise components n(t, f ) are quantized: the frequency axis
of the noise components is divided into subbands (the
number of subbands is 16) and the mean of n(t, f ) in each
subband is calculated. The finder then calculates c(t), which
represents how widely noise components are distributed
along the frequency axis: c(t) is calculated as the product of
all quantized components within the middle frequency range
(from 1.4kHz to 7.5kHz). Finally, the SD onset time is
obtained by peak-picking of c(t) in the same way as in the
onset-time finder.

3.2 Inverse model of indicating the beat structure:
interpreting beat-tracking cues to infer the 
hierarchical beat structure

Each level of the beat structure is inferred by using the
inverse model of indicating the beat structure. The inverse
model is represented by the following three kinds of musical
knowledge (heuristics) corresponding to the three kinds of
musical elements.

3.2.1 Musical knowledge of onset times

To infer the quarter-note level (i.e., to determine the provi-
sional beat times), the model uses the following heuristic
knowledge:
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(a-1) “A frequent inter-onset interval is likely to be the inter-
beat interval.”
(a-2) “Onset times tend to coincide with beat times (i.e.,
sounds are likely to occur on beats).”

The reason the term the provisional beat times is used is that
the sequence of beat times obtained below is just a single
hypothesis of the quarter-note level: multiple hypotheses are
considered as explained in Section 3.3.

Byusingautocorrelationand cross-correlation of the onset-
time vectors, the model determines the inter-beat interval and
predicts the next beat time. The inter-beat interval is deter-
mined by calculating the windowed and normalized vectorial
autocorrelation function Ac(t) of the onset-time vectors:5

(6)

where oÆ(t) is the onset-time vector at time t, c is the current
time, and AcPeriod is the autocorrelation period. The window
function win(t, s) whose window size is s is

(7)

According to the knowledge (a-1), the inter-beat interval is
given by the t with the maximum height in Ac(t) within an
appropriate inter-beat interval range. To predict the next beat
time by using the knowledge (a-2), the model forms a 
prediction field (Fig. 9) by calculating the windowed 
cross-correlation function Cc(t) between the sum O(t) of all
dimensions of oÆ(t) and a tentative beat-time sequence
Ttmp(t, m) whose interval is the inter-beat interval obtained
using Equation (6):
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where I(t) is the inter-beat interval at time t, CcPeriod 
(= CcNumBeats I(c)) is the window size for calculating the
cross-correlation, and CcNumBeats (= 12) is a constant factor
that determines how many previous beats are considered in
calculating the cross-correlation. The prediction field is thus
given by Cc(t) where 0 £ t £ I(c) - 1. Finally, the local-
maximum peak in the prediction field is selected as the next
beat time while considering to pursue the peak close to the
sum of the previously selected one and the inter-beat interval.

The reliability of each hypothesis of the provisional beat
times is then evaluated according to how closely the next beat
time predicted from the onset times coincides with the time
extrapolated from the past beat times (Fig. 9).

3.2.2 Musical knowledge of chord changes

To infer each level of the structure, the model uses the fol-
lowing knowledge:

(b-1) “Chords are more likely to change on beat times than
on other positions.”
(b-2) “Chords are more likely to change on half-note times
than on other positions of beat times.”
(b-3) “Chords are more likely to change at the beginnings
of measures than at other positions of half-note times.”

Figure 10 shows a sketch of how the half-note and measure
times are inferred from the chord-change possibilities.
According to the knowledge (b-2), if the quarter-note chord-
change possibility is high enough, its time is considered to
indicate the position of the half-note times. According to the
knowledge (b-3), if the quarter-note chord-change possibil-
ity of a half-note time is higher than that of adjacent half-
note times, its time is considered to indicate the position of
the measure times (bar-lines).

The knowledge (b-1) is used for reevaluating the reliabil-
ity of the current hypothesis: if the eighth-note chord-change
possibility tends to be higher on beat times than on eighth-
note displacement positions, the reliability is increased.

3.2.3 Musical knowledge of drum patterns

For music with drum-sounds, eight prestored drum patterns,
like those illustrated in Figure 11, are prepared. They repre-
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Fig. 9. Predicting the next beat.

5 Vercoe (1994) also proposed the use of a variant of autocorrela-
tion for rhythmic analysis.



Audio-based real-time beat tracking 165

sent the ways drum-sounds are typically used in a lot of
popular music. The beginning of a pattern should be a half-
note time, and the length of the pattern is restricted to a half
note or a measure. In the case of a half note, patterns repeated
twice are considered to form a measure.

When an input drum pattern that is currently detected in
the audio signal matches one of the prestored drum patterns
well, the model uses the following knowledge to infer the
quarter-note and half-note levels:

(c-1) “The beginning of the input drum pattern indicates a
half-note time.”
(c-2) “The input drum pattern has the appropriate inter-beat
interval.”

Figure 10 also shows a sketch of how the half-note times are
inferred from the best-matched drum pattern: according to
the knowledge (c-1), the beginning of the best-matched
pattern is considered to indicate the position of a half-note
time. Note that the measure level cannot be determined 
this way: the measure level is determined by using the
quarter-note chord-change possibilities as described in
Section 3.2.2.

The knowledge (c-2) is used for reevaluating the reliabil-
ity of the current hypothesis: the reliability is increased
according to how well an input drum pattern matches one of
the prestored drum patterns.

3.2.4 Musical knowledge selection based on the 
presence of drum-sounds

To infer the quarter-note and half-note levels, the musical
knowledge of chord changes ((b-1) and (b-2)) and the
musical knowledge of drum patterns ((c-1) and (c-2)) should
be selectively applied according to the presence or absence
of drum-sounds as shown in Table 1. I therefore developed a
method for judging whether or not the input audio signal con-
tains drum-sounds. This judgement could not be made simply
by using the detected results because the detection of the
drum-sounds is noisy. According to the fact that in popular
music a snare drum is typically played on the second 
and fourth quarter notes in a measure, the method judges 
that the input audio signal contains drum-sounds only when
autocorrelation of the snare drum’s onset times is high
enough.

3.3 Dealing with ambiguity of interpretation

To enable ambiguous situations to be handled when the beat-
tracking cues are interpreted, a multiple-agent model in
which multiple agents examine various hypotheses of the
beat structure in parallel as illustrated in Figure 12 was devel-
oped (Goto & Muraoka, 1996, 1999). Each agent uses its
own strategy and makes a hypothesis by using the inverse
model described in Section 3.2. An agent interacts with
another agent to track beats cooperatively and adapts to 
the current situation by adjusting its strategy. It then eval-
uates the reliability of its own hypothesis according to 
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Fig. 10. Knowledge-based inferring.
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Fig. 11. Examples of prestored drum patterns.

Table 1. Musical knowledge selection for music with drum-sounds and music without drum-sounds.

Beat structure Without drums With drums

Measure level quarter-note chord-change possibility quarter-note chord-change possibility
(knowledge (b-3)) (knowledge (b-3))

Half-note level quarter-note chord-change possibility drum pattern (knowledge (c-1))
(knowledge (b-2))

Quarter-note level eighth-note chord-change possibility drum pattern (knowledge (c-2))
(knowledge (b-1))
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how well the inverse model can be applied. The final beat-
tracking result is determined on the basis of the most reliable
hypothesis.

3.4 System overview

Figure 13 shows an overview of the system based on the beat-
tracking model. In the frequency-analysis stage, the system
detects the onset-time vectors (Section 3.1.1), detects onset
times of bass drum and snare drum sounds (Section 3.1.3),
and judges the presence or absence of drum-sounds (Section
3.2.4). In the beat-prediction stage, each agent infers the
quarter-note level by using the autocorrelation and cross-
correlation of the onset-time vectors (Section 3.2.1). Each
higher-level checker corresponding to each agent then
detects chord changes (Section 3.1.2) and drum patterns
(Section 3.1.3) by using the quarter-note level as the top-
down information. Using those detected results, each agent
infers the higher levels (Section 3.2.2 and Section 3.2.3) 
and evaluates the reliability of its hypothesis. The agent 
manager gathers all hypotheses and then determines the final
output on the basis of the most reliable one. Finally, the beat-
tracking result is transmitted to other application programs
via a computer network.

4 Experiments and results

The system was tested on monaural audio signals sampled
from commercial compact discs of popular music. Eighty-

five songs, each at least one minute long, were used as the
inputs. Forty-five of the songs had drum-sounds (32 artists,
tempo range: 67–185M.M.) and forty did not (28 artists,
tempo range: 62–116M.M.). Each song had the 4/4 time-
signature and a roughly constant tempo.

In this experiment the system output was compared with
the hand-labeled hierarchical beat structure. To label the
correct beat structure, I developed a beat-structure editor
program that enables a user to mark the beat positions in a
digitized audio signal while listening to the audio and watch-
ing its waveform (Fig. 14). The positions can be finely
adjusted by playing back the audio with click tones at beat
times, and the half-note and measure levels can also be
labeled. The recognition rates were evaluated by using the
quantitative evaluation measures for analyzing the beat-
tracking accuracy that were proposed in earlier papers (Goto
& Muraoka, 1997, 1999). Unstably tracked songs (those for
which correct beats were obtained just temporarily) were not
considered to be tracked correctly.

4.1 Results of evaluating recognition rates

The results of evaluating the recognition rates are listed in
Table 2. I also evaluated how quickly the system started to
track the correct beats stably at each level of the hierarchical
beat structure, and the start time of tracking the correct beat
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structure is shown in Figure 15. The horizontal axis repre-
sents the song numbers (#) arranged in order of the start time
of the quarter-note level up to song #32 (for music without
drums) and #34 (for music with drums). The mean,
minimum, and maximum of the start time of all the correctly
tracked songs are listed in Table 3 and Table 4. These results
show that in each song where the beat structure was eventu-
ally determined correctly, the system initially had trouble
determining a higher rhythmic level even though a lower
level was correct.

The following are the results of analyzing the reasons the
system made mistakes:

[Music without drums]

The quarter-note level was not determined correctly in five
songs. In one of them the system tracked eighth-note dis-
placement positions because there were too many syncopa-
tions in the basic accompaniment rhythm. In three of the
other songs, although the system tracked correct beats tem-

Table 2. Results of evaluating recognition rates at each level of
the beat structure.

Beat structure Without drums With drums

Measure level 32 of 34 songs 34 of 39 songs
(94.1%) (87.2%)

Half-note level 34 of 35 songs 39 of 39 songs
(97.1%) (100%)

Quarter-note level 35 of 40 songs 39 of 45 songs
(87.5%) (86.7%)
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Fig. 15. Start time of tracking the correct beat structure.

Table 3. Start time of tracking the correct beat structure (music
without drums).

Beat structure mean min max

Measure level 18.47 s 3.42s 42.56s
Half-note level 13.74 s 3.42s 36.75s
Quarter-note level 10.99 s 0.79s 36.75s

Table 4. Start time of tracking the correct beat structure (music
with drums).

Beat structure mean min max

Measure level 22.00 s 6.32s 40.05s
Half-note level 17.15 s 4.20s 41.89s
Quarter-note level 13.87 s 0.52s 41.89s

porarily (during from 14 to 24 s), it sometimes got out of
position because the onset times were very few and irregu-
lar. In the other song the tracked beat times deviated too
much during a measure, although the quarter-note level was
determined correctly during most of the song.

In a song where the half-note level was wrong, the system
failed to apply the musical knowledge of chord changes
because chords were often changed at the fourth quarter note
in a measure.

In two songs where only the measure level was mistaken,
chords were often changed at every other quarter-note and
the system was not able to determine the beginnings of 
measures.



168 Masataka Goto

[Music with drums]

The quarter-note level was not determined correctly in six
songs. In two of them the system correctly tracked beats in
the first half of the song, but the inter-beat interval became
0.75 or 1.5 times of the correct one in the middle of the song.
In two of the other songs the quarter-note level was deter-
mined correctly except that the start times were too late: 
45.3 s and 51.8 s (the start time had to be less than 45s for
the tracking to be considered correct). In the other two songs
the tracked beat times deviated too much temporarily,
although the system tracked beat times correctly during most
of the song.

The system made mistakes at the measure level in five
songs. In one of them the system was not able to determine
the beginnings of measures because chords were often
changed at every quarter-note or every other quarter-note. In
two of the other songs the quarter-note chord-change possi-
bilities were not obtained appropriately because the fre-
quency components corresponding to the chords were too
weak. In the other two songs the system determined the
measure level correctly except that the start times were too
late: 48.3 s and 49.9 s.

The results mentioned above show that the recognition rates
at each level of the beat structure were more than 86.7
percent and that the system is robust enough to deal in real
time with real-world audio signals containing sounds of
various instruments.

4.2 Results of measuring rhythmic difficulty

It is important to measure the degree of beat-tracking diffi-
culty for the songs that were used in testing the beat-
tracking system. As discussed in Section 2, the degree of
beat-tracking difficulty depends on how explicitly the beat
structure is expressed. It is very difficult, however, to
measure its explicitness because it is influenced from various
aspects of the songs. In fact, most previous beat-tracking
studies have not dealt with this issue. I therefore tried, as a
first step, to evaluate the power transition of the input audio
signals. In terms of the power transition, it is more difficult
to track beats of a song in which the power tends to be lower
on beats than between adjacent beats. In other words, the
larger the number of syncopations, the greater the difficulty
of tracking beats.

I thus proposed a quantitative measure of the rhythmic dif-
ficulty, called the power-difference measure,6 that considers
differences between the power on beats and the power on
other positions. This measure is defined as the mean of all
the normalized power difference diffpow(n) in the song:

(11)diff n
pow n pow n

pow n pow npow
other beat

other beat

( ) =
( ) - ( )

( ) ( ) +0 5 0 5.
max( , )

. ,

where powbeat(n) represents the local maximum power on 
the n-th beat7 and powother(n) represents the local maximum
power on positions between the n-th beat and (n + 1)-th 
beat (Fig. 16). The power-difference measure takes a value
between 0 (easiest) and 1 (most difficult). For a regular pulse
sequence with a constant interval, for example, this measure
takes a value of 0.

Using this power-difference measure, I evaluated the
rhythmic difficulty of each of the songs used in testing 
the system. Figure 17 shows two histograms of the measure,
one for songs without drum-sounds and the other for 
songs with drum-sounds. Comparison between these two his-
tograms indicates that the power-difference measure tends to
be higher for songs without drum-sounds than with drum-
sounds. In particular, it is interesting that the measure
exceeded 0.5 in more than half of the songs without drum-
sounds; this indicates that the power on beats is often lower
than the power on other positions in those songs. This also
suggests that a simple idea of tracking beats by regarding
large power peaks of the input audio signal as beat positions
is not feasible.

Figure 17 also indicates the songs that were incorrectly
tracked at each level of the beat structure. While the power-
difference measure tends to be higher for the songs that were
incorrectly tracked at the quarter-note level, it’s value is not
clearly related to the songs that were incorrectly tracked at
the half-note and measure levels: the influence from various
other aspects besides the power transition is dominant in
inferring the half-note and measure levels. Although this
measure is not perfect for evaluating the rhythmic difficulty
and other aspects should be taken into consideration, it
should be a meaningful step on the road to measuring the
beat-tracking difficulty in an objective way.

5 Applications

Since beat tracking can be used to automate the time-
consuming tasks that must be completed in order to 
synchronize events with music, it is useful in various appli-
cations, such as video editing, audio edition, and human-
computer improvisation. The development of applications 

6 The detailed equations of the power-difference measure are
described by Goto and Muraoka (1999).
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Fig. 16. Finding the local maximum of the power.

7 The hand-labeled correct quarter-note level is used for this 
evaluation.
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is facilitated by using a network protocol called RMCP
(Remote Music Control Protocol) (Goto, Neyama, &
Muraoka, 1997) for sharing the beat-tracking result among
several distributed processes. RMCP is designed to share
symbolized musical information through networks and it
supports time-scheduling using time stamps and broadcast-
based information sharing without the overhead of multiple
transmission.

• Beat-driven real-time computer graphics
The beat-tracking system makes it easy to create real-
time computer graphics synchronized with music and has

been used to develop a system that displays virtual dancers
and several graphic objects whose motions and positions
change in time to beats (Fig. 18). This system has several
dance sequences, each for a different mood of dance
motions. While a user selects a dance sequence manually,
the timing of each motion in the selected sequence is deter-
mined automatically on the basis of the beat-tracking
results. Such a computer graphics system is suitable for
live stage, TV program, and Karaoke uses.

• Stage-lighting control
Beat tracking facilitates the automatic synchronization 
of computer-controlled stage lighting with the beats in a
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musical performance. Various properties of lighting – such
as color, brightness, and direction – can be changed in time
to music. At the moment this application is simulated on a
computer graphics display with virtual dancers.

• Intelligent drum machine
A preliminary system that can play drum patterns in time
to input musical audio signals without drum-sounds has
been implemented. This application is potentially useful
for automatic MIDI-audio synchronization and intelligent
computer accompaniment.

The beat-structure editor program mentioned in Section 4 is
also useful in practical applications. A user can correct or
adjust the output beat structure when the system output
includes mistakes and can make the whole hierarchical beat
structure for a certain application from scratch.

6 Conclusion

This paper has described the beat-tracking problem in
dealing with real-world audio signals, a beat-tracking model
that is a solution to that problem, and applications based 
on a real-time beat-tracking system. Experimental results
show that the system can recognize the hierarchical beat
structure comprising the quarter-note, half-note, and measure
levels in audio signals of compact disc recordings. The
system has also been shown to be effective in practical 
applications.

The main contributions of this paper are to provide a view
in which the beat-tracking problem is regarded as an inverse
problem and to provide a new computations model that can
recognize, in real time, the hierarchical beat structure in
audio signals regardless of whether or not those signals
contain drum-sounds. The model uses sophisticated 
frequency-analysis processes based on top-down information
and uses a higher-level processing based on three kinds of
musical knowledge that are selectively applied according 
to the presence or absence of drum-sounds. These features
made it possible to overcome difficulties in making musical
decisions about complex audio signals and to infer the hier-
archical beat structure.

The system will be upgraded by enabling it to follow
tempo changes and by generalizing it to other musical
genres. Future work will include integration of the 
beat-tracking model described here and other music-
understanding models, such as one detecting melody and
bass lines (Goto, 1999, 2000).
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