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Key Contributions

A) We leverage a von Mises-Fisher (vVMF) distribution for
multimodal probabilistic representation learning.

B) We design a probabilistic contrastive loss function and a

loss function based on the Optimal Transport (OT) distance

to facilitate multimodal probabilistic representation learning.

C) We confirm the effectiveness of integrating the probabillistic
contrastive loss function with the OT-based loss function
through quantitative evaluations.

A) Harnessing the Power of Distributions

» Multimodal representation learning of music content has been
an important topic of research, given its wide applications to
Music Information Retrieval (MIR) tasks.

» To achieve such learning, we propose multimodal
probabilistic representation learning, in which each
content item Is represented as a probability distribution in a
latent space, for multimodal MIR.
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» We leverage the vMF distribution, which is a probability
distribution defined on the hypersphere S ! in R¢.

v' Methods using the vMF distribution outperform those using
the Gaussian distribution (Li et al., 2021).

» We design encoders that map each content item to a
hypersphere as the vMF distribution.

€ [Training] Encoders are trained so that the vMF distributions
of the positive instances are close to each other on S% ! .
while those of irrelevant instances are far apart.

€ [Retrieval] Given a single-modal query or a multimodal query

such as a query that combines an image and text, our
method can retrieve content items that match the query by
calculating the distance between their distributions.
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B) Multimodal Probabilistic Representation Learning

» We propose two novel loss functions, one based on
probabilistic contrastive learning (Kirchhof et al., 2023)
and the other on Spherical Sliced-Wasserstein (SSW)
p-distance (Bonet et al., 2023), to be used together for
multimodal MIR on a hypersphere.
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AN
T

[ Distancing ]

Text t;
e imagei; W/ s
Audio a; _ ik Audio a;
. 21T ———-

/_/ [Great circle Sl]

Text tg [ Minimize OT distances on Sl]

Image i;

» Contrastive learning Is an effective tool to jointly map each
content item of multiple modalities to a shared latent space.

v' Methods using the angular distance between distributions
has been shown to be more effective than those using the
Euclidean distance (Scott et al., 2021).

» OT offers a robust and effective tool for calculating distances
between probabillity distributions.

v It allows the encoders to bring the probability distributions
of a positive pair closer together, thus ensuring a more
accurate representation learning.

C) Quantitative Evaluations

» We used three standard evaluation metrics for retrieval tasks:
the mean reciprocal rank (MRR), the recall@k (R@k), and
the median rank (MR).

» The results show that our method (Proposed) outperforms a
baseline method ( . Solely used the loss function
based on probabilistic contrastive learning) on MIR tasks.

Comparison on YT8M-MusicVideo test dataset for Multimodal MIR
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Comparison on AS5M test dataset for Multimodal MIR
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