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ABSTRACT

Probabilistic representation learning provides intricate and
diverse representations of music content by characterizing
the latent features of each content item as a probability dis-
tribution within a certain space. However, typical Music
Information Retrieval (MIR) methods based on representa-
tion learning utilize a feature vector of each content item,
thereby missing some details of their distributional proper-
ties. In this study, we propose a probabilistic representation
learning method for multimodal MIR based on contrastive
learning and optimal transport. Our method trains encoders
that map each content item to a hypersphere so that the
probability distributions of a positive pair of content items
become close to each other, while those of an irrelevant pair
are far apart. To achieve such training, we design novel loss
functions that utilize both probabilistic contrastive learning
and spherical sliced-Wasserstein distances. We demonstrate
our method’s effectiveness on benchmark datasets as well
as its suitability for multimodal MIR through both a quanti-
tative evaluation and a qualitative analysis.

1. INTRODUCTION

Multimodal representation learning of music content, such
as music audio and a video [1] and music audio and text [2],
has been an important topic of research, given its wide ap-
plications to Music Information Retrieval (MIR) tasks. Pre-
vious studies have typically used a deterministic approach
to train encoders, where the trained encoders are utilized to
map each content item to a latent space as a single vector.
However, representing an arbitrary content item as a vec-
tor has various drawbacks. For example, one-to-many and
many-to-many relationships need to be handled in multi-
modal content, such as those between an album cover image
and a set of songs in that album, and between different songs
that have the same title and their title text. It is difficult
to represent such complex relationships in vectors. To ad-
dress this challenge, probabilistic representation learning,
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Figure 1. Probabilistic representation learning on hyper-
sphere. (Left) Encoders are trained so that the probability
distributions of the positive instances (music audio, an im-
age, and text for the same song) are close to each other on
the shared hyper-spherical surface, while those of irrelevant
instances (different songs, artists, etc.) are far apart. (Right)
The trained encoders are helpful for multimodal MIR. Given
a single-modal query or a multimodal query such as a query
that combines an image and text, our method can retrieve
content items that match the query by calculating the dis-
tance between their probability distributions.

in which each content item is represented as a probability
distribution in a latent space, has been studied [3–5].

Probabilistic representation learning (Figure 1) is a
promising approach that can provide intricate and diverse
representations by characterizing each content item as a
probability distribution. This approach requires training
encoders that estimate the optimal distribution for each con-
tent item. The key here is how to design an appropriate loss
function for that training. In the literature, three approaches
have been proposed, and in this paper, we propose a fourth
approach. The first approach uses the probability product
kernel [6], which calculates the expected value between
distributions. This is used in probabilistic word embed-
ding [7], face recognition [8], and image classification [9].
The second approach uses Hedged Instance Embeddings
(HIB) [10]. It formulates a contrastive loss of the match
probability, which calculates the distance between a pair of
vectors randomly sampled from each distribution. This is
used in cross-modal retrieval of text and images [3, 4], as
well as in self-supervised video representation learning [11].
The third approach is to replace variables in an existing loss
function (e.g., triplet loss) with probability distributions.
For example, a loss function designed for deterministic
methods can be calculated by using samples obtained from
a Gaussian distribution [5, 12, 13] or a von Mises-Fisher
distribution [14–16] via a reparameterization trick [17, 18].
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Figure 2. Advantage of optimal transport. (Left) To match
two positive instance pairs of distributions, A and B, ex-
isting approaches ( [4, 5, 16], etc.) simply calculate dis-
tances between randomly sampled pairs and cannot pre-
cisely match distributional shapes, possibly resulting in an
undesirable single point when distances of positive sample
pairs are minimized for probabilistic representation learning.
(Right) Optimal transport can select optimal sample pairs
to appropriately match their distributional shapes, thereby
harnessing the power of rich probability distributions.

These approaches have been applied to text-to-image (or
vice versa) cross-modal retrieval [3, 4], and more recently,
to multimodal image retrieval [5]. Chun et al. [4] proposed
Probabilistic Cross-Modal Embedding (PCME), which is
a pioneering work on probabilistic representation learning
for cross-modal retrieval. Li et al. [3] proposed Average
Semantic Precision (ASP), which can calculate the seman-
tic correlation scores of a dataset, and differentiable ASP
approximation, which utilizes ASP as a loss function. Nec-
ulai et al. [5] proposed Multimodal Probabilistic Composer
(MPC), which can use a multimodal query combining im-
age and text for image retrieval. However, these approaches
calculate distances based on sample-wise similarity, with
an arbitrary sample pair randomly selected from each dis-
tribution (left side of Figure 2). This manner often results
in most sample pairs being non-optimal, and as a result,
the details of the distributional properties are lost. This
disadvantage leads to a decrease in performance.

In light of this background, we propose two novel loss
functions, one based on contrastive learning and the other
on optimal transport, to be used together for multimodal
MIR on a hypersphere. Contrastive learning is an effective
tool to jointly map each content item of multiple modal-
ities to a shared latent space [19, 20]. In the context of
probabilistic representation learning, utilizing the angular
distance between distributions has proven more effective
than using their Euclidean distance [15]. Furthermore, the
von Mises-Fisher (vMF) distribution (i.e., the distribution
on a hypersphere) exhibits a better performance than the
Gaussian distribution since vMF-based methods simplify
the variance estimation by using a single scalar κ, thereby
avoiding the dimension-wise estimation in Gaussian-based
methods [14]. Given these insights, we propose a con-
trastive loss function on a hypersphere for multiple modali-
ties based on probabilistic contrastive learning [16]. In addi-
tion, optimal transport [21] offers a robust and effective tool
for calculating distances between probability distributions.
It allows encoders to bring the probability distributions of
a positive pair closer together, thus ensuring a more accu-
rate representation learning (right side of Figure 2). This

unique attribute of optimal transport can benefit multimodal
MIR tasks. Hence, we propose a loss function based on a
Spherical Sliced-Wasserstein (SSW) [22] p-distance, con-
templating the compatibility between contrastive learning
and optimal transport on a hypersphere.

By using the proposed loss functions, we can train en-
coders that map each content item to a hypersphere, as
shown in Figure 1. During training, we assume that pair-
wise combinations of music audio of a song, a cover image
for the song, and text generated from the song’s metadata
are positive, and that those for irrelevant ones (different
songs, music genres, or artists, etc.) are negative (left side
of Figure 1). Once the encoders are trained, we can uti-
lize them to obtain the probabilistic representation of each
content item for multimodal MIR (right side of Figure 1).
The main advantage of probabilistic representation lies in
its ability to seamlessly integrate multiple content items
in a latent space as a multimodal query, which is a great
benefit in retrieval tasks. We conduct both a quantitative
evaluation and a qualitative analysis on the public YT8M-
MusicVideo dataset and a private dataset to demonstrate the
effectiveness of our proposed method.

2. PRELIMINARY

2.1 Problem Specification

We use a mel spectrogram of music audio as the input of
an audio encoder, an RGB image as the input of an image
encoder, and a tokenized text as the input of a text encoder.
We follow previous studies [19, 20] regarding the setup of
the input representations.

Let A = {an ∈ RDa}Nn=1, I = {in ∈ RDi}Nn=1, and
T = {tn ∈ RDt}Nn=1 be a set of spectrograms, a set of
images corresponding to A, and a set of tokenized texts
corresponding to A, respectively, where Da is the number
of dimensions of each spectrogram, Di is the number of
dimensions of each image, Dt is the number of dimensions
of each tokenized text, and N is the number of songs.

Next, let ZA = {zan ∈ Rd}Nn=1, ZI = {zin ∈ Rd}Nn=1,
and ZT = {ztn ∈ Rd}Nn=1 be sets of the latent variables
of spectrograms, images, and tokenized texts, respectively,
where d is the number of dimensions of each latent variable.

We train the audio encoder fA that maps A to ZA, the
image encoder fI that maps I to ZI, and the text encoder
fT that maps T to ZT so that probability distributions
p(zan|an), p(zin|in), and p(ztn|tn) are close to each other
on a shared hyper-spherical surface Sd−1

shared={||z·n||=1}.

2.2 Probabilistic Contrastive Learning

Contrastive learning is an established deep learning tech-
nique widely utilized in recent research [23]. In particular,
methods like N -pairs loss [24], InfoNCE loss [25], and
MoCo [26], which calculate the loss based on N -pairs of
instances (i.e., one positive pair and N−1 negative (or irrel-
evant) pairs), serve as powerful tools for multimodal repre-
sentation learning [1, 2, 19, 20]. However, these contrastive
loss functions are designed for deterministic methods and
cannot be directly applied to probabilistic approaches.



Recently, Kirchhof et al. [16] introduced MCInfoNCE,
an adaptation of InfoNCE for probabilistic contrastive learn-
ing that uses Monte-Carlo samples from each distribution.
The MCInfoNCE loss LMC is defined as follows:

LMC=− 1

m

m∑
j=1

L∑
l=1

log
esim(zl

j ,z
l
+)/τ

esim(zl
j ,z

l
+)/τ+

∑
z−

esim(zl
j ,z

l
−)/τ

,

(1)
where m is a mini-batch size, L is the number of samples, τ
is a hyperparameter called temperature scaling, which con-
trols the scale of the loss function, zn ∼ p(zn) is an anchor,
z+ ∼ p(z+|zn) and z− ∼ p(z−|zn) respectively indicate
positive and negative samples of the anchor, and sim(·, ·)
is a function that calculates the similarity (such as cosine
similarity) between two distributions. Since MCInfoNCE
is originally designed as the single-modal loss, we are the
first to modify it for our multimodal loss in Section 3.1.

2.3 Optimal Transport

Optimal transport has been gaining popularity for a variety
of computer vision tasks [27–29], but calculating the opti-
mal transport distance between distributions is known to be
computationally intensive [30]. This problem can be solved
when the distributions are on a particular manifold [22, 30].

We therefore delve into a recent powerful innovation, the
Spherical Sliced-Wasserstein (SSW) [22] p-distance, which
is specialized on a hypersphere and is highly efficient and
useful, but has not yet been used for representation learning.

2.3.1 Definition of Spherical Sliced-Wasserstein (SSW)

The SSW p-distance for p ≥ 1 is defined between two prob-
ability measures µ, ν ∈ Pp,ac(S

d−1), the set of absolutely
continuous probability measures on a hypersphere Sd−1

with a finite p-th moment, as follows:

SSWp(µ, ν) =

∫
Vd,2

Wp

(
µ ◦ PU−1

, ν ◦ PU−1
)

dσ, (2)

where Vd,2 = {U ∈ Rd×2, U⊤U = I2} is the Stiefel
manifold [31], σ is the uniform distribution over Vd,2, PU

is the function that projects a point z ∈ Sd−1 onto a great
circle S1 generated by U (for a.e. z ∈ Sd−1, PU can be
written in a practical form of PU (z) = U⊤z

∥U⊤z∥2
[22]), and

Wp is the optimal transport distance on S1 [32, 33]. To
avoid any effects stemming from the choice of U , Bonet
et al. [22] calculated the SSW distance several times for a
set of random U , and we also calculate it in the same way.

2.3.2 Optimal Transport Distance on Great Circle

We focus on the simplest p = 1 in Equation (2) to calculate
Wp|p=1 between two probability measures µ′, ν′ ∈ P(S1)
that are after being projected from a hypersphere Sd−1 onto
one of the generated great circles S1. The W1 is defined as

W1(µ
′, ν′) =

∫ 1

0

|Fµ′(t)−Fν′(t)−LevMed(Fµ′−Fν′)| dt,
(3)

where Fµ′ , Fν′ are the cumulative distribution function of
µ′, ν′, respectively, and LevMed(·) is the level median [34],

defined as follows:

LevMed(f) = min

{
argmin

α∈R

∫ 1

0

|f(t)− α|dt
}
, (4)

where α is a shift parameter. The SSW1, which is utilized
in our proposed loss functions (Section 3), can thus be
calculated by using Equations (2)–(4). Surprisingly, we
can approximate the integral in Equation (3) simply by
sorting the samples on S1 in order to calculate Fµ′ , Fν′ , and
LevMed(·). To illustrate this intuitively, the optimal sample
pairing on the right of Figure 2 is dramatically expedited
by this sorting on the one-dimensional great circle without
examining many pairings. We present the algorithm and
pseudocode of SSW1 in our supplementary materials 1 .

3. PROPOSED METHOD FOR MULTIMODAL MIR

We design two novel loss functions for probabilistic repre-
sentation learning: a multimodal probabilistic contrastive
loss function for multiple modalities (Section 3.1) and an
SSW-based loss function (Section 3.2) based on optimal
transport. To train the encoders as shown in Figure 1, we
assign them different roles. The former loss is designed
for distancing irrelevant instance pairs of probability dis-
tributions on Sd−1

shared, resulting in closer positive instance
pairs. The latter loss focuses on placing positive instance
pairs close to each other by matching their distributional
shapes, and does not deal with irrelevant pairs at all. Their
integration is therefore important. The trained encoders can
be applied to multimodal MIR (Section 3.3).

The standard approach for probabilistic representation
learning assumes that the latent variables of each content
item have a probability distribution of a given form, such
as a Gaussian distribution [5, 12, 13] or a von Mises-Fisher
(vMF) distribution [14–16]. We use the vMF distribution
as the probability distribution on Sd−1

shared as follows:

p(zan|an) = vMF(zan;µ(an), κ(an)), (5)

p(zin|in) = vMF(zin;µ(in), κ(in)), (6)

p(ztn|tn) = vMF(ztn;µ(tn), κ(tn)), (7)

where the variables are as defined in Section 2.1. Using the
proposed loss functions, we train three encoders so that they
can estimate the appropriate parameters, the mean direction
µ(·) and the concentration κ(·), of each vMF distribution.

During training, we utilize L samples taken from each
vMF distribution via a rejection-sampling reparameteriza-
tion trick [18] in practice. Our proposed loss functions in
Sections 3.1 and 3.2 use the following notations:

ζn ∼ vMF(z∗n;µ(∗n), κ(∗n)), (8)

ηn ∼ vMF(z⋆n;µ(⋆n), κ(⋆n)), (9)

where ζn and ηn (∗, ⋆ ∈ {a, i, t}, ∗ ̸= ⋆) are L samples
from the vMF distribution of respective content items.

3.1 Multimodal Probabilistic Contrastive Loss
Function for Probabilistic Contrastive Learning

Contrastive learning is an effective approach to jointly train
encoders for the representation learning of multiple modal-

1 https://github.com/T39Nakatsuka/ISMIR2024



ities [1, 2, 19, 20]. By modifying Equation (1), we design
our own multimodal loss function LC for all pairwise com-
binations of multiple modalities (we name this multimodal
probabilistic contrastive loss) as follows:

LC = − 1

m

∑
<ζ,η>

m∑
j=1

log
esim(ζj ,η+)/τ

m∑
k=1

esim(ζj ,ηk)/τ

, (10)

where m is a mini-batch size, τ is a temperature scaling,
+ indicates a positive sample of an anchor, and sim(·, ·)
is a function that calculates the similarity between two
distributions by leveraging the L samples as follows:

sim(ζj , ηk) ≃ sim

({
z∗,lj

}L

l=1
,
{
z⋆,lk

}L

l=1

)

=
1

L

L∑
l=1

z∗,lj

⊤
z⋆,lk

∥z∗,lj ∥∥z⋆,lk ∥
. (11)

This loss LC can thus distance the centroids of the distribu-
tions of irrelevant instance pairs for the contrastive learning.

3.2 SSW-based Loss Function for Optimal Transport

We formulate our SSW-based loss function LS using the
SSW1 distance (Equations (2)–(4)) as follows:

LS =
1

m

∑
<ζ,η>

m∑
j=1

SSW1(ζj , ηj). (12)

Intuitively, both the L samples from ζj and the L samples
from ηj on Sd−1

shared are projected onto S1, sorted (paired),
and used to calculate the cumulative distribution functions,
resulting in the optimal transport distance between those
positive instance pairs. This loss LS can thus make the
distributions of positive instance pairs closer.

To leverage the advantages of both LC and LS , our
method uses a loss function that integrates them as follows:

L = LC + λSLS , (13)

where λS is a weight.

3.3 Probabilistic Multimodal MIR

Once the encoders have been trained, we can leverage them
to map each content item as a probability distribution on
Sd−1
shared and calculate the distances between their distribu-

tions. For a single-modal query, we calculate the cosine
similarity between the mean (i.e., Fréchet mean [35, 36])
over samples obtained from the distribution of a query and
that of each content item in a dataset. For a multimodal
query, we calculate the Fréchet mean over all samples ob-
tained from the distribution of each query and use it like
a single-modal query. When the similarity score between
a pair of content items is high, it indicates that they are
matched. We thus sort the similarity scores in descending
order and retrieve the content item in the dataset that scored
higher with respect to the query.

4. EXPERIMENTS AND RESULTS

This section describes comparison experiments to quantita-
tively evaluate how closely the probability distributions of

positive instances were located on Sd−1
shared, and a qualitative

analysis of the proposed method to further investigate the
nature of the learned representation of each content item.

4.1 Experimental Setup

4.1.1 Dataset

For the experiments, we used the following two benchmark
datasets with different characteristics. We determined the
size of each test set by following the setup in [1, 37].

YT8M-MusicVideo dataset [1] is a subset of the
YouTube-8M dataset [38], comprising videos tagged as
“music video.” We collected 73,113 triplets consisting of
music audio (average length of 4 min with a 48 kHz sam-
pling rate), its thumbnail image (an RGB image with an
aspect ratio of 16:9), and its metadata including title, chan-
nel name, and upload date from 60,785 YouTube channels.
We randomly split the dataset into training (64,001 songs),
validation (7,112 songs), and test (2,000 songs) sets with
no YouTube channels overlapping across these sets. For
evaluation, we conducted our experiments three times with
different seed values when training the encoders.

AS5M dataset (Album Songs 5 Million dataset) is a pri-
vate dataset that contains triplets of a music audio excerpt
(a 30 s audio preview for trial listening, with a 44.1 kHz
sampling rate), its cover image (a square RGB image), and
its metadata including song title, artist name, collection
name, music genre, and release date. The dataset contains
5,920,828 audio excerpts and their metadata by 174,629
artists, and 1,115,668 cover images. Because multiple ex-
cerpts from a music album are associated with a single cover
image, each image corresponds to about 5.3 excerpts on av-
erage. The songs encompass a variety of music genres (over
250). We randomly split the dataset into training, validation,
and test sets with an eight-one-one ratio and with no artists
or images overlapping across these sets. For evaluation, we
constructed ten folds of test subsets by randomly selecting
2,000 triplets of an audio excerpt, a cover image, and a text
prompt for each fold from the test set.

4.1.2 Implementation Details

Encoder architecture: We used an audio model of con-
trastive language-audio pretraining (CLAP) [20] as the
backbone network for the audio encoder, and used image
and text models of contrastive language-image pretrain-
ing (CLIP) [19] as the backbone network for the image
and text encoders. Before training, we set the parameters
of the pre-trained models available at Transformers [39]
(i.e., “laion/clap-htsat-fused” for CLAP (audio model) and
“vit_base_patch16_224” for CLIP (vision and text models))
to the encoders. During training, we updated the projection
layers of the encoders.

Audio: The music audio of each song was converted
to a mel spectrogram through a CLAP feature extractor
available at Transformers [39], and the audio encoder was
trained using the spectrogram as input. In training the audio
encoder, we applied a masking technique including fre-
quency masking and time masking [40] and a random crop



technique regarding the time domain to the spectrogram for
data augmentation [41].

Image: We used an RGB image resized to 224 px ×
224 px as the input of the image encoder. In training the im-
age encoder, we applied a random resized crop (scale=[0.08,
1.0], ratio=[0.75, 1.33]), random horizontal flip (probabil-
ity=0.5), and random erasing (probability=0.2) [42] to all
images for data augmentation.

Text: We tokenized text generated by using a keyword-
to-caption augmentation technique [20] 2 with a maximum
length of 77, which is the same setup as CLIP [19]. In train-
ing the text encoder, words corresponding to metadata are
randomly dropped [43] at a ratio of 0.05 for each metadata.

Training: We used 16 NVIDIA A100 GPUs under each
experimental condition, and each GPU computed 64 triplets
of audio, images, and text per iteration. Our implementation
was based on PyTorch [44]. In training the encoders, we
used the Adam optimizer [45] with a learning rate of 1.0×
10−4. We used d = 512 (dimensions of latent variables)
following the setup in [5]. For the vMF distribution, we set
κ(·) ∈ (64, 128) to obtain a clear distribution following the
setup of [16]. We empirically set the number of samples
L to 16. For LC , we set the temperature-scaling value
(Equation (10)) to τ = 0.07, which was originally used in
MoCo [26]. For LS , we calculated the SSW1 distance 100
times for a set of random U , following [22] (i.e., 16 samples
from ζj and 16 samples from ηj were projected onto 100
different great circles to match distributional shapes from
100 different views). On the basis of preliminary studies,
we set the weight λS to 1.0.

4.1.3 Ranking-Based Evaluation Metrics

We used three standard evaluation metrics for retrieval tasks:
the mean reciprocal rank (MRR) [46], the recall@k (R@k),
and the median rank (MR) [1]. MRR is a statistic measure
utilized to evaluate the quality of retrieval results. Given
a set of queries, MRR calculates the average of reciprocal
ranks of the first correct (i.e., original) content item. A
higher MRR value indicates a more accurate and efficient
retrieval method. R@k evaluates how correctly content
items are retrieved in the top results. For retrieval tasks,
a higher R@k means that the retrieval method is more
practical. We set k = 1 for the R@k and displayed R@1 as
a percentage. MR represents the median value of the ranks
of the retrieved correct content item. In our context, a lower
MR is desirable because it indicates that the correct content
item is ranked closer to the top of the retrieval results.

4.2 Conditions

We compared our method (Proposed based on L) with two
competitive methods that utilize probabilistic representation
learning for text-image retrieval, PCME [4] and MPC [5].

2 Since the text prompt generation using a template sentence with
metadata is known to be effective for retrieval tasks [19], for the YT8M-
MusicVideo dataset, we generated a text prompt using: “title” is a music
video uploaded by “channel name” on “upload date.” For the AS5M
dataset, we generated a text prompt using: “song title” is a(n) “music
genre” song by “artist name”, released on “release date.” “song title” is
collected to “collection name.”

Figure 3. Visualization of the learned representations of
audio, images, and text in the test subsets of the AS5M
dataset with respect to music genre tags using t-SNE [51].

For music audio and other modalities, probabilistic repre-
sentation learning for multimodal MIR has not yet been
investigated, so we solely used the multimodal probabilis-
tic contrastive loss LC (Section 3.1) as a baseline method
(Baseline) in order to investigate the effectiveness of LS .

4.3 Results

As shown in Tables 1–6, our method outperformed
PCME [4] and MPC [5], which are competitive methods
for text-image retrieval, in all the retrieval tasks on both
datasets. Likewise, our method was superior to the base-
line method based on the modified MCInfoNCE [16] in
nearly all retrieval tasks. We thus confirmed that LS was
effective in achieving better performances. The results also
showed that a multimodal query outperformed a single-
modal query for most tasks. Our method can seamlessly
create multimodal queries from multiple probability distri-
butions, bringing benefits to multimodal MIR.

The performance differences between the datasets can be
partly explained by their sizes since our method uses trans-
former models as the encoders. Several studies have shown
that the performance of transformer models follows a scal-
ing law [47–50]. This scaling law has been confirmed in ex-
periments with data from various modalities [47–49] and in
transfer learning [50]. In practice, the YT8M-MusicVideo
dataset is two orders of magnitude smaller than the AS5M
dataset, resulting in a decrease in performance. The perfor-
mance differences between the tasks, as well as between the
datasets, can also be explained on the basis of the scaling
law. In our experiments, we used the CLAP audio model,
which was trained on the LAION-Audio-630K dataset [20].
This dataset is several orders of magnitude smaller than the
one used for training the CLIP models, which can lead to
the decreased performance in audio-related retrieval tasks.

We provide additional comparison experiments that
demonstrate the effectiveness of our proposed method in
our supplementary materials 1.

4.4 Qualitative Analysis

We investigated the nature of the learned representations of
music audio, images, and text by visualizing them regarding
music genres. We utilized music audio, images, and text
for 12,180 songs for the top 10 most popular genres in test
subsets of the AS5M dataset. We calculated the Fréchet
mean over all samples obtained from the distribution of each
content item and mapped each of them to a two-dimensional



Table 1. Comparison on YT8M-MusicVideo dataset for multimodal image retrieval.
Audio → Image Text → Image Audio & Text → Image

Method MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓

PCME − − − 0.025± 0.003 0.73± 0.08 369 − − −
MPC − − − 0.014± 0.001 0.2± 0.11 425 − − −
Baseline 0.024± 0.001 0.73± 0.09 272 0.048± 0.001 1.92± 0.12 166 0.044± 0.001 1.55± 0.11 166
Proposed 0.028± 0.001 0.65± 0.08 247 0.115± 0.0 6.68± 0.1 92 0.119± 0.002 6.8± 0.29 72

Table 2. Comparison on YT8M-MusicVideo dataset for multimodal text retrieval.
Audio → Text Image → Text Audio & Image → Text

Method MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓

PCME − − − 0.023± 0.002 0.73± 0.16 372 − − −
MPC − − − 0.013± 0.001 0.13± 0.05 427 − − −
Baseline 0.026± 0.001 0.6± 0.18 226 0.046± 0.001 1.47± 0.1 167 0.054± 0.002 1.83± 0.3 131
Proposed 0.039± 0.001 1.17± 0.09 180 0.118± 0.002 6.87± 0.21 89 0.139± 0.002 7.97± 0.46 55

Table 3. Comparison on YT8M-MusicVideo dataset for multimodal audio retrieval.
Image → Audio Text → Audio Image & Text → Audio

Method MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓

Baseline 0.021± 0.001 0.52± 0.05 263 0.028± 0.001 0.68± 0.08 219 0.032± 0.002 0.83± 0.26 191
Proposed 0.027± 0.001 0.58± 0.06 235 0.041± 0.003 1.25± 0.37 173 0.05± 0.002 1.75± 0.25 141

Table 4. Comparison on AS5M dataset for multimodal image retrieval.
Audio → Image Text → Image Audio & Text → Image

Method MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓

PCME − − − 0.069± 0.004 2.82± 0.34 131 − − −
MPC − − − 0.026± 0.002 0.62± 0.15 240 − − −
Baseline 0.046± 0.002 1.37± 0.19 141 0.125± 0.005 6.21± 0.56 50 0.1± 0.004 4.39± 0.53 60
Proposed 0.074± 0.004 2.94± 0.46 94 0.539± 0.005 45.37± 0.65 2 0.508± 0.008 41.35± 1.12 2

Table 5. Comparison on AS5M dataset for multimodal text retrieval.
Audio → Text Image → Text Audio & Image → Text

Method MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓

PCME − − − 0.067± 0.003 2.73± 0.27 131 − − −
MPC − − − 0.025± 0.002 0.57± 0.13 239 − − −
Baseline 0.062± 0.002 1.93± 0.27 82 0.126± 0.006 5.99± 0.59 47 0.146± 0.007 6.96± 0.76 30
Proposed 0.113± 0.004 4.99± 0.37 46 0.541± 0.007 44.21± 0.99 2 0.58± 0.009 47.75± 1.19 2

Table 6. Comparison on AS5M dataset for multimodal audio retrieval.
Image → Audio Text → Audio Image & Text → Audio

Method MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓ MRR ↑ R@1 (%) ↑ MR ↓

Baseline 0.045± 0.002 1.32± 0.2 138 0.067± 0.003 2.11± 0.24 77 0.069± 0.003 2.43± 0.32 74
Proposed 0.072± 0.004 2.62± 0.33 92 0.115± 0.005 4.86± 0.47 44 0.126± 0.006 5.54± 0.62 37

space using t-SNE [51]. Figure 3 shows that their learned
representations form clusters regarding music genres. That
is, audio, images, and text in each of these genres are closely
associated with each other.

5. CONCLUSION

We proposed a method for multimodal MIR that leverages
the probabilistic representations of content items. Our
contributions can be summarized as follows. First, we
leveraged the von Mises-Fisher (vMF) distribution, which
has been used for single-modal tasks [14–16] but has not
been used for multimodal retrieval tasks. In addition, the
recently-invented spherical sliced-Wasserstein (SSW) [22]
p-distance for optimal transport is surprisingly computa-
tionally efficient and useful, but has not yet been used in the
MIR community. Moreover, we designed the two novel loss
functions, LC and LS , using both probabilistic contrastive

learning and optimal transport to facilitate probabilistic mul-
timodal representation learning. To our knowledge, this is
the first work to utilize these reusable insights for proba-
bilistic representation learning. Second, we confirmed the
effectiveness of integrating the contrastive loss function LC

with the loss function LS based on the optimal transport
distance through quantitative evaluations, and showed that
the proposed method can retrieve more appropriate content
items for single-modal and multimodal queries. Third, we
conducted a qualitative analysis, showing that music audio,
images, and text for the same music style are located close
to each other on Sd−1

shared. These results demonstrated that
the proposed method is effective for multimodal MIR.

The underlying principles of the proposed method can
work for any retrieval tasks regardless of modalities, which
will lead to a broader scope of application. As such, we
believe that the proposed method will shed light on other
challenging retrieval tasks and usher in practical solutions.
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