Using Item Response Theory to Aggregate Music Annotation Results of Multiple Annotators

Tomoyasu Nakano Masataka Goto National Institute of Advanced Industrial Science and Technology (AIST), Japan

Introduction

Human music annotation is one of the most important tasks in music information retrieval (MIR) ✓ For training machine learning models ✓ For analyzing music characteristics

A single target (e.g., a song or part of a song) is usually annotated by multiple human annotators The results are aggregated by majority voting or averaging in music annotation

AIST

Annotators

Song 1

Drawbacks

Majority voting

Both methods

 Annotator-independent models $(e.g., 2PLM a_i, b_i \rightarrow a, b)$

a, b

✓ Models assuming interval scales

 $(e.g., \text{GRM } a_i, b_{i,k} \rightarrow a_i, o_i + kb_i)$

Aggregation of singing skill evaluation results

Experiments

- Aggregation of music tagging results ✓ 6 annotators (3 males and 3 females) ✓ 120 songs (each annotator tagged 60 songs) ✓ 81 tags (15 genres, 38 subgenres, and 28 semantics) ✓ 4 models
 - \checkmark 2PLM a_i, b_i and 1PLM b_i
 - ✓ 2PLM' *a*, *b* and 1PLM' *b* (Annotator-independent models) ✓ MCMC-based parameter estimation (NUTS) [Hoffman+, 2014] ✓ ELPD-based model comparison (PSIS-LOO) [Vehtari+, 2017]
- ✓ 10 annotators (5 males and 5 females)
 - ✓ 140 songs
 - ✓ 7-point Likert scale from <u>6 evaluation perspectives</u>
 - ✓ 8 models
 - \checkmark GRM a_{i} , $b_{i,k}$ and GRM-a $b_{i,k}$ \checkmark GRM' **a**, **b**_k and GRM-a' **b**_k

Pitch, Rhythm, Pronunciation Expression, Vocal projection, and Overall performance

- \checkmark GRMi $a_i, o_i + kb_i$ (GRM assuming interval scales)
- \checkmark GRMi-a $o_i + kb_i$, GRMi' a, o + kb, GRMi-a' o + kb✓ MCMC-based parameter estimation (NUTS) ✓ ELPD-based model comparison (PSIS-LOO)

