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Introduction
B Human music annotation is one of the most B A single target (e.g., a song or part of a song) is
important tasks in music information retrieval (MIR) usually annotated by multiple human annotators
v For training machine learning models B The results are aggregated by majority voting or
v' For analyzing music characteristics averaging in music annotation
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B Majority voting B Both methods Song 1 ﬁ% []
v’ Requires an odd number of annotators v Cannot consider the differences s> ﬁi []
v’ The binarization loses information in annotators’ characteristics
v" There are differences in the thresholds for Annotators
. each annotator that determine whether a )
- A}/eraglng b 4f dinal | | song is tagged or not, or which score is Song 1 ‘ﬂ
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Cannot be used for ordinal scale values appropriate to rate the song. Song 2 !ﬂ @
Well-known 3 IRT-based models
PI‘O posed mEthOd [Lord, 1980] (1) Two-parameter logistic model (2PLM) [Birnbaum, 1968] [Hambleton, 1991]

B [tem Response Theory (IRT)-based music annotation aggregation g; g:]aecisdarfeTpe;i;Ieorg\i;g:In(](?glt\e/:)(:gal-nl\gima o6
v" It can model the annotators’ characteristics

v" It can be used with any number of annotators v’ It can handle ordinal scale values
v It can estimate latent continuous scores 6; -
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gt Binary rating Two-parameter logistic model (2PLM) ongti 7. point Likert rating Graded response model (GRM)

B In addition, we proposed nine originally simplified models with reduced parameters for comparative evaluation

v Annotator-independent models | a.b | v'Models assuming interval scales |

(e.g., 2PLM aj, b] = a, b) (e.g., GRM a]-, bj,k =) a]-, 0; + kb])

Experiments B Aggregation of singing skill evaluation results
: : : v" 10 annotators (5 males and 5 females)
B Aggregation of music tagging results v 140 songs

v 6 annotators (3 males and 3 females) v 7-point Likert scale from 6 evaluation perspectives
v 120 songs (each annotator tagged 60 songs) v 8 models Pitch, Rhythm, Pronunciation
v' 81 tags (15 genres, 38 subgenres, and 28 semantics) Expression, Vocal projection,
v 4 mogdels J J jgim’aj':ﬂk asziE/lM"abbj,k and Overall performance

v 2PLM a;, b; and 1PLM b; % Dr an 4 Dk

v  GRMi a;, 0; + kb; (GRM assuming interval scales
v 2PLM’ a, b and 1PLM’ b (Annotator-independent models) 5’ j 9 )

\/ 1o . . o7 .
v MCMC-based parameter estimation (NUTS) [Hoffman-+, 2014] GRMi-a o; + kb;, GRMI" a,0 + kb, GRMi-a" 0 + kb

: . v MCMC-based parameter estimation (NUTS)
v ELPD-based del PSIS-LOOQO) [vehtari+, 2017]
ased model comparison ( ) veht v  ELPD-based model comparison (PSIS-LOO)

B Results iwotator-depe%ent models A/Annotator-dependent models Models assuming ordinal scale
v 1PLM > 1PLM’ > 2PLM > 2PLM’ v GRMi >|GRM'|>|GRM [> GRMi’' >|GRM-a|>|GRM-a’(> GRMi-a > GRMi-a’
Contribution Future direction
B To the best of our knowledge, this is the first paper B We will verify the effectiveness of using @ as training
to introduce IRT in music annotation data in machine learning
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